成都市东湖中学七上数学绝对值专题专项强化导练2
7初一上册数学 绝对值 专项练习带答案

36.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.
37.若ab>0,化简: + .
38.若a、b都是有理数,试比较|a+b|与|a|+|b|大小.
39.若a>b,计算:(a﹣b)﹢|a﹣b|.
32.计算:|x+1|+|x﹣2|+|x﹣3|.
33.已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=;(2)当x=时,点P到点A,点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动秒时,点P到点E,点F的距离相等.
18.6或﹣6.
19.2,2.
20.4,﹣4.
21.2018.
22.1.
23.﹣1.
24.2.
25.±3.
26. =3.
三.解答题(共14小题)
27.【解答】(1)令x﹣5=0,x﹣4=0,
解得:x=5和x=4,
故|x﹣5|和|x﹣4|的零点值分别为5和4;
(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;
30.【解答】解:|2|=2,|﹣ |= ,
成都市东湖中学七上数学期末复习易错题训练案二

成都市东湖中学七上数学期末复习易错题训练案二1.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数2.下列四种说法:①0是整数;②0是自然数;③0是偶数;④0是非负数.其中正确的有()A.4个B.3个C.2个D.1个3.下列说法正确的是()A.零是最小的整数B.有理数中存在最大的数C.整数包括正整数和负整数D.0是最小的非负数4.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()A.2002或2003 B.2003或2004 C.2004或2005 D.2005或2006数轴上的点A表示的数是+2,那么与点A相距5个单位长度的点表示的数是()A.5 B.±5 C.7 D.7或﹣35.点M在数轴上距原点4个单位长度,若将M向右移动2个单位长度至N点,点N表示的数是()A.6 B.﹣2 C.﹣6 D.6或﹣26.如图,A、B、C、D、E为某未标出原点的数轴上的五个点,且AB=BC=CD=DE,则点D所表示的数是()A.10 B.9 C.6 D.07.已知在纸面上有一数轴(如图),折叠纸面.(1)若折叠后,数1表示的点与数﹣1表示的点重合,则此时数﹣2表示的点与数表示的点重合;(2)若折叠后,数3表示的点与数﹣1表示的点重合,则此时数5表示的点与数表示的点重合;若这样折叠后,数轴上有A、B两点也重合,且A、B两点之间的距离为9(A在B的左侧),则A点表示的数为,B点表示的数为.8.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8 B.2 C.8或﹣2 D.﹣8或29. ﹣|﹣2|的绝对值是.10.已知a是有理数,且|a|=﹣a,则有理数a在数轴上的对应点在()A.原点的左边B.原点的右边C.原点或原点的左边D.原点或原点的右边11.若ab>0,则++的值为()A.3 B.﹣1 C.±1或±3 D.3或﹣112.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于()A.﹣1 B.0 C.1 D.213.已知a,b,c的位置如图,化简:|a﹣b|+|b+c|+|c﹣a|=.14. ﹣9,6,﹣3三个数的和比它们绝对值的和小.15.已知a、b互为相反数,且|a﹣b|=6,则b﹣1=.一家饭店,地面上18层,地下1层,地面上1楼为接待处,顶楼为公共设施处,其余16层为客房;地面下1楼为停车场.(1)客房7楼与停车场相差层楼;(2)某会议接待员把汽车停在停车场,进入该层电梯,往上14层,又下5层,再下3层,最后上6层,那么他最后停在层;(3)某日,电梯检修,一服务生在停车场停好汽车后,只能走楼梯,他先去客房,依次到了8楼、接待处、4楼,又回接待处,最后回到停车场,他共走了层楼梯.16.五个有理数的积为负数,则五个数中负数的个数是()A.1 B.3 C.5 D.1或3或517.比﹣3大,但不大于2的所有整数的和为,积为.18.负实数a的倒数是()A.﹣a B.C.﹣D.a19.下列等式中不成立的是()A.﹣B.=C.÷1.2÷D.20.甲小时做16个零件,乙小时做18个零件,那么()A.甲的工作效率高B.乙的工作效率高C.两人工作效率一样高D.无法比较21.下列说法中正确的是()A.平方是它本身的数是正数B.绝对值是它本身的数是零C.立方是它本身的数是±1 D.倒数是它本身的数是±122.若a3=a,则a这样的有理数有()个.A.0个B.1个C.2个D.3个23.若(﹣ab)103>0,则下列各式正确的是()A.<0 B.>0 C.a>0,b<0 D.a<0,b>024.如果n是正整数,那么[1﹣(﹣1)n](n2﹣1)的值()A.一定是零 B.一定是偶数C.是整数但不一定是偶数 D.不一定是整数25.﹣22,(﹣1)2,(﹣1)3的大小顺序是()A.﹣22<(﹣1)2<(﹣1)3B.﹣22<(﹣1)3<(﹣1)2C.(﹣1)3<﹣22<(﹣1)2D.(﹣1)2<(﹣1)3<﹣2226.最大的负整数的2005次方与绝对值最小的数的2006次方的和是()A.﹣1 B.0 C.1 D.227.若a是有理数,则下列各式一定成立的有()(1)(﹣a)2=a2;(2)(﹣a)2=﹣a2;(3)(﹣a)3=a3;(4)|﹣a3|=a3.A.1个B.2个C.3个D.4个28.a为有理数,下列说法中,正确的是()A.(a+)2是正数B.a2+是正数C.﹣(a﹣)2是负数D.﹣a2+的值不小于29.下列计算结果为正数的是()A.﹣76×5 B.(﹣7)6×5 C.1﹣76×5 D.(1﹣76)×530.下列说法正确的是()A.倒数等于它本身的数只有1 B.平方等于它本身的数只有1 C.立方等于它本身的数只有1 D.正数的绝对值是它本身31.下列说法正确的是()A.零除以任何数都得0 B.绝对值相等的两个数相等C.几个有理数相乘,积的符号由负因数的个数决定D.两个数互为倒数,则它们的相同次幂仍互为倒数32.下列结论中,错误的是()A.平方得1的有理数有两个,它们互为相反数B.没有平方得﹣1的有理数C.没有立方得﹣1的有理数D.立方得1的有理数只有一个33.﹣2.040×105表示的原数为()A.﹣204000 B.﹣0.000204 C.﹣204.000 D.﹣2040034.观察两行数根据你发现的规律,取每行数的第10个数,求得它们的和是(要求写出最后的计算结果).35.计算48÷(+)之值为何()A.75 B.160 C.D.9036.在代数式x﹣y,3a,a2﹣y+,,xyz,,中有()A.5个整式B.4个单项式,3个多项式C.6个整式,4个单项式D.6个整式,单项式与多项式个数相同37.单项式﹣34a2b5的系数是,次数是;单项式﹣的系数是,次数是.38.是次单项式.39.多项式﹣2a2b+3x2﹣π5的项数和次数分别为()A.3,2 B.3,5 C.3,3 D.2,340.m,n都是正整数,多项式x m+y n+3m+n的次数是()A.2m+2n B.m或n C.m+n D.m,n中的较大数41.一个五次多项式,它的任何一项的次数()A.都小于5 B.都等于5 C.都不大于5 D.都不小于542.已知9x4和3n x n是同类项,则n的值是()A.2 B.4 C.2或4 D.无法确定43.已知﹣1<y<3,化简|y+1|+|y﹣3|=()A.4 B.﹣4 C.2y﹣2 D.﹣244.已知x>0,xy<0,则|x﹣y+4|﹣|y﹣x﹣6|的值是()A.﹣2 B.2 C.﹣x+y﹣10 D.不能确定45.三个连续整数的积是0,则这三个整数的和是()A.﹣3 B.0 C.3 D.﹣3或0或346.已知a<b,那么a﹣b和它的相反数的差的绝对值是()A.b﹣a B.2b﹣2a C.﹣2a D.2b47.有一道题目是一个多项式减去x2+14x﹣6,小强误当成了加法计算,结果得到2x2﹣x+3,则原来的多项式是48.某校为适应电化教学的需要新建阶梯教室,教室的第一排有a个座位,后面每一排都比前一排多一个座位,若第n排有m个座位,则a、n和m之间的关系为m=49.若a<0,则|1﹣a|+|2a﹣1|+|a﹣3|=50.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,其中a0a1a2均为0或1,传输信息为h0a0a1a2h1,其中h0=a0+a1,h1=h0+a2.运算规则为:0+0=0,0+1=1,1+0=1,1+1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.10111 C.01100 D.0001151.在一列数1,2,3,4,…,200中,数字“0”出现的次数是()A.30个B.31个C.32个D.33个52.把在各个面上写有同样顺序的数字1~6的五个正方体木块排成一排(如图所示),那么与数字6相对的面上写的数字是()A.2 B.3 C.5 D.以上都不对53.古希腊数学家把数1,3,6,10,15,21…叫做三角形数,它有一定的规律性,若把第一个三角形数记为a1,第二个三角形数记为a2,…,第n个三角形数记为a n,计算a2﹣a1,a3﹣a2,a4﹣a3,…,由此推算,a100﹣a99=,a100=.54.表2是从表1中截取的一部分,则a=.55.瑞士的一位中学教师巴尔末从光谱数据,…中,成功地发现了其规律,从而得到了巴尔末公式,继而打开了光谱奥妙的大门.请你根据这个规律写出第9个数.56.我们把形如的四位数称为“对称数”,如1991、2002等.在1000~10000之间有个“对称数”.57.下列图案均是用长度相同的小木棒按一定的规律拼搭而成:拼搭第1个图案需4根小木棒,拼搭第2个图案需10根小木棒,…,依次规律,拼搭第8个图案需小木棒根.58.请你将一根细长的绳子,沿中间对折,再沿对折后的绳子中间再对折,这样连续对折5次,最后用剪刀沿对折5次后的绳子的中间将绳子剪断,此时绳子将被剪成段.59.若(a+2)2+|b+1|=0,化简求值5ab2﹣{2a2b﹣[3ab2﹣(4ab2﹣2a2b)]}。
七年级数学上册 绝对值 同步练习2 试题

勾文六州方火为市信马学校绝对值 同步练习2一、选择题〔每题4分,共20分〕1.假设a a -=,那么数a 在数轴上对应的点应为〔 〕A 原点的右侧B 原点的左侧C 原点或原点的右侧D 原点或原点的左侧2.在有理数3-,21-,10-,4--,⎪⎭⎫ ⎝⎛--32,()[]5---中,负数共有〔 〕 A 2个 B 3个 C 4个 D 5个3.下面大小关系中,错误的选项是〔 〕 A 001.0-> B 83375.0->- C 8765< D 7565-<-4.假设m 是整数,且3≤m ,那么m 的所有值的和是〔 〕A 3B 6C 0D 125.如果甲数的绝对值大于乙数的绝对值,那么〔 〕A 甲数必定大于乙数B 甲数必定小于乙数C 甲、乙两数一定异号D 甲、乙两数的大小,要根据具体值确定二、填空题〔每题6分,共30分〕6.两个负数比较,绝对值大的 ,绝对值小的 。
7.假设5=x ,那么=x ,假设4-=x ,那么=x 。
8.如021=-+-b a ,那么=b a 。
9.3=a ,5=b ,b a >,那么=+b a 。
10.绝对值大于而小于的负整数有 。
三、解答题〔每题10分,共50分, 奥赛题不计入总分〕11.用“<〞号把以下各数连接起来。
21-,0,()4--,3--,2-,5.1-12.计算:〔1〕25.1)]2([-⨯---- 〔2〕10511041104110311031102110211011-+-+-+- 13.有理数b a ,满足2005,2004==b a ,且b a >,你知道它有几种情形吗?试分别写出b a ,的值。
14.(1)试比较以下各组数的大小:① 1312,1211 ②1514,1413-- 〔2〕从第〔1〕小题中,你能猜想出1+-n n 与21++-n n (其中n 表示正整数)的大小关系吗? 15.实数c b a ,,的关系是,0,0,0<><c b a 且ab c >>, (1) 在数轴上作出数c b a ,,的大致位置; 〔2〕化简:a c b c b a -+--+16.〔1〕阅读下面材料:点A 、B 在数轴上分别表示有理数a,b ,A 、B 两点之间的距离表示为AB . 当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图形1,b a b OB AB -===; 当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点右边,a b OA OB AB -=-=b a a b -=-=; ②如图3,点A 、B 都在原点左边, a b OA OB AB -=-=b a a b -=---=)(;③如图4,点A 、B 在原点两边,a b OA OB AB +=+=b a b a -=-+=)(。
初一上册数学绝对值专项练习带答案

绝对值一.选择题(共16小题)1.相反数不大于它本身的数是()A.正数B.负数C.非正数D.非负数2.下列各对数中,互为相反数的是()A.2和B.﹣0.5和C.﹣3和D.和﹣23.a,b互为相反数,下列各数中,互为相反数的一组为()A.a2与b2B.a3与b5C.a2n与b2n(n为正整数)D.a2n+1与b2n+1(n为正整数)4.下列式子化简不正确的是()A.+(﹣5)=﹣5 B.﹣(﹣0.5)=0.5C.﹣|+3|=﹣3 D.﹣(+1)=15.若a+b=0,则下列各组中不互为相反数的数是()A.a3和b3B.a2和b2C.﹣a和﹣b D .和6.若a和b互为相反数,且a≠0,则下列各组中,不是互为相反数的一组是()A.﹣2a3和﹣2b3B.a2和b2C.﹣a和﹣b D.3a和3b7.﹣2018的相反数是()A.﹣2018 B.2018 C.±2018 D .﹣8.﹣2018的相反数是()A.2018B.﹣2018 C .D .﹣9.下列各组数中,互为相反数的是()A.﹣1与(﹣1)2B.1与(﹣1)2C.2与D.2与|﹣2|10.如图,图中数轴的单位长度为1.如果点B,C表示的数的绝对值相等,那么点A表示的数是()A.﹣4 B.﹣5 C.﹣6 D.﹣211.化简|a﹣1|+a﹣1=()A.2a﹣2B.0 C.2a﹣2或0 D.2﹣2a12.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A.M或RB.N或P C.M或N D.P或R13.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A.1﹣b>﹣b>1+a>aB.1+a>a>1﹣b>﹣bC.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a14.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙B.丙丁C.甲丙D.乙丁15.有理数a、b在数轴上的位置如图所示,则下列各式中错误的是()A.b<aB.|b|>|a|C.a+b>0 D.ab<016.﹣3的绝对值是()A.3 B.﹣3 C .D .二.填空题(共10小题)17.|x+1|+|x﹣2|+|x﹣3|的值为.18.已知|x|=4,|y |=2,且xy<0,则x﹣y的值等于.19.﹣2的绝对值是,﹣2的相反数是.20.一个数的绝对值是4,则这个数是.21.﹣2018的绝对值是.22.如果x、y都是不为0的有理数,则代数式的最大值是.23.已知+=0,则的值为.24.计算:|﹣5+3|的结果是.25.已知|x|=3,则x的值是.26.计算:|﹣3|=.三.解答题(共14小题)27.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m ﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.28.同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=.(2)找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是.(3)由以上探索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.29.计算:已知|x|=,|y|=,且x<y<0,求6÷(x ﹣y)的值.30.求下列各数的绝对值.2,﹣,3,0,﹣4.31.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是;②数轴上表示﹣2和﹣6的两点之间的距离是;③数轴上表示﹣4和3的两点之间的距离是;(2)归纳:一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=;②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值;③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.32.计算:|x+1|+|x﹣2|+|x﹣3|.33.已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=;(2)若b≠0,且,求的值.当x=时,点P到点A,点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动秒时,点P到点E,点F的距离相等.34.阅读下面材料:如图,点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离可以表示为|a﹣b|.根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与﹣2的两点之间的距离是.(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为.(3)代数式|x+8|可以表示数轴上有理数x与有理数所对应的两点之间的距离;若|x+8|=5,则x=.(4)求代数式|x+1008|+|x+504|+|x﹣1007|的最小值.35.已知|a|=8,|b|=2,|a﹣b|=b﹣a,求b+a的值.36.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.37.若ab>0,化简:+.38.若a、b都是有理数,试比较|a+b|与|a|+|b|大小.39.若a>b,计算:(a﹣b)﹢|a﹣b|.40.当a≠0时,请解答下列问题:(1)求的值;(2)参考答案与试题解析一.选择题(共16小题)1.D.2.B.3.D.4.D.5.B.6.B.7.B .8.A.9.A.10.A.11.C.12.A.13.D.14.C.15.C.16.A.二.填空题(共10小题)17..18.6或﹣6.19.2,2.20.4,﹣4.21.2018.22.1.23.﹣1.24.2.25.±3.26.=3.三.解答题(共14小题)27.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式的最小值是1.28.解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x ﹣2=0时,则x=﹣5或x=2当x<﹣5时,∴﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(范围内不成立)当﹣5<x<2时,∴(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(范围内不成立)∴综上所述,符合条件的整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)的探索猜想,对于任何有理数x,|x﹣3|+|x ﹣6|有最小值为3.29.解:∵|x|=,|y|=,且x<y<0,∴x=﹣,y=﹣,∴6÷(x﹣y)=6÷(﹣+)=﹣36.30.【解答】解:|2|=2,|﹣|=,|3|=3,|0|=0,|﹣4|=4.31.解:探究:①数轴上表示5和2的两点之间的距离是3,②数轴上表示﹣2和﹣6的两点之间的距离是4,③数轴上表示﹣4和3的两点之间的距离是7;(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=10或a=﹣4,②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4﹣a+3=7,a=1时,|a+4|+|a﹣1|+|a﹣3|最小=7,|a+4|+|a﹣1|+|a﹣3|是3与﹣4两点间的距离.32.解:x<﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣(x+1)﹣(x﹣2)﹣(x﹣3)=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;﹣1≤x≤2时,|x+1|+|x﹣2|+|x﹣3|=(x+1)﹣(x﹣2)﹣(x﹣3)=x+1﹣x+2﹣x+3=﹣x+6;2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)﹣(x﹣3)=x+1+x﹣2﹣x+3=x+2;x>3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)+(x ﹣3)=x+1+x﹣2+x﹣3=3x﹣4.33.解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P 到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.34.解:(1)|3﹣(﹣2)|=5,(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为|x﹣7|,(3)代数式|x+8|可以表示数轴上有理数x与有理数﹣8所对应的两点之间的距离;若|x+8|=5,则x=﹣3或﹣13,(4)如图,|x+1008|+|x+504|+|x﹣1007|的最小值即|1007﹣(﹣1008)|=2015.故答案为:5,|x﹣7|,﹣8,=﹣3或﹣13.35.解:∵|a|=8,|b|=2,∴a=±8,b=±2,∵|a﹣b|=b﹣a,∴a﹣b≤0.①当a=8,b=2时,因为a﹣b=6>0,不符题意,舍去;②当a=8,b=﹣2时,因为a﹣b=10>0,不符题意,舍去;③当a=﹣8,b=2时,因为a﹣b=﹣10<0,符题意;所以a+b=﹣6;④当a=﹣8,b=﹣2时,因为a﹣b=﹣6<0,符题意,所以a+b=﹣10.综上所述a+b=﹣10或﹣6.36.解:由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.37.解:∵ab>0,∴①当a>0,b>0时,+=1+1=2.②当a<0,b<0时,+=﹣1﹣1=﹣2.综上所述:+=2或﹣2.38.解:①当a,b同号时,|a+b|=|a|+|b|,②当a,b中至少有一个0时,|a+b|=|a|+|b|,③当a,b异号时,|a+b|<|a|+|b|,综上所述|a+b|≤|a|+|b|.39.解:∵a>b,∴a﹣b>0,∴(a﹣b)﹢|a﹣b|=(a﹣b)+(a﹣b)=2a﹣2b.40.解:(1)当a>0时,=1;当a<0时,=﹣1;(2)∵,∴a,b异号,当a>0,b<0时,=﹣1;当a<0,b>0时,=﹣1;。
人教版七年级数学上册-《有理数绝对值化简运算》强化训练

人教版七年级数学上册-《有理数绝对值化简运算》强化训练(含答案)(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--牢记方法规则:1.判断绝对值里面量的正负2.去掉绝对值产生括号3.去掉括号合并同类项第1天1.在数轴上有示a、b、c三个实数的点的位置如图所示,化简|b﹣a|+|c﹣a|﹣|c ﹣b|.2.已知有理数a,b,c在数轴上的位置如图所示,化简|b﹣c|﹣|c﹣a|+|b﹣a|.3.有理数a、b、c在数轴上的位置如图所示,化简|a﹣b|+2|a+c|﹣|b﹣2c|.4.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|.5.有理数a、b、c在数轴上的位置如图所示,化简|a﹣c|﹣|c﹣2b|+|a+c|﹣|a+b|.第2天6.若有理数a,b,c在数轴上的位置如图所示,化简|a+c|+|2a+b|﹣|c﹣b|.7.有理数a、b、c的位置如图所示,化简|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.8.有理数a、b、c在数轴上的位置如图所示,化简-|b|-|a﹣c|+|b﹣c|+|a﹣b|.9.有理数a、b、c在数轴上的位置如图所示,化简|c﹣1|+|a﹣c|+|a﹣b|.10.已知有理数a,b,c在数轴上的位置如图所示,化简|a﹣c|﹣|a+b|﹣|b﹣c|+|2b|.第3天11.有理数a、b、c在数轴上的位置如图所示,化简|c|﹣|c+b|+|a﹣c|+|b+a|.12.数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.13.已知有理数a,b,c在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b|.14.已知有理数a,b,c在数轴上对应点的位置如图所示,化简:|2b﹣c|-2|c-a|+3|a﹣b|.15.已知有理数a,b,c在数轴上的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b +c|.第4天16.有理数a、b、c在数轴上的位置如图所示,化简:|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.17.已知有理数a、b、c在数轴上的位置如图所示,化简:|2a﹣b|+3|c﹣a|﹣2|b ﹣c|18.已知有理数a,b,c在数轴上对应的点的位置如图所示,化简|a﹣b|+3|c﹣a|﹣|b﹣c|.19.有理数a、b、c在数轴上的位置如图所示:化简|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.20.有理数a,b,c在数轴上的位置如图所示,化简3|a﹣b|+|a+b|﹣|c﹣a|+2|b ﹣c|.参考答案1.在数轴上有示a、b、c三个实数的点的位置如图所示,化简|b﹣a|+|c﹣a|﹣|c ﹣b|.解:由数轴上点的位置可得:c<0<a<b,∴b﹣a>0,c﹣a<0,c﹣b<0,∴|b﹣a|+|c﹣a|﹣|c﹣b|=b﹣a+a﹣c+c﹣b=0.2.已知有理数a,b,c在数轴上的位置如图所示,化简|b﹣c|﹣|c﹣a|+|b﹣a|.解:由图可得,c<b<0<a,则|b﹣c|﹣|c﹣a|+|b﹣a|=b﹣c+c﹣a﹣b+a=0.3.有理数a、b、c在数轴上的位置如图所示,化简|a﹣b|+2|a+c|﹣|b﹣2c|.解:由数轴可知c<a<0<b,且|a|<|b|<|c|,则a﹣b<0、a+c<0、b﹣2c>0,∴原式=b﹣a﹣2(a+c)﹣(b﹣2c)=b﹣a﹣2a﹣2c﹣b+2c=﹣3a.4.有理数a,b,c在数轴上的位置如图所示,化简|b+a|﹣|b﹣c|+|a﹣c|.解:根据题意得:c<a<0<b,且|b|<|a|<|c|,∴b+a<0,b﹣c>0,a﹣c>0,则原式=﹣b﹣a﹣b+c+a﹣c=﹣2b.5.有理数a、b、c在数轴上的位置如图所示,化简|a﹣c|﹣|c﹣2b|+|a+c|﹣|a+b|.解:∵由图可知,c<a<b,∴a﹣c>0,c﹣2b<0,a+c<0,a+b>0,∴原式=(a﹣c)﹣(2b﹣c)﹣(a+c)﹣(a+b)=a﹣c﹣2b+c﹣a﹣c﹣a﹣b=﹣a﹣3b﹣c.6.若有理数a,b,c在数轴上的位置如图所示,化简|a+c|+|2a+b|﹣|c﹣b|.解:根据图示,可得c<b<0<a,且a<|c|,∴a+c<0,2a+b>0,c﹣b<0,∴|a+c|+|2a+b|﹣|c﹣b|=﹣(a+c)+(2a+b)+(c﹣b)=﹣a﹣c+2a+b +c﹣b=a.7.有理数a、b、c的位置如图所示,化简|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.解:由数轴可得:b>0,a﹣c<0,b﹣c>0,a﹣b<0,故:|b|+|a﹣c|+|b﹣c|﹣|a﹣b|=b+c﹣a+b﹣c﹣(b﹣a)=b.8.有理数a、b、c在数轴上的位置如图所示,化简-|b|-|a﹣c|+|b﹣c|+|a﹣b|.解:由数轴得,a<c<0<b,∴b>0,a﹣c<0,b﹣c>0,a﹣b<0,∴|b|+|a﹣c|+|b﹣c|+|a﹣b|=-b+a﹣c+b﹣c+b﹣a=b﹣2c.9.有理数a、b、c在数轴上的位置如图所示,化简|c﹣1|+|a﹣c|+|a﹣b|.解:根据数轴上点的位置得:﹣1<c<0<a<b,∴c﹣1<0,a﹣c>0,a﹣b<0,则原式=1﹣c+a﹣c+b﹣a=1﹣2c+b.10.已知有理数a,b,c在数轴上的位置如图所示,化简|a﹣c|﹣|a+b|﹣|b﹣c|+|2b|.解:根据数轴上点的位置得:b<0<a<c,|c|>|a|>|b|,∴a﹣c<0,a+b>0,b﹣c<0,2b<0原式=c﹣a﹣(a+b)﹣(c﹣b)+(﹣2b)=c﹣a﹣a﹣b﹣c+b﹣2b=﹣2a﹣2b.11.有理数a、b、c在数轴上的位置如图所示,化简|c|﹣|c+b|+|a﹣c|+|b+a|.解:∵由数轴上a、b、c的位置可知,b<c<0<a,c+b<0,a﹣c>0,a+b<0,∴原式=﹣c+c+b+a﹣c﹣a﹣b=﹣c.12.数a,b,c在数轴上的位置如图所示,化简|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.解:∵由图可知c<0<a<b,|c|>b>a,∴a﹣b<0,b﹣c>0,a+c<0,∴原式=(b﹣a)﹣(b﹣c)﹣(﹣a﹣c)﹣b+2a=b﹣a﹣b+c+a+c﹣b+2a=2a+2c﹣b.13.已知有理数a,b,c在数轴上对应点的位置如图所示,化简|b﹣c|+2|c+a|﹣3|a﹣b|.解:由图可知,c<a<0<b,所以,b﹣c>0,c+a<0,a﹣b<0,所以,原式=b﹣c﹣2(c+a)﹣3(b﹣a)=b﹣c﹣2c﹣2a﹣3b+3a=a﹣2b﹣3c.14.已知有理数a,b,c在数轴上对应点的位置如图所示,化简:|2b﹣c|-2|c-a|+3|a﹣b|.解:∵由图可知,c<a<0<b,∴2b﹣c>0,c-a<0,a﹣b<0,∴原式=2b﹣c+2(c-a)+3(b﹣a)=2b﹣c+2c﹣2a+3b-3a=-5a+b+c.15.已知有理数a,b,c在数轴上的位置如图所示,化简|a|﹣|a﹣b|+|c﹣a|+|b +c|.解:∵由数轴上a、b、c的位置可知,a<b<0<c,∴a﹣b<0,c﹣a>0,b+c>0,∴原式=﹣a﹣[﹣(a﹣b)]+(c﹣a)+(b+c)=﹣a+a﹣b+c﹣a+b+c=﹣a+2c.16.有理数a、b、c在数轴上的位置如图所示,化简:|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.解:根据数轴上点的位置得:a<b<0<c,且|a|<|b|<|c|,∴a+b+c<0,a﹣b﹣c>0,b﹣a<0,b+c<0,则原式=﹣a﹣b﹣c﹣a+b+c+b﹣a﹣b﹣c=﹣3a﹣c.17.已知有理数a、b、c在数轴上的位置如图所示,化简:|2a﹣b|+3|c﹣a|﹣2|b ﹣c|解:由数轴可知a<0<b<c,所以2a﹣b<0,c﹣a>0,b﹣c<0,则|2a﹣b|+3|c﹣a|﹣2|b﹣c|,=﹣(2a﹣b)+3(c﹣a)+2(b﹣c),=﹣2a+b+3c﹣3a+2b﹣2c,=﹣5a+3b+c.18.已知有理数a,b,c在数轴上对应的点的位置如图所示,化简|a﹣b|+3|c﹣a|﹣|b﹣c|.解:由数轴可得:a﹣b<0,c﹣a>0,b﹣c<0,则|a﹣b|+3|c﹣a|﹣|b﹣c|=b﹣a+3(c﹣a)﹣(c﹣b)=b﹣a+3c﹣3a﹣c+b=2b﹣4a+2c.19.有理数a、b、c在数轴上的位置如图所示:化简|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|.解:根据图形可得,a>0,b<0,c<0,且|a|<|b|<|c|,∴a+c<0,a﹣b﹣c>0,b﹣a<0,b+c<0,∴|a+c|﹣|a﹣b﹣c|﹣|b﹣a|+|b+c|,=﹣a﹣c﹣a+b+c+b﹣a﹣b﹣c,=﹣3a﹣c+b.20.有理数a,b,c在数轴上的位置如图所示,化简3|a﹣b|+|a+b|﹣|c﹣a|+2|b ﹣c|.解:结合数轴可得:a﹣b<0,a+b<0,c﹣a>0,b﹣c<0,则3|a﹣b|+|a+b|﹣|c﹣a|+2|b﹣c|=﹣3(a﹣b)﹣(a+b)﹣(c﹣a)﹣2(b﹣c)=﹣3a+3b﹣a﹣b﹣c+a﹣2b+2c=﹣3a+c.。
成都市东湖中学七年级上学期期末考试数学模拟试题2(武侯区)

成都市东湖中学七年级上学期期末考试数学模拟试题2(武侯区)A卷(共100分)一、选择题:(每小题3分,共30分)1.下列各数中,大于-2小于2的负数..是【】A.-3 B.-2 C.-1 D.02.如果|a|=-a,那么a一定是【】A.负数 B.正数 C.非负数 D.非正数3.有理数ba,在数轴上的位置如图所示,则下列各式的符号为正的是【】A. ba+ B.ba- C. ab D. -4a4.用一平面截一个正方体,不能得到的截面形状是【】A.直角三角形B.等边三角形C.长方形D.六边形5.下列平面图形中不能..围成正方体的是【】A. B. C. D.6.a个学生按每8个人一组分成若干组,其中有一组少3人,共分成的组数是【】A.8aB.38a-C.(3)8a+D.38a+7.下列说法正确的是【】A.23vt-的系数是-2 B.233ab的次数是6次 C.5x y+是多项式 D.21x x+-的常数项为18.下列语句正确的是【】A.线段AB是点A与点B的距离B.过n边形的每一个顶点有(n-3)条对角线C.各边相等的多边形是正多边形D.两点之间的所有连线中,直线最短9. 如图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是【】(A))10. 成都市为减少雾霾天气采取了多项措施,如对城区主干道进行绿化.现计划把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是【】a二、填空题:(每小题3分,共15分)11.近年来,汉语热在全球范围内不断升温.到2013年,据统计,海外学习汉语的人数达1.5亿.将1.5亿用科学记数法表示为 .12.9时45分时,时钟的时针与分针的夹角是 .13.点P 为线段AB 上一点,且AP =32PB ,若AB =10cm ,则PB 的长为 .14.小明与小彬骑自行车去郊外游玩,事先决定早晨8点出发,预计每小时骑7.5千米,上午10时可到达目的地. 出发前他们决定上午9点到达目的地,那么实际每小时要 骑 千米.15. 平面内两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,…,那么五条直线最多有 个交点. 三、解答题:(本大题共5个小题,共55分) 16. (共24分)(1)计算:⎪⎭⎫ ⎝⎛+-⨯-125612124 (2)计算:()⎥⎦⎤⎢⎣⎡--÷-⨯--223351321(3)解方程:1615312=--+x x(4)先化简,再求值:)3123()31(22122y x y x x +-+--,其中x ,y 满足(x -2)2+|y +3|=0.(5)新春佳节,小明与小颖去看望李老师,李老师用一种特殊的方式给他们分糖,李老师先给小明一块,然后把糖盒里所剩下的七分之一给他,再拿2块糖给小颖,又把糖盒里所剩下的七分之一给她,这样,两人所得糖果块数一样,算一算,李老师的糖盒里原来有多少块糖?17.(本小题满分6分)如图,点C 是线段AB 的中点,点D 是线段AC 的中点,已知图中所有..线段..的长度之和为26,求线段AC 的长度.18. (本小题满分6分)一张长为a 、宽为b 的铁板(a >b),从四个角截去四个边长为x 的小正方形 2b x ⎛⎫< ⎪⎝⎭,做成一个无盖的盒子,用代数式表示:(1)无盖盒子的表面积(用两种方法表示);(2)无盖盒子的容积.(不要求化简.....)B19. (本小题满分9分)已知代数式533+++,当x= 0 时,该代数式的值为-1 .ax bx x c(1)求c的值;(2)已知当1++的值;x=时,该代数式的值为-1,试求a b c(3)已知当x =3 时,该代数式的值为 9,试求当x =-3时该代数式的值;(4)在第(3)小题的已知条件下,若有3=5a b成立,试比较a+b与c的大小.20.(本小题满分10分)市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元优惠10%;超过500元的其中500元按9折优惠,超过部分按8折优惠. 某人两次购物分别用了134元和466元. 问:(1)此人两次购物其物品如果不打折,值多少钱?(2)在此活动中,他节省了多少钱?(3)若此人将两次购物的钱合起来购相同的商品是更节省还是亏损?说明你的理由.B 卷(共50分)一、填空题(每小题4分,共20分):21.计算:=--+-++-213)878(212836 .22.如果-2≤x ≤2,那么代数式()212-+x 的最大值为 ,最小值为 .23. 如图,从点O 引出6条射线OA 、OB 、OC 、OD 、OE 、OF,且∠AOB=100°,OF平分∠BOC,∠AOE=∠DOE,∠EOF=140°,则∠COD 的度数为 . 24. 用⊕表示一种运算,它的含义是:B A ⊕=()()111++++B A xBA .如果3512=⊕,那么=⊕43.25.已知:1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52,…,根据前面各式的规律,以下等式(n 为正整数), ① 1+3+5+7+9+…+(2n -1)=2n ;②1+3+5+7+9+…+(2n +3)=()23+n ; ③ 1+3+5+7+9+…+2013=21007 ; ④101+…+2013=21007-250BO F DCA二、解答题(本大题共4个小题,共30分):26.(本小题满分7分)已知:2222424,363,A x xy y B x xy y =-+=-+且23,16,1,x y x y ==+= 求()()423A A B A B +--+⎡⎤⎣⎦的值.27.(本小题满分8分)已知∠AOB 是一个直角,作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD 、OE .(1)如图1,当∠BOC=70°时,求∠DOE 的度数;(2)如图2,当射线OC 在∠AOB 内绕O 点旋转时,∠DOE的大小是否发生变化若变化,说明理由;若不变,求∠DOE 的度数;(3)当射线OC 在∠AOB 外绕O 点旋转时,画出图形....,判断∠DOE 的大小是否发生变化. 若变化,说明理由;若不变,求∠DOE 的度数.28.(本小题满分8分)某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?29. (本小题满分7分) 某公司职员一行8人6:00搭乘小客车从分厂到公司开会,小客车以30千米/小时的速度行驶,预计7:00到达总部,在行驶了52路程时,小客车发生故障,估计要10分钟才能修好,这时恰好经过一部捷达车,为了不迟到,职员们便搭乘捷达车前往总部,但捷达车只能载5人,(包括司机在内),若捷达车速度为60千米/小时,职员们步行速度为5千米/小时,问这8人能赶上公司开会吗?若不能说明理由;若能,请设计出可行的方案,并说明理由,(注:限乘题中两部车,小客车修好后可载客行驶,乘客换车时间不计。
七年级数学上册综合训练绝对值应用去绝对值二天天练试题(共4页)

绝对值应用(yìngyòng)学生做题前请先答复以下问题问题1:什么是数轴,数轴的作用有哪些?问题2:什么是相反数,怎么找一个数或者一个式子的相反数?问题3:什么是绝对值,绝对值法那么是什么?问题4:去绝对值的操作步骤是什么?绝对值应用〔去绝对值〕〔二〕〔人教版〕一、单项选择题(一共12道,每道8分),那么( )A. B.C. D.,那么( )A. B.C. D.,那么( )A. B.C. D.4.有理数a,b在数轴上的对应点如下(rúxià)图,那么( )A.-a+bB.a-bC.a+bD.-a-b5.有理数a,b,c在数轴上的对应点如下图,那么化简的结果为( )A.a-b+cB.a-b-cC.-a-b-cD.-a+b-c6.,那么化简的结果为( )A.4B.-2x+6C.2x-6D.-47.假设(jiǎshè)x>2,那么化简的结果为( )A.-2x+1B.2x+1C.2D.-38.有理数a,b在数轴上的位置如下图,那么化简的结果为( )A.-2aB.-2a+2bC.-2bD.-2a-2b,那么( )A. B.C. D.10.,那么化简的结果为( )A.-1B.1C.2m-2m11.有理数a,b,c在数轴上的对应点如下(rúxià)图,那么化简的结果为( )-2c-2cC.-aD.-a+2b12.有理数a,b,c在数轴上的对应点如下图,那么化简的结果为( )A.a+3cB.-a-2b-cC.a+2b+cD.a-2b-c内容总结(1)绝对值应用学生做题前请先答复以下问题问题1:什么是数轴,数轴的作用有哪些。
成都市东湖中学七上数学绝对值导学

成都市东湖中学七上数学第二章有理数及其运算第一节绝对值【学习目标】1.借助数轴,初步理解绝对值和相反数的概念,能求一个数的绝对值和相反数,2.会利用绝对值比较两负数的大小;学习数形结合的数学方法和分类讨论的思想。
3.会与人合作,并能与他人交流思想的过程和结果;【学习方法】自主探究与合作交流相结合。
【学习重难点】重点:会求一个数的绝对值和相反数,会利用绝对值比较两负数的大小。
难点:对绝对值和相反数的代数意义、几何意义的理解。
【学习过程】模块一预习反馈一、学习准备1.数轴:规定了_____、_______、__________的一条直线叫做________.2.数轴上两个点表示的数,右边的总比左边的;正数大于,负数小于,正数大于一切。
3.请同学们阅读教材,预习过程中请注意:⑴不懂的地方要用红笔标记符号;⑵完成你力所能及的习题和课后作业。
二、精读教材4.相反数的意义+3与—3,—5与+5,—1.5与1.5这三对数有什么共同点?还能列举出这样的数吗?归纳:如果两个数只有______不同,那么称其中一个数为另一个数的________,也称这两个数____________.特别地,0的相反数是____。
如,+3的相反数是—3,也可以说+3与—3互为相反数。
相反数是成对出现的,不能单独存在。
实践练习:在数轴上,标出以下各数及它们的相反数—1,0,52,-4归纳:1.相反数的几何特征:(1)分别位于原点的_______;(2)与原点的距离______。
2.相反数的表示方法:如6的相反数是—6,即在6的前面添加一个“—”号,那么—3的相反数就可以表示成—(—3)=_____实践练习:化简下列各数的符号:—(—52);—(+3.5);+(—0.3);—[+(—7)]注意:1.在一个数前面添一个“+”号,仍然与原数相同,如+5=52.在一个数前面添一个“—”号,就变成原数的相反数,如—(—3)就表示—3的相反数,因此—(—3)=33.符号的化简,只需要考虑负号的个数,当有奇数个负号时,结果为负;当有偶数个负号时结果为正;5.绝对值的概念:(探究学习)观察以上各数在数轴上的位置,回答:距原点1个单位长度的数是_________和_________,距原点2个单位长度的数是____________和__________,距原点52个单位长度的数是________和________,距原点4个单位长度的数是_________和_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都市东湖中学七上数学绝对值专题专项强化导练2(一). 选择题1.一个数的绝对值是正数,则这个数是( ) A.不等于零的有理数;B.正数;C.任意有理数;D.非负数.2.下列各式中,正确的是( ) A.-16->0;B. 2.02.0->;C.-74>-75D..06<-3.若aa =1,则a( )A.是正数或负数;B.是正数;C.是有理数;D.是正整数.4.如果a -=-a,那么( ) A.-a 一定是负数;B.-a 一定非负数;C.a 一定是正数;D.- a 不能是零.5.下列各式的结论,成立的是( ) A.若m =n ,则m=nB.若m>n,则m >nC.若m >n ,则m>nD.若m<n<0,则m >n .6.绝对值不大于11.1的整数有……………………………………………………〖 〗 A .11个B .12个C .22个D .23个7.下列各式中,等号不成立的是( )A .│-4│=4B .-│4│=-│-4│;C .│-4│=│4│D .-│-4│=4 8.下列说法错误的是( )A .一个正数的绝对值一定是正数;B .任何数的绝对值都是正数C .一个负数的绝对值一定是正数;D .任何数的绝对值都不是负数 9.绝对值大于-3而不大于3的整数的个数有( ) A .3个 B .4个 C .5个 D .6个 10.若a ,b 是有理数,那么下列结论一定正确的是( ) A .若a<b ,则│a │<│b │; B .若a>b ,则│a │>│b │ C .若a=b ,则│a │=│b │; D .若a ≠b ,则│a │≠│b │ 11.若│a │=4,│b │=9,则│a+b │的值是( ) A .13 B .5 C .13或5 D .以上都不是12.-61的绝对值是( ) 13.—6 B 、-61 C 、61D 、614.-│-43│的相反数是( )A 、43B 、-43C 、34D 、-3415.绝对值最小的有理数的倒数是( ) A 、1 B 、-1 C 、0 D 、不存在 16.在有理数中,绝对值等于它本身的数有( ) A 、1个 B 、2个 C 、3个 D 、无数多个 17.│-3│的相反数是( ) A 、3 B 、-3 C 、31 D 、-3118.下列各数中,互为相反数的是( ) A 、│-32│和-32 B 、│-23│和-32 C 、│-32│和23 D 、│-32│和3219.下列说法错误的是( )A 、一个正数的绝对值一定是正数B 、一个负数的绝对值一定是正数C 、任何数的绝对值都不是负数D 、任何数的绝对值 一定是正数 20.│a │= -a,a 一定是( )A 、正数B 、负数C 、非正数D 、非负数 21.下列说法正确的是( )A 、两个有理数不相等,那么这两个数的绝对值也一定不相等B 、任何一个数的相反数与这个数一定不相等C 、两个有理数的绝对值相等,那么这两个有理数不相等D 、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。
22.-│a │= -3.2,则a 是( )A 、3.2B 、-3.2C 、 3.2D 、以上都不对 23.任何一个有理数的绝对值是( )A .正数 B. 负数 C. 非正数 D. 非负数 24.在有理数中,绝对值等于它本身的数有( )个.A. 1个B. 2个C. 3个D. 无数多个个25. a 是有理数,-a 表示( )A. 正数B. 负数C. 正数或0D. 负数或0 26.当x =x -时,则x 一定是( ).A. 负数B. 正数C. 负数或0D. 0 27.若a =b ,则a 与b 的关系是( ).A. a =bB. a =-bC. a =b 或a =-b D .以上答案都不对 28.下列各组中互为相反数的是( ) A 、–2与21-B 、2-和2C 、–2.5与2-D 、21-与21- 29.若a 是有理数,则a 一定( )A 、是正数B 、不是正数C 、是负数D 、不是负数 30.如果a 是负有理数,则下列各式中成立的是( ) A 、a a -< B 、a a = C 、a a ≤ D 、aa 1>31.质检员抽查某种零件的质量,超过规定长度的记为正数,短于规定长度的记为负数,检查结果如下:第一个为0.13豪米,第二个为–0.12毫米,第三个为–0.15毫米,第四个为0.11毫米,则质量最差的零件是( )A 、第一个B 、第二个C 、第三个D 、第四个 32.下列说法中正确的是( )A 、绝对值小于2的数有三个B 、绝对值是2的数有两个C 、绝对值是–2的数有一个D 、任何数的绝对值都是正数 33.如果a a -=,那么( )A 、–a 一定是负数B 、–a 一定是非负数C 、a 一定是正数D 、a 不能是0 34.21的倒数的绝对值是( )A. 21 B. 21- C. 2 D. 2- 35. 若2.3-=-a ,则a 是( )A. 3.2 B. 2.3- C. 2.3± D. 0或3.2 36. 若a a -=,则a 满足的条件是( )A. 0≥aB. 0≤aC. 0>aD. 0<a37. 若2121=-x ,则x 为( ) A.21或21- B. 1或1- C. 0 D. 1或0 38. 已知3=a ,4=b ,那么b a +的值为( ) A. 7 B. 7- C. 1±或7± D. 7或1 39.下面的两个数互为相反数的是( )A .21-和0.2 B .31和-0.333 C .-2.25和412 D .5和-(-5) 40.下列判断中错误的是( )A .一个正数的绝对值一定是正数B .一个负数的绝对值一定是正数C .任何有理数的绝对值都不是负数D .任何有理数的绝对值都是正数 41.下列说法中正确的是( )A .相反数等于本身的数只有零B .绝对值等于本身的数只有零C .零没有相反数也没有倒数D .零没有绝对值 42.零是( )A .最小的正整数B .最小的整数C .最小的有理数D .绝对值最小的数 43.一个数的相反数是最大负整数,它是( )A .1B .-1C .0D .0或1 44.如果2|53|=-x ,则x 等于 ( )A .1B .51 C .0或1D .1或51 45.若a a -=,则数a 在数轴上对应的点应为( )A 原点的右侧B 原点的左侧C 原点或原点的右侧D 原点或原点的左侧 46.在有理数3-,21-,10-,4--,⎪⎭⎫⎝⎛--32,()[]5---中,负数共有( ) A 2个 B 3个 C 4个 D 5个 47.下面大小关系中,错误的是( ) A 001.0-> B 83375.0->- C 8765< D 7565-<- 48.若m 是整数,且3≤m ,那么m 的所有值的和是( ) A 3 B 6 C 0 D 1249.如果甲数的绝对值大于乙数的绝对值,那么( ) A 甲数必定大于乙数 B 甲数必定小于乙数C 甲、乙两数一定异号D 甲、乙两数的大小,要根据具体值确定 50.任何一个有理数的绝对值一定( ) A .大于0B .小于0C .不大于0D .不小于051.若a >0,b <0,且|a|<|b|,则a+b 一定是( ) A .正数B .负数C .非负数D .非正数52.下列说法正确的是( )A .一个有理数的绝对值一定大于它本身B .只有正数的绝对值等于它本身C .负数的绝对值是它的相反数D .一个数的绝对值是它的相反数,则这个数一定是负数 53.下列结论正确的是( )A .若|x|=|y|,则x=-yB .若x=-y ,则|x|=|y|C .若|a|<|b|,则a <bD .若a <b ,则|a|<|b| 二. 计算(1)--|.|285; (2)+-||12; (3)--⎛⎝⎫⎭⎪312; (4)+--(||)5。
(5)|||.|-⨯362 (6)|||.|-+-5249;(7)11638--; (8)-÷23143。
(9) 7.27.27.2---+ (10) 13616--++-(11) 5327-⨯-÷- (12) ⎪⎪⎭⎫ ⎝⎛-+÷+-32922121三、解答题1、有两上点,它们到原点的距离分别是2和3,问这两点之间的距离是多少?•说明理由.2.已知│x │=2003,│y │=2002,且x >0,y <0,求x+y 的值。
3.已知│x+y+3│=0, 求│x+y │的值。
4.已知│a │=3,│b │=5,a 与b 异号,求│a -b │的值。
5.若2-a +3-b +1-c =0 求c b a 32++的值.6.已知a 、b 、c 、d 为不等于零的有理数,你能求得a a +b b +cc的值吗?7.已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离是8,求这两个数,若数轴上表示这两数的点位于原点同侧.8.说出符合下列条件的自母所表示的有理数是正数?负数? 还是零? (1)a a = (2)a a -> (3)a a -= (4)a a ->9.(1)由n m =,一定能得到n m =吗?请说明理由;(2)由n m =,一定能得到22n m =吗?请说明理由;10.按规定,食品包装袋上都应标明内装食品有多少克,下表是对几种饼干得检验结果,“+”“–”号分别表示比标明得100克多了或少了,用绝对值判断哪一种食品最符合标准(既哪一种离开100克最少)11.如果3,4==b a ,则比较a 与b 得大小会有哪几种情况?12. 已知7=x ,12=y ,且y x >,求代数式y x +的值。
13. 已知7=x ,12=y ,求代数式y x +的值。
14.已知35=-x ,求x 。
15. 若012=-+-y x ,求x ,y 的值。
16.若|a|=|b|,则a 与b 是什么关系?17.若|a|=3,|b|=2,且a <b ,则a 与b 的值分别是多少?18.已知x 是整数,且2.5<|x|<7, 求x .19.若|a|=1,|b|=5,且a <b ,则a 与b 的值分别是多少?。