备战高考数学大一轮复习 热点聚焦与扩展 专题66 含有条件概率的随机变量问题
备战2019年高考数学大一轮复习热点聚焦与扩展专题66含有条件概率的随机变量问题

专题66 含有条件概率的随机变量问题【热点聚焦与扩展】纵观近几年的高考试题,离散型随机变量的分布列及其数字特征是高考命题的热点.往往以实际问题为背景考查离散型随机变量的数字特征在实际问题中的应用,其中不乏含有条件概率的问题.考查数据处理能力以及分析问题解决问题的能力.此类问题,概率统计问题一同考查.难度控制在中等.本专题在分析研究近几年高考题及各地模拟题的基础上,举例说明.1、条件概率:事件B 在事件A 已经发生的情况下,发生的概率称为B 在A 条件下的条件概率,记为|B A2、条件概率的计算方法:(1)按照条件概率的计算公式:()()()|P AB P B A P A =(2)考虑事件A 发生后,题目产生了如何的变化,并写出事件B 在这种情况下的概率例如:5张奖券中有一张有奖,甲,乙,丙三人先后抽取,且抽完后不放回,已知甲没有中奖,则乙中奖的概率: 按照(1)的方法:设事件A 为“甲没中奖”,事件B 为“乙中奖”,则所求事件为|B A ,按照公式,分别计算()(),P AB P A ,利用古典概型可得:()25415P AB A ==,()45P A =,所以()()()1|4P AB P B A P A == 按照(2)的方法:考虑甲已经抽完了,且没有中奖,此时还有4张奖券,1张有奖.那么轮到乙抽时,乙抽中的概率即为143、含条件概率的乘法公式:设事件,A B ,则,A B 同时发生的概率()()()|P AB P A P B A =⋅ ,此时()|P B A 通常用方案(2)进行计算4、处理此类问题要注意以下几点:(1)要分析好几个事件间的先后顺序,以及先发生的事件对后面事件的概率产生如何的影响(即后面的事件算的是条件概率)(2)根据随机变量的不同取值,事件发生的过程会有所不同,要注意区别(3)若随机变量取到某个值时,情况较为复杂,不利于正面分析,则可以考虑先求出其它取值时的概率,然后用间接法解决.【经典例题】例1.【2018届江西省新余市高三第二次模】中不放回地依次取)【答案】AA .例2.【2018届青海省西宁市一模】先后掷一枚质地均匀骰子(骰子的六个面上分别标有1,2,3,4,5,6个点)两次,落在水平桌面后,记正面朝上的点数分别为,x y ,设事件A 为“x y +为偶数”,事件B 为“,x y 中有偶数,且x y ≠”,则概率(|)P B A =( ) A.13 B. 14 C. 15 D. 16【答案】A例3.【2018届江西省南昌市三模】质检部门对某工厂甲、乙两个车间生产的(1个零件中随机抽取测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;(2【答案】(12)见解析【解析】分析:(1件全合格”;事件.故所求概率为.(2)可能取值为分布列为例4.【2018届安徽省合肥市第一中学冲刺】深受广大球迷喜爱的某支欧洲足球队.在对球员的使用上总是进行数据分析,为了考察甲球员对球队的贡献,现作如下数据统计:(1的值,据此能否有(2)根据以往的数据统计,乙球员能够胜任前锋、中锋、后卫以及守门员四个位置,且出场率分别为:则:1)当他参加比赛时,求球队某场比赛输球的概率;2)当他参加比赛时,在球队输了某场比赛的条件下,求乙球员担当前锋的概率;3)如果你是教练员,应用概率统计有关知识.该如何使用乙球员?附表及公式:【答案】(1)2)1)0.32, 2)0.32, 3)多让乙球员担当守门员,场次.详解:(1,的把握认为球队胜利与甲球员参赛有关.(2)1表示“乙球员担当后卫”;3例5.【2018届四川省成都市第七中学三诊】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:(10.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.②记抽到45.【答案】(1)见解析;(2)见解析.(1)由频率分布直方图知45岁以下与45岁以上各50人,所以在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异.(2)①设“抽到1人是45岁以下”为事件A,“抽到的另一人是45岁以上”为事件B,的分布列为:例6.【2018届河北省石家庄二中三模】某市为准备参加省中学生运动会,对本市甲、乙两个田径队的所有跳高运动员进行了测试,将全体运动员的成绩绘制成频率分布直方图.同时用茎叶图表示甲,乙两队运动员本次测试的成绩(单位:且均为整数),由于某些原因,茎叶图中乙队的部分数据丢失,.(1)内的运动人数(2)在甲,乙两队所有成绩在绩均“优秀”的概率;(3.【答案】(123)见解析【解析】分析:由频率分布直方图可知,成绩在2,频率为(3,分别求三个概率,由此求出的分布列和数学期望详解:(1,中运动员的频率为,人数为名,∴;(2以上运动员总数为:人成绩优秀”,事件点睛:随机变量分布列及数学期望问题要善于灵活运用三个性质:一是p i≥0(i=1,2,…);三是p1+p2+…+p n=1检验分布列的正误例7.【2018届广东省佛山市检测二】单位计划组织55名职工进行一种疾病的筛查,先到本单位医务室进行血检,血检呈阳性者再到医院进一步检测.已知随机一人血检呈阳性的概率为 1% ,且每个人血检是否呈阳性相互独立. (Ⅰ) 根据经验,采用分组检测法可有效减少工作量,具体操作如下:将待检人员随机等分成若干组,先将每组的血样混在一起化验,若结果呈阴性,则可断定本组血样全部为阴性,不必再化验;若结果呈阳性,则本组中至少有一人呈阳性,再逐个化验.现有两个分组方案:方案一: 将 55 人分成 11 组,每组 5 人;方案二:将 55 人分成5组,每组 11 人;试分析哪一个方案工作量更少?(Ⅱ) 若该疾病的患病率为 0.4% ,且患该疾病者血检呈阳性的概率为99% ,该单位有一职工血检呈阳性,求该职工确实患该疾病的概率.(参考数据: 5110990.9510.990.895.==,) 【答案】(1)方案二工作量更少.(2)39.6%. 【解析】分析:(Ⅰ)方案一中化验次数为1或者6,方案二中化验次数为1或13,分别求出两种方案化验次数的分布列,求出期望,通过比较期望大小可得结论;(Ⅱ) 设事件A :血检呈阳性;事件B :患疾病.则题意有()()P A 0.01,P B)0.004,p A|B 0.99===(,利用条件概率公式可得,注意要求的概率是P(B|A). 详解:(Ⅰ)方法1:设方案一中每组的化验次数为X ,则X 的取值为1,6. 所以()()5510.990.951,610.990.049P X P X =====-=,所以X 的分布列为所以10.95160.049 1.245EX =⨯+⨯=.故方案一的化验总次数的期望为: 11EX 110.24513.695⨯=⨯=次. 设方案二中每组的化验次数为Y ,则Y 的取值为1,12, 所以()()1111P Y 10.990.895,1210.990.105P Y =====-=,所以Y 的分布列为所以EY 10.895120.105 2.155=⨯+⨯=.(Ⅱ)设事件A :血检呈阳性;事件B :患疾病.则由题意有()()P A 0.01P B)0.004p A|B 0.99===,(,, 由条件概率公式()()()P A|B P AB P B =,得()()()|0.0040.99P AB P B P AB ==⨯,故()()()0.0040.99|0.3960.01P AB P B A P A ⨯===, 所以血检呈阳性的人确实患病的概率为 39.6%.例8.【2018届吉林省长春市第十一高中、东北师范大学附属中学、吉林一中,重庆一中等五校1月联合模拟】为了调查观众对电视剧《风筝》的喜爱程度,某电视台举办了一次现场调查活动.在参加此活动的甲、乙两地观众中,各随机抽取了8名观众对该电视剧评分做调查(满分100分),被抽取的观众的评分结果如图所示 (Ⅰ)计算:①甲地被抽取的观众评分的中位数; ②乙地被抽取的观众评分的极差;(Ⅱ)用频率估计概率,若从乙地的所有观众中再随机抽取4人进行评分调查,记抽取的4人评分不低于90分的人数为X ,求X 的分布列与期望;(Ⅲ)从甲、乙两地分别抽取的8名观众中各抽取一人,在已知两人中至少一人评分不低于90分的条件下,求乙地被抽取的观众评分低于90分的概率.【答案】(1)83,21(2)见解析(3)37(Ⅲ)设事件A为“从甲、乙两地分别抽取的8名观众中各抽取一人,两人中至少一人评分不低于90分”,事件B为“从甲、乙两地分别抽取的8名观众中各抽取一人,乙地观众评分低于90分”,则()7 16P A=()316P AB=根据条件概率公式,可求乙地被抽取的观众评分低于90分的概率.试题解析:(Ⅰ)由茎叶图可知,甲地被抽取的观众评分的中位数是83,乙地被抽取的观众评分的极差是977621-=(Ⅱ)记“从乙地抽取1人进行评分调查,其评分不低于90分”为事件M,则()21 84P M==随机变量X的所有可能取值为0,1,2,3,4,,且14,4 X B⎛⎫~ ⎪⎝⎭所以()4411144k k kP x k C-⎛⎫⎛⎫==-⎪ ⎪⎝⎭⎝⎭,0,1,2,3,4 k=所以X的分布列为∴()1414E x=⨯=所以在已知两人中至少一人评分不低于90分的条件下,乙地被抽取的观众评分低于90分的概率为37. 例9.一个盒子内装有8张卡片,每张卡片上面写着1个数字,这8个数字各不相同,且奇数有3个,偶数有5个.每张卡片被取出的概率相等.(1)如果从盒子中一次随机取出2张卡片,并且将取出的2张卡片上的数字相加得到一个新数,求所得新数是奇数的概率;(2)现从盒子中一次随机取出1张卡片,每次取出的卡片都不放回盒子,若取出的卡片上写着的数是偶数则停止取出卡片,否则继续取出卡片.设取出了ξ次才停止取出卡片,求ξ的分布列和数学期望. 【答案】(1)15;(2) 期望2. 【解析】(1)思路:本题可用古典概型解决,事件Ω为“8张卡片中取出2张卡片”,所以()28n C Ω=事件A 为“所得新数为奇数”,可知需要一奇一偶相加即可,则()1135n A C C =⋅,从而可计算出()P A解:设A 为“所得新数为奇数”()1135281528C C P A C ⋅∴==解:ξ可取的值为1,2,3,4()518P ξ∴==()351528756P ξ==⋅= ()3255387656P ξ==⋅⋅= ()3211487656P ξ==⋅⋅=ξ∴的分布列为:123485656562E ξ∴=⨯+⨯+⨯+⨯=例10.有,,A B C 三个盒子,每个盒子中放有红,黄,蓝颜色的球各一个,所有的球仅有颜色上的区别 (1)从每个盒子中任意取出一个球,记事件S 为“取得红色的三个球“,事件T 为”取得颜色互不相同的三个球“,求()(),P S P T(2)先从A 盒中任取一球放入B 盒,再从B 盒中任取一球放入C 盒,最后从C 盒中任取一球放入A 盒,设此时A 盒中红球的个数为ξ,求ξ的分布列与数学期望【答案】(1)12,;279(2)期望1.思路二:本题也可用概率的乘法进行计算.S 表示每个盒均取出红球(取出红球的概率为13),因为每盒之间互不影响,所以()111333P S =⨯⨯;T 要求每盒颜色不同,所以前一个盒取出球的颜色会影响到下一个盒取球的选择.第一个盒取出一个颜色,则第二个盒只能取另外两个颜色的球(概率为23),而第三个盒只能取出剩下颜色的那个球(概率为13),所以()21133P T =⨯⨯解:(1)()111133327P S =⨯⨯=()2121339P T =⨯⨯=(2)思路:分析可知整个过程对于A 而言是取出一个球,再进入一个球,所以ξ可取的值为0,1,2,情况较为简单的为0ξ=和2ξ=的情况,当0ξ=时,意味着从A 盒中取出了红球到B (概率为13),此时B 盒中为2红2非红,C 盒中的情况取决于B 盒中取出球的颜色,可进行分类讨论:若取出的是红球(概率为12),则C 盒中为2红2非红,然后从C 中取出非红球即可(概率为12);若取出的不是红球(概率为12),则C 盒中为1红3非红,再从C 中取出非红球即可(概率为34),综上可得:()11113503222424P ξ⎡⎤==⨯⨯+⨯=⎢⎥⎣⎦;当2ξ=时,意味着从A 盒中取出了非红球到B (概率为23),此时B 盒中为1红3非红,C 盒中的情况取决于B 盒中取出球的颜色,可进行分类讨论:若取出的是红球(概率为14),则C 盒中为2红2非红,然后()21131523424424P ξ⎡⎤==⨯⨯+⨯=⎢⎥⎣⎦()()()7110212P P P ξξξ==-=-==ξ∴的分布列为:0121241224E ξ∴=⨯+⨯+⨯=【精选精练】1.【2018届河南省安阳35)B.C.【答案】A【解析】分析:本题考查条件概率.为了方便表示,设“某天的空气质量为优良”为事件A ,“后一天的空气质量为优良”为事件B.详解:设“某天的空气质量为优良”为事件A ,“后一天的空气质量为优良”为事件B ,故选A.2.【2018的概率为( )C.D.【答案】A本题选择A 选项.3.【2018届东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)一模】从标有1、2、3、4、5的五张卡中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为( )【答案】B【解析】由题意,记“第一次抽到奇数”为事件A ,记“第二次抽到偶数”为事件B故选B.4.某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( ) A. 110 B. 15 C. 25 D. 12【答案】C【解析】设“开关第一次闭合后出现红灯”为事件A ,“第二次闭合后出现红灯”为事件B ,由题意得()()11,25P A P AB ==.由条件概率的定义可得()()125(|)152P AB P B A P A ===.选C .5. 某迷宫有三个通道,进入迷宫的每个人都要经过一个智能门,首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1个小时走出迷宫;若是2号,3号通道,则分别需要2小时,3小时返回智能门,再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止,令ξ表示走出迷宫所需的时间,求ξ的分布列和数学期望 【答案】期望2.()113P ξ==()1113326P ξ==⨯= ()1114326P ξ==⨯= ()11111632323P ξ==⨯+⨯=ξ∴的分布列为:134636632E ξ∴=⨯+⨯+⨯+⨯=6.某学校要对学生进行身体素质全面测试,对每位学生都要进行9选3考核(即共9项测试,随机选取3项),若全部合格,则颁发合格证;若不合格,则重新参加下期的9选3考核,直至合格为止,若学生小李抽到“引体向上”一项,则第一次参加考试合格的概率为12,第二次参加考试合格的概率为23,第三次参加考试合格的概率为45,若第四次抽到可要求调换项目,其它选项小李均可一次性通过 (1)求小李第一次考试即通过的概率P x ¥kw(2)求小李参加考核的次数ξ分布列 【答案】(1)5;(2)【解析】(1)思路:由题意可知,小李能够通过考试的概率取决于是否能够抽到“引体向上”这个项目,如果没有抽到,则必能通过;若抽到“引体向上”则通过的概率为12.后面通过测试的概率受到前面抽签的(2)思路:依题目要求可知ξ可取的值为1,2,3,4,在参加下一次考核时,意味着前几次考核失败,所以当ξ取2,3,4时,要考虑前面考核失败的情况与该次考核成功两个方面同时成立.解:ξ可取的值为1,2,3,4()516P ξ== ()3288339912426327C C P C C ξ⎛⎫==⨯+⋅= ⎪⎝⎭()23288833399911473635405C C C P C C C ξ⎛⎫⎛⎫==⋅⋅⋅+⋅=⎪ ⎪⎝⎭⎝⎭ ()2288339911114635810C C P C C ξ⎛⎫⎛⎫==⋅⋅⋅⋅=⎪ ⎪⎝⎭⎝⎭ ξ∴的分布列为:7.袋中有大小相同的三个球,编号分别为1,2,3,从袋中每次取出一个球,若取到的球的编号为2,则把该球编号记下再把编号数改为1后放回袋中继续取球;若取到的球的编号为奇数,则取球停止,取球停止后用X 表示“所有被取球的编号之和” (1)求X 的分布列(2)求X 的数学期望及方差 【答案】(1)(2)81解:(1)X 可取的值为1,3,5()113P X ∴==()112533339P X ==+⋅= ()1115339P X ==⋅=X ∴的分布列为:(2)1353999EX =⨯+⨯+⨯=222123523123176135********DX ⎛⎫⎛⎫⎛⎫=-+-+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 8.深圳市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回. (1)设第一次训练时取到的新球个数为ξ,求ξ的分布列和数学期望; (2)求第二次训练时恰好取到一个新球的概率. 【答案】(1)期望1; (2)3875.()2326125C P C ξ===ξ∴的分布列为:0121555E ξ∴=⨯+⨯+⨯=(2)思路:本题要注意一个常识,即新球训练过后就变成了旧球,所以要计算第二次恰好取到一个新球的概率,需要了解经过第一次训练后,所剩的球有几个新球,几个旧球.所以要对第一次取球的情况进行分类讨论:若第一次取2个新球,则第二次训练时有5旧1新;若第一次取到1个新球,则第二次训练时有4旧2新;若第一次取到2个旧球,则第二次训练依然为3旧3新,分别计算概率再相加即可解:设事件i A 为“第一次训练取出了i 个新球”,则()23326i i i C C P A C -= 设事件B 为“从六个球取出两个球,其中恰好有一个新球” 事件C 为“第二次恰好取出一个新球”9.若盒中装有同一型号的灯泡共10个,其中有8个合格品,2个次品(1)某工人师傅有放回地连续从该盒中取灯泡3次,每次取一只灯泡,求2次取到次品的概率(2)某工人师傅用该盒中的灯泡去更换会议室的一只已坏灯泡,每次从中取一灯泡,若是正品则用它更换已坏灯泡,若是次品则将其报废(不再放回原盒中),求成功更换会议室的已坏灯泡所用灯泡只数X 的分布列和数学期望 【答案】(1)12;(2) 期望9. 【解析】(1)思路:每次有放回的取灯泡,相当于做了3次独立重复试验,每次试验中取到合格品的概率为45,取到次品的概率为15,在3次试验中2次取到次品,1次取得合格品,所以考虑利用公式求解取到次品的概率解:X 可取的值为1,2,3()415P X ∴==()18825945P X ==⋅= ()11135945P X ==⋅= X ∴的分布列为:123545459EX ∴=⨯+⨯+⨯=10.【2018届吉林省长春市质量监测(三)】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.123 4 5到的频率分布直方图如图所示(1)(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取求在第13组被抽到(3)若从所有参与调查的人中任意选出.【答案】3【解析】试题分析:(1)由频率分布直方图求出(2)设从12人中随机抽取3人,第1组已被抽到1人为3组抽到2(30,1,2,3,求出相应.(3)从所有参与调查的人中任意选出1人,关注“生态文明”的概率为的可能取值为0,1,2,3.所以的分布列为11.【2018届百校联盟TOP20一月联考】质检部门对某工厂甲、乙两个车间生产的12个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过20克的为合格.(1)从甲、乙两车间分别随机抽取2个零件,求甲车间至少一个零件合格且乙车间至少一个零件合格的概率; (2)质检部门从甲车间8个零件中随机抽取4件进行检测,若至少2件合格,检测即可通过,若至少3 件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;(3)若从甲、乙两车间12个零件中随机抽取2个零件,用X 表示乙车间的零件个数,求X 的分布列与数学期望.【答案】(1)5584P =(2)1753(3)分布列见解析()23E X =试题解析:(1)由题意得甲车间的合格零件数为4,乙车间的合格的零件数为2,故所求概率为22422284551184C C P C C ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭.即甲车间至少一个零件合格且乙车间至少一个零件合格的概率为5584. (2)设事件A 表示“2件合格,2件不合格”;事件B 表示“3件合格,1件不合格”;事件C 表示“4件全合格”; 事件D 表示“检测通过”;事件E 表示“检测良好”.则()()()()2231444444444888361615370707070C C C C C PD P A P B P C C C C =++=++=++=, ∴()()()()()11617|535353P C P B P E D P D P D =+=+=.∴随机变量X的分布列为∴()141612 0123333113E X=⨯+⨯+⨯=.点睛:(1)在求某事件的概率时,若事件较为复杂时,可通过求它的对立事件的概率来求解.对于含有“至多”、“至少”等词语的概率问题,一般用对立事件的概率来解较为简单.(2)求概率时,当题目中含有“在……发生的条件下,求……发生的概率”的字样时,一般用条件概率求解,解题时要分清楚谁是条件,然后再利用公式求解.12.为了调查观众对电视剧《风筝》的喜爱程度,某电视台举办了一次现场调查活动.在参加此活动的甲、乙两地大量观众中,各随机抽取了8名观众对该电视剧评分做调查(满分100分),被抽取的观众的评分结果如图所示.(1)从甲地抽取的8名观众和乙地抽取的8名观众中分别各选取一人,在已知两人中至少一人评分不低于90分的条件下,求乙地被选取的观众评分低于90分的概率.(2)从甲地抽取出来的8名观众中选取1人,从乙地抽取出来的8名观众中选取2人去参加代表大会,记选取的3人中评分不低于90.【答案】(1(2)见解析(2)E(X)=34.。
备战高考数学大一轮复习热点聚焦与扩展专题01利用数轴解决集合运算问题

专题01 利用数轴解决集合运算问题【热点聚焦与扩展】数形结合是解决高中数学问题的常用手段,其优点在于通过图形能够直观的观察到某些结果,与代数的精确性结合,能够快速解决一些较麻烦的问题.在集合的运算中,涉及到单变量的取值范围,数轴就是一个非常好用的工具,本专题以一些题目为例,来介绍如何使用数轴快速的进行集合的交集、并集及补集等运算. 1、集合运算在数轴中的体现::A B 在数轴上表示为,A B 表示区域的公共部分. :AB 在数轴上表示为,A B 表示区域的总和.:U C A 在数轴上表示为U 中除去A 剩下的部分(要注意边界值能否取到).2、问题处理时的方法与技巧:(1)涉及到单变量的范围问题,均可考虑利用数轴来进行数形结合,尤其是对于含有参数的问题时,由于数轴左边小于右边,所以能够以此建立含参数的不等关系.(2)在同一数轴上作多个集合表示的区间时,可用不同颜色或不同高度来区分各个集合的区域.(3)涉及到多个集合交并运算时,数轴也是得力的工具,从图上可清楚的看出公共部分和集合包含区域.交集即为公共部分,而并集为覆盖的所有区域.(4)在解决含参数问题时,作图可先从常系数的集合(或表达式)入手,然后根据条件放置参数即可. 3、作图时要注意的问题:(1)在数轴上作图时,若边界点不能取到,则用空心点表示;若边界点能够取到,则用实心点进行表示,这些细节要在数轴上体现出来以便于观察.(2)处理含参数的问题时,要检验参数与边界点重合时是否符合题意.【经典例题】例1【2017课标1,理1】已知集合A={x|x<1},B={x|31x<},则( )A .{|0}AB x x =<B .A B =RC .{|1}AB x x =>D .AB =∅【答案】A 【解析】由31x <可得033x <,则0x <,即{|0}B x x =<,所以,结合数轴得{|1}{|0}{|0}A B x x x x x x =<<=<,{|1}{|0}{|1}A B x x x x x x =<<=<,故选A.例2【2018届河北省衡水中学高三上学期七调】 设集合{|2}A x x =<, {}B x x a =,全集U R =,若U A B ⊆ð,则有( )A. 0a =B. 2a ≤C. 2a ≥D. 2a < 【答案】C【解析】(){}2,2,U A C B x a =-=≤,结合数轴得2a ≤,故选C.例3【2018届河北省武邑中学高三下学期开学】设常数a R ∈,集合()(){}|120A x x x =--≥, {}|B x x a =≥,若A B R ⋃=,则a 的取值范围为( )A. (),1-∞B. (],1-∞C. ()2,+∞D. [)2,+∞ 【答案】B【解析】由题得{|21}A x x x =≥≤或,因为A B R ⋃=,所以通过画数轴分析得到1a ≤,(注意一定要取等),故选B.【名师点睛】:(1)含有参数的问题时,可考虑参数所起到的作用,在本题中参数决定区间的端点; (2)含有参数的问题作图时可先考虑做出常系数集合的图象,再按要求放置含参的集合; (3)注意考虑端点处是否可以重合.例4【2018届河北省衡水中学高三上学期九模】已知集合{}A x x a =<, {}2320B x x x =-+<,若A B B ⋂=,则实数a 的取值范围是( )A. 1a <B. 1a ≤C. 2a >D. 2a ≥【答案】D例5.已知函数()221,02()1,,20xx g x ax f x x x ⎧-≤≤⎪=+=⎨--≤<⎪⎩,对[][]122,2,2,2x x ∀∈-∃∈-,使得()()12g x f x =成立,则实数a 的取值范围是__________ 【答案】【解析】思路:任取[]12,2x ∈-,则()1g x 取到()g x 值域中的每一个元素,依题意,存在2x 使得()()12g x f x =,意味着()g x 值域中的每一个元素都在()f x 的值域中,即()g x 的值域为()f x 的值域的子集,分别求出两个函数值域,再利用子集关系求出a 的范围解:[]20,2x ∈时,()[]20,3f x ∈ [)22,0x ∈-时,()[)24,0f x ∈-()[]24,3f x ∴∈-[)1,0a ∴∈-综上所述:[]1,1a ∈- 答案:[]1,1a ∈-.例6.已知集合{}{}|21,|A x x x B x a x b =><-=≤≤或,若(],2,4A B R A B ==,则ba=________ 【答案】4-【解析】本题主要考察如何根据所给条件,在数轴上标好集合B 的范围.从而确定出,a b 的值, 1,4a b =-=,所以4ba=-. 例7. 已知集合{}{}0)12(,31122<+++-=≤++-=m m x m x x B x x x A ,若A B ≠∅,则实数m 的取值范围为 【答案】53(,)22-【解析】先解出,A B 的解集,A B ⋂≠∅意味着,A B 有公共部分,利用数轴可标注集合B 两端点的位置,进而求出m 的范围22(21)0x m x m m -+++<()()()10x m x m ∴-+-< 1m x m ∴<<+AB ≠∅312m ∴+>-且32m < 53,22m ⎛⎫∴∈- ⎪⎝⎭.例8:在R 上定义运算:2xx y y⊗⊗=-,若关于x 的不等式(1)0x x a ⊗+->的解集是{|22,}x x x R -≤≤∈的子集,则实数a 的取值范围是( )A .22a -≤≤B .12a -≤≤C .31a -≤<-或11a -<≤D .31a -≤≤ 【答案】D【解析】首先将(1)0x x a ⊗+->变为传统不等式:()()1001xx x a x a ⊗+->⇒<-+,不等式含有参数a ,考虑根据条件对a 进行分类讨论。
高考数学大一轮复习 第十二章 概率、随机变量及其分布 12.1 随机事件的概率试题 理 北师大版

第十二章概率、随机变量及其分布 12.1 随机事件的概率试题理北师大版1.随机事件和确定事件(1)在条件S下,一定会发生的事件,叫作相对于条件S的必然事件.(2)在条件S下,一定不会发生的事件,叫作相对于条件S的不可能事件.(3)必然事件与不可能事件统称为相对于条件S的确定事件.(4)在条件S下可能发生也可能不发生的事件,叫作相对于条件S的随机事件.(5)确定事件和随机事件统称为事件,一般用大写字母A,B,C…表示.2.频率与概率在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性.这时,我们把这个常数叫作随机事件A的概率,记作P(A).3.事件的关系与运算互斥事件:在一个随机试验中,我们把一次试验下不能同时发生的两个事件A与B称作互斥事件.事件A+B:事件A+B发生是指事件A和事件B至少有一个发生.对立事件:不会同时发生,并且一定有一个发生的事件是相互对立事件.4.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率P(E)=1.(3)不可能事件的概率P(F)=0.(4)互斥事件概率的加法公式①如果事件A与事件B互斥,则P(A+B)=P(A)+P(B).②若事件A与事件A互为对立事件,则P(A)=1-P(A).【知识拓展】互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)事件发生频率与概率是相同的.( × ) (2)随机事件和随机试验是一回事.( × )(3)在大量重复试验中,概率是频率的稳定值.( √ ) (4)两个事件的和事件是指两个事件都得发生.( × )(5)对立事件一定是互斥事件,互斥事件不一定是对立事件.( √ ) (6)两互斥事件的概率和为1.( × )1.从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,则b >a 的概率是( ) A.45 B.35 C.25 D.15 答案 D解析 基本事件的个数为5×3=15,其中满足b >a 的有3种,所以b >a 的概率为315=15.2.(教材改编)将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是( ) A .必然事件 B .随机事件 C .不可能事件 D .无法确定答案 B解析 抛掷10次硬币正面向上的次数可能为0~10,都有可能发生,正面向上5次是随机事件.3.从某班学生中任意找出一人,如果该同学的身高小于160 cm 的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175 cm 的概率为( ) A .0.2 B .0.3 C .0.7 D .0.8 答案 B解析 因为必然事件发生的概率是1,所以该同学的身高超过175 cm 的概率为1-0.2-0.5=0.3,故选B.4.某射手在一次射击中,射中10环,9环,8环的概率分别为0.2,0.3,0.1,则此射手在一次射击中不超过8环的概率为( ) A .0.5 B .0.3 C .0.6 D .0.9 答案 A解析 依题设知,此射手在一次射击中不超过8环的概率为1-(0.2+0.3)=0.5.5.(教材改编)袋中装有9个白球,2个红球,从中任取3个球,则①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球.在上述事件中,是对立事件的为________.答案②解析①是互斥不对立的事件,②是对立事件,③④不是互斥事件.题型一事件关系的判断例1 (1)从1,2,3,…,7这7个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是( )A.① B.②④ C.③ D.①③(2)设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(3)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是( )A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡答案(1)C (2)A (3)A解析(1)③中“至少有一个是奇数”即“两个奇数或一奇一偶”,而从1~7中任取两个数根据取到数的奇偶性可认为共有三个事件:“两个都是奇数”、“一奇一偶”、“两个都是偶数”,故“至少有一个是奇数”与“两个都是偶数”是对立事件,易知其余都不是对立事件.(2)若事件A与事件B是对立事件,则A+B为必然事件,再由概率的加法公式得P(A)+P(B)=1.设掷一枚硬币3次,事件A:“至少出现一次正面”,事件B:“3次出现正面”,则P(A)=78,P(B)=18,满足P(A)+P(B)=1,但A,B不是对立事件.(3)至多有一张移动卡包含“一张移动卡,一张联通卡”,“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件.思维升华(1)准确把握互斥事件与对立事件的概念①互斥事件是不可能同时发生的事件,但可以同时不发生.②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.(2)判断互斥、对立事件的方法判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.从装有两个白球和两个黄球的口袋中任取2个球,以下给出了四组事件:①至少有1个白球与至少有1个黄球;②至少有1个黄球与都是黄球;③恰有1个白球与恰有1个黄球;④恰有1个白球与都是黄球.其中互斥而不对立的事件共有( )A.0组 B.1组 C.2组 D.3组答案 B解析①中“至少有1个白球”与“至少有1个黄球”可以同时发生,如恰好1个白球和1个黄球,①中的两个事件不是互斥事件.②中“至少有1个黄球”说明可以是1个白球和1个黄球或2个黄球,则两个事件不互斥.③中“恰有1个白球”与“恰有1个黄球”,都是指有1个白球和1个黄球,因此两个事件是同一事件.④中两事件不能同时发生,也可能都不发生,因此两事件是互斥事件,但不是对立事件,故选B.题型二随机事件的频率与概率例2 (2016·全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度的平均保费的估计值.解 (1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.3,故P (B )的估计值为0.3.(3)由所给数据得调查的200名续保人的平均保费为0.85a ×0.30+a ×0.25+1.25a ×0.15+1.5a ×0.15+1.75a ×0.10+2a ×0.05=1.192 5a .因此,续保人本年度平均保费的估计值为1.192 5a . 思维升华 (1)概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值. (2)随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.(2015·北京)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解 (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙, 所以顾客同时购买乙和丙的概率可以估计为2001 000=0.2.(2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为100+2001 000=0.3.(3)与(1)同理,可得顾客同时购买甲和乙的概率可以估计为2001 000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001 000=0.6,顾客同时购买甲和丁的概率可以估计为1001 000=0.1.所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 题型三 互斥事件、对立事件的概率 命题点1 互斥事件的概率例3 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是13,得到黑球或黄球的概率是512,得到黄球或绿球的概率也是512,试求得到黑球、黄球和绿球的概率各是多少?解 方法一 从袋中选取一个球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”分别为A ,B ,C ,D ,则有P (A )=13,P (B +C )=P (B )+P (C )=512,P (C +D )=P (C )+P (D )=512,P (B +C +D )=P (B )+P (C )+P (D )=1-P (A )=1-13=23,解得P (B )=14,P (C )=16,P (D )=14,因此得到黑球、黄球、绿球的概率分别是14,16,14. 方法二 设红球有n 个,则n12=13,所以n =4,即红球有4个. 又得到黑球或黄球的概率是512,所以黑球和黄球共5个. 又总球数是12,所以绿球有12-4-5=3(个).又得到黄球或绿球的概率也是512,所以黄球和绿球共5个,而绿球有3个,所以黄球有5-3=2(个).所以黑球有12-4-3-2=3(个). 因此得到黑球、黄球、绿球的概率分别是 312=14,212=16,312=14. 命题点2 对立事件的概率例4 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖,一等奖,二等奖的事件分别为A ,B ,C ,求: (1)P (A ),P (B ),P (C ); (2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率. 解 (1)P (A )=11 000,P (B )=101 000=1100,P (C )=501 000=120. 故事件A ,B ,C 的概率分别为11 000,1100,120. (2)1张奖券中奖包含中特等奖,一等奖,二等奖.设“1张奖券中奖”这个事件为M ,则M =A +B +C .∵A ,B ,C 两两互斥,∴P (M )=P (A +B +C )=P (A )+P (B )+P (C ) =1+10+501 000=611 000.故1张奖券的中奖概率为611 000. (3)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件, ∴P (N )=1-P (A +B )=1-⎝⎛⎭⎪⎫11 000+1100=9891 000.故1张奖券不中特等奖且不中一等奖的概率为9891 000.思维升华 求复杂事件的概率的两种方法求概率的关键是分清所求事件是由哪些事件组成的,求解时通常有两种方法: (1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率; (2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率.解记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A、B、C、D、E、F彼此互斥.(1)记“至多2人排队等候”为事件G,则G=A+B+C,所以P(G)=P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)方法一记“至少3人排队等候”为事件H,则H=D+E+F,所以P(H)=P(D+E+F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.方法二记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.25.用正难则反思想求互斥事件的概率典例(12分)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过8件的顾客占55%.(1)确定x,y的值,并估计顾客一次购物的结算时间的平均数;(2)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)思想方法指导若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”思想求解. 规范解答解 (1)由已知得25+y +10=55,x +30=45, 所以x =15,y =20.[2分]该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均数可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).[6分](2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得P (A 1)=20100=15,P (A 2)=10100=110.[9分]P (A )=1-P (A 1)-P (A 2)=1-15-110=710.[11分]故一位顾客一次购物的结算时间不超过2分钟的概率为710.[12分]1.(2016·天津)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( ) A.56 B.25 C.16 D.13答案 A解析 事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为12+13=56. 2.(教材改编)袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为( )A .①B .②C .③D .④答案 B解析 至少有1个白球和全是黑球不同时发生,且一定有一个发生.∴②中两事件是对立事件.3.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率是17,都是白子的概率是1235,则从中任意取出2粒恰好是同一色的概率是( ) A.17 B.1235 C.1735 D .1答案 C解析 设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A +B ,且事件A 与B 互斥.所以P (C )=P (A )+P (B )=17+1235=1735.即任意取出2粒恰好是同一色的概率为1735. 4.(2016·襄阳模拟)有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是( ) A .互斥但非对立事件 B .对立事件 C .相互独立事件 D .以上都不对 答案 A解析 由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件,故选A.5.(2016·蚌埠模拟)从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在[30,40]克的概率为0.5,那么重量不小于30克的概率为( ) A .0.8 B .0.5 C .0.7 D .0.3 答案 C解析 由互斥事件概率公式知重量大于40克的概率为1-0.3-0.5=0.2, 又∵0.5+0.2=0.7,∴重量不小于30克的概率为0.7.6.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的卡片的频率是( ) A .0.53 B .0.5 C .0.47 D .0.37答案 A解析 取到号码为奇数的卡片的次数为13+5+6+18+11=53,则所求的频率为53100=0.53.故选A.7.在200件产品中,有192件一级品,8件二级品,则下列事件: ①在这200件产品中任意选出9件,全部是一级品; ②在这200件产品中任意选出9件,全部是二级品; ③在这200件产品中任意选出9件,不全是二级品.其中________是必然事件;________是不可能事件;________是随机事件. 答案 ③ ② ①8.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,该运动员三次投篮恰有两次命中的概率为________. 答案 0.25解析 20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为520=0.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25.9.若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且P (A )=2-a ,P (B )=4a -5,则实数a 的取值范围是________________. 答案 (54,43]解析 由题意可知⎩⎪⎨⎪⎧0<P A ,0<P B,P A +P B⇒⎩⎪⎨⎪⎧0<2-a <1,0<4a -5<13a -3≤1,⇒⎩⎪⎨⎪⎧1<a <2,54<a <32,a ≤43⇒54<a ≤43.10.一个口袋内装有大小相同的红球,白球和黑球,从中摸出一个球,摸出红球或白球的概率为0.58,摸出红球或黑球的概率为0.62,那么摸出红球的概率为________. 答案 0.2解析 记事件A ,B ,C 分别是摸出红球,白球和黑球,则A ,B ,C 互为互斥事件且P (A +B )=0.58,P (A +C )=0.62,所以P (C )=1-P (A +B )=0.42,P (B )=1-P (A +C )=0.38,P (A )=1-P (C )-P (B )=1-0.38-0.42=0.2.11.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)若每辆车的投保金额均为2 800元,估计赔付金额大于投保金额的概率;(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.解 (1)设A 表示事件“赔付金额为3 000元”,B 表示事件“赔付金额为4 000元”,以频率估计概率得P (A )=1501 000=0.15,P (B )=1201 000=0.12. 由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为3 000元和4 000元,所以其概率为P (A )+P (B )=0.15+0.12=0.27.(2)设C 表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100(辆),而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆),所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P (C )=0.24.12.(2016·北京)A ,B ,C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):(1)试估计C 班的学生人数;(2)从A 班和C 班抽出的学生中,各随机选取1人,A 班选出的人记为甲,C 班选出的人记为乙.假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率; (3)再从A ,B ,C 三个班中各随机抽取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小.(结论不要求证明) 解 (1)由题意及分层抽样可知,C 班学生人数约为 100×85+7+8=100×820=40.(2)设事件A i 为“甲是现有样本中A 班的第i 个人”,i =1,2,…,5, 事件C j 为“乙是现有样本中C 班的第j 个人”,j =1,2,…,8. 由题意可知P (A i )=15,i =1,2,…,5;P (C j )=18,j =1,2, (8)P (A i C j )=P (A i )P (C j )=15×18=140,i =1,2,...,5,j =1,2, (8)设事件E 为“该周甲的锻炼时间比乙的锻炼时间长”,由题意知,E =A 1C 1+A 1C 2+A 2C 1+A 2C 2+A 2C 3+A 3C 1+A 3C 2+A 3C 3+A 4C 1+A 4C 2+A 4C 3+A 5C 1+A 5C 2+A 5C 3+A 5C 4.因此P (E )=P (A 1C 1)+P (A 1C 2)+P (A 2C 1)+P (A 2C 2)+P (A 2C 3)+P (A 3C 1)+P (A 3C 2)+P (A 3C 3)+P (A 4C 1)+P (A 4C 2)+P (A 4C 3)+P (A 5C 1)+P (A 5C 2)+P (A 5C 3)+P (A 5C 4)=15×140=38.(3)μ1<μ0.13.一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率. 解 方法一 (利用互斥事件求概率) 记事件A 1={任取1球为红球},A 2={任取1球为黑球},A 3={任取1球为白球},A 4={任取1球为绿球},则P (A 1)=512,P (A 2)=412=13,P (A 3)=212=16,P (A 4)=112.根据题意知,事件A 1,A 2,A 3,A 4彼此互斥,由互斥事件的概率公式,得 (1)取出1球为红球或黑球的概率为P (A 1+A 2)=P (A 1)+P (A 2)=512+412=34. (2)取出1球为红球或黑球或白球的概率为P(A1+A2+A3)=P(A1)+P(A2)+P(A3)=512+412+212=1112.方法二(利用对立事件求概率)(1)由方法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1+A2的对立事件为A3+A4,所以取出1球为红球或黑球的概率为P(A1+A2)=1-P(A3+A4)=1-P(A3)-P(A4)=1-212-112=34.(2)因为A1+A2+A3的对立事件为A4,所以P(A1+A2+A3)=1-P(A4)=1-112=1112.。
高考数学一轮复习知识点与练习随机事件的概率.doc

1.概率和频率(1) 在相同的条件S 下重复 n 次试验,观察某一事件 A 是否出现,称n 次试验中事件 A 出现的次数n A为事件 A 出现的频数,称事件 A 出现的比例 f n(A)=nn A为事件 A 出现的频率.(2) 对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件 A 发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件 A 发生的可能性大小,并把这个常数称为随机事件 A 的概率,记作P(A).2.事件的关系与运算定义符号表示包含关系如果事件 A 发生,则事件 B 一定发生,这时称事件B? A( 或 A? B) B 包含事件 A(或称事件 A 包含于事件 B)相等关系若 B? A 且 A? B A=B并事件若某事件发生当且仅当事件 A 发生或事件 B 发生,A∪ B( 或 A+ B) (和事件 ) 称此事件为事件 A 与事件 B 的并事件 (或和事件 )交事件若某事件发生当且仅当事件 A 发生且事件 B 发生,A∩B(或 AB) (积事件 ) 则称此事件为事件 A 与事件 B 的交事件 (或积事件 )互斥事件若 A∩ B 为不可能事件 (A∩ B= ?),则称事件 A 与事A∩B= ? 件 B 互斥对立事件若 A∩ B 为不可能事件, A∪ B 为必然事件,那么称P(A)+P(B)= 1 事件 A 与事件 B 互为对立事件(1)概率的取值范围: 0≤P(A)≤ 1.(2)必然事件的概率 P(E)=1.(3)不可能事件的概率 P( F)= 0.(4)概率的加法公式如果事件 A 与事件 B 互斥,则P(A∪ B)= P(A)+ P(B).(5)对立事件的概率若事件 A 与事件 B 互为对立事件,则P(A) = 1- P(B).【知识拓展】互斥事件与对立事件的区别与联系互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件.【思考辨析】判断下面结论是否正确 (请在括号中打“√”或“×”)(1) 事件发生频率与概率是相同的.( )(2) 随机事件和随机试验是一回事.( )(3) 在大量重复试验中,概率是频率的稳定值.( )(4) 两个事件的和事件是指两个事件都得发生.( )(5) 对立事件一定是互斥事件,互斥事件不一定是对立事件.()(6) 两互斥事件的概率和为 1.( )1.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是________.①至多有一次中靶②两次都中靶③只有一次中靶④两次都不中靶2.从某班学生中任意找出一人,如果该同学的身高小于160 cm 的概率为0.2,该同学的身高在[160,175]( 单位: cm)内的概率为0.5,那么该同学的身高超过175 cm 的概率为 ________.3. (2015 ·北改编湖 )我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米 14.给出下列三个命题,其中正确的命题有________个.①有一大批产品,已知次品率为10%,从中任取100 件,必有10 件是次品;②做7 次抛硬币的试验,结果 3 次出现正面,因此正面出现的概率是37;③随机事件发生的频率就是这个随机事件发生的概率.5. (教材改编 ) 袋中装有9 个白球, 2 个红球,从中任取 3 个球,则①恰有 1 个红球和全是白球;②至少有 1 个红球和全是白球;③至少有 1 个红球和至少有 2 个白球;④至少有 1 个白球和至少有 1 个红球.在上述事件中,是对立事件的为________.题型一事件关系的判断例 1某城市有甲、乙两种报纸供居民订阅,记事件 A 为“只订甲报纸”,事件 B 为“至少订一种报纸”,事件 C 为“至多订一种报纸”,事件 D 为“不订甲报纸”,事件 E 为“一种报纸也不订”.判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件.思维升华对互斥事件要把握住不能同时发生,而对于对立事件除不能同时发生外,其并事件应为必然事件.这些也可类比集合进行理解,具体应用时,可把所有试验结果写出来,看所求事件包含哪几个试验结果,从而判定所给事件的关系.判断下列各对事件是不是互斥事件或对立事件:某小组有 3 名男生和 2 名女生,从中任选2 名同学去参加演讲比赛,其中①恰有1 名男生和恰有2 名男生;②至少有 1 名男生和至少有 1 名女生;③至少有 1 名男生和全是女生.题型二随机事件的频率与概率例2 (2015 ·北京 ) 某超市随机选取 1 000 位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整商品甲乙丙丁顾客人数100 √×√√217 ×√×√200 √√√×300 √×√×85 √×××98 ×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买3 种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大?思维升华(1) 概率与频率的关系:频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.(2)随机事件概率的求法:利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.某企业生产的乒乓球被奥运会指定为乒乓球比赛专用球,目前有关部门对某批产品进行了抽样检测,检查结果如下表所示:抽取球数 n 50 100 200 500 1 000 2 000优等品数 m 45 92 194 470 954 1 902m优等品频率n(1) 计算表中乒乓球优等品的频率;(2) 从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位)题型三互斥事件、对立事件的概率命题点 1 互斥事件的概率1,得例 3 袋中有 12 个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是35 ,得到黄球或绿球的概率也是 5 ,试求得到黑球、黄球到黑球或黄球的概率是和绿球的概率各是多1212少?命题点 2对立事件的概率例 4某商场有奖销售中,购满100元商品得 1 张奖券,多购多得 .1 000 张奖券为一个开奖单位,设特等奖 1 个,一等奖10 个,二等奖50 个.设 1 张奖券中特等奖、一等奖、二等奖的事件分别为A、 B、C,求:(1) P(A),P(B), P(C);(2)1 张奖券的中奖概率;(3)1 张奖券不中特等奖且不中一等奖的概率.思维升华求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和;二是间接法,先求该事件的对立事件的概率,再由P(A)= 1- P( A )求解.当题目涉及“ 至多”“ 至少” 型问题时,多考虑间接法.国家射击队的队员为在射击世锦赛上取得优异成绩,正在加紧备战,经过近期训练,某队员射击一次命中7~ 10 环的概率如下表所示:命中环数10 环9 环8 环7 环概率0.320.280.180.12求该射击队员射击一次:(1)射中 9 环或 10 环的概率;(2)命中不足 8 环的概率.21.用正难则反思想求互斥事件的概率专注·专业·口碑·极致- 5 -物的 100 位顾客的相关数据,如下表所示 .一次购物量 1 至 4 件 5 至 8 件9 至 12 件13 至 16 件17 件及以上顾客数 (人 ) x 30 25 y 10 结算时间 (分钟 / 人 ) 1 1.5 2 2.5 3已知这 100 位顾客中一次购物量超过8 件的顾客占 55%.(1)确定 x, y 的值,并估计顾客一次购物的结算时间的平均值;(2) 求一位顾客一次购物的结算时间不超过 2 分钟的概率.(将频率视为概率)...思维点拨若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“ 正难则反”思想求解.温馨提醒(1) 要准确理解题意,善于从图表信息中提炼数据关系,明确数字特征含义.(2)正确判定事件间的关系,善于将 A 转化为互斥事件的和或对立事件,切忌盲目代入概率加法公式.易错提示 (1) 对统计表的信息不理解,错求 x, y,难以用样本平均数估计总体.(2)不能正确地把事件 A 转化为几个互斥事件的和或对立事件,导致计算错误.[方法与技巧 ]1.对于给定的随机事件 A,由于事件 A 发生的频率 f n(A)随着试验次数的增加稳定于概率P(A),因此可以用频率 f n (A)来估计概率 P(A).2.从集合角度理解互斥事件和对立事件从集合的角度看,几个事件彼此互斥,是指由各个事件所含的结果组成的集合彼此的交集为空集,事件 A 的对立事件 A 所含的结果组成的集合,是全集中由事件 A 所含的结果组成的集合的补集.[失误与防范 ]1.正确认识互斥事件与对立事件的关系:对立事件是互斥事件,是互斥事件中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.2.需准确理解题意,特别留心“ 至多,,”“至少,,”“不少于,,”等语句的含义.A 组专项基础训练( 时间: 45 分钟 )则事件 M 与 N 互为对立事件;②若事件 A 与 B 互为对立事件,则事件 A 与 B 为互斥事件;③若事件A 与B 为互斥事件,则事件 A 与 B 互为对立事件;④若事件 A 与 B 互为对立事件,则事件A∪ B 为必然事件,其中,真命题是________.112 2.围棋盒子中有多粒黑子和白子,已知从中取出 2 粒都是黑子的概率为7,都是白子的概率是35,则从中任意取出 2 粒恰好是同一色的概率是________.3.从一箱产品中随机地抽取一件,设事件 A= { 抽到一等品 } ,事件 B= { 抽到二等品 } ,事件 C= { 抽到三等品 } ,且已知 P(A)= 0.65, P(B)= 0.2 , P(C)= 0.1,则事件“抽到的产品不是一等品”的概率为__________ .4.从存放的号码分别为1,2,3 , , , 10 的卡片的盒子中,有放回地取100 次,每次取一张卡片并记下号码,统计结果如下:卡片号码 1 2 3 4 5 6 7 8 9 10取到次数13 8 5 7 6 13 18 10 11 9则取到号码为奇数的卡片的频率是________.5.对一批产品的长度(单位:毫米 )进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25) 上的为一等品,在区间 [15,20) 和[25,30) 上的为二等品,在区间 [10,15) 和 [30,35) 上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为________.6.在 200 件产品中,有192 件一级品, 8 件二级品,则下列事件:①在这 200 件产品中任意选出9 件,全部是一级品;②在这 200 件产品中任意选出9 件,全部是二级品;③在这 200 件产品中任意选出9 件,不全是二级品.其中 ________是必然事件;________是不可能事件;________是随机事件.7.已知某运每次投命中的概率都40%,采用随机模的方法估运三次投恰有两次命中的概率:先由算器生0 到 9 之取整数的随机数,指定1,2,3,4 表示命中, 5,6,7,8,9,0 表示不命中;再以每三个随机数一,代表三次投的果.随机模生了如下20 随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估,运三次投恰有两次命中的概率________.8.若随机事件A,B 互斥, A, B 生的概率均不等于0,且 P(A) =2- a, P(B)= 4a- 5,数 a 的取范是 _____________.9.(2014 ·西 )某保公司利用随机抽方法,投保行抽,本中每的付果如下:付金 (元 ) 0 1 000 2 000 3 000 4 000数 ( ) 500 130 100 150 120(1)若每的投保金均 2 800 元,估付金大于投保金的概率;(2)在本中,主是新司机的占10%,在付金 4 000 元的本中,主是新司机的占20%,估在已投保中,新司机金 4 000 元的概率.10.从某学校的800 名男生中随机抽取50 名量其身高,被学生身高全部介于155 cm 和 195 cm 之,将量果按如下方式分:第一[155,160) ,第二 [160,165) ,⋯,第八 [190,195] ,如是按上述分方法得到的率分布直方的一部分,已知第一与第八人数相同,第六的人数 4.(1)求第七组的频率;(2) 估计该校的 800 名男生的身高的中位数以及身高在180 cm 以上 (含 180 cm)的人数;(3) 若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x, y,事件 E ={| x- y|≤5} ,事件 F = {| x- y|>15} ,求 P(E∪ F).B 组专项能力提升( 时间: 25 分钟 )11.在一次随机试验中,彼此互斥的事件A, B,C, D 的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是 ______________.①A+ B 与 C 是互斥事件,也是对立事件;② B+ C 与 D 是互斥事件,也是对立事件;③ A+ C 与 B+ D 是互斥事件,但不是对立事件;④ A 与 B+ C+ D 是互斥事件,也是对立事件.12.如图所示,茎叶图表示的是甲、乙两人在 5 次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为________.13.若 A,B 互为对立事件,其概率分别为P(A)=4,P( B)=1,且 x>0 ,y>0,则 x+y 的最小值为 ________.x y14.如图, A 地到火车站共有两条路径L1和 L 2,现随机抽取 100 位从 A 地到达火车站的人进行调查,调查结果如下:所用时间 /分钟10~ 20 20~30 30~ 40 40~50 50~ 60选择 L 1的人数 6 12 18 12 12选择 L 2的人数0 4 16 16 4(1)试估计 40 分钟内不能赶到火车站的概率;(2)分别求通过路径 L 1和 L 2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有 40 分钟和 50 分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.15. (2015 ·西陕 ) 随机抽取一个年份,对西安市该年 4 月份的天气情况进行统计,结果如下:日期123456789101112131415 天气晴雨阴阴阴雨阴晴晴晴阴晴晴晴晴日期161718192021222324252627282930 天气晴阴雨阴阴晴阴晴晴晴阴晴晴晴雨(1)在 4 月份任取一天,估计西安市在该天不下雨的概率;(2) 西安市某学校拟从4月份的一个晴天开始举行连续 2 天的运动会,估计运动会期间不下雨的概率.专注·专业·口碑·极致- 10 -。
旧教材适用2023高考数学一轮总复习高考大题专题研究六概率随机变量及分布列问题课件

所以 X 的分布列为
X
0
1
2
P
0.24
0.52
0.24
故 X 的数学期望 E(X)=0×0.24+1×0.52+2×0.24=1.
(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用 A 的学生中,随机抽查 3 人,发现他们本月的支付金额都大于 2000 元.根据 抽查结果,能否认为样本仅使用 A 的学生中本月支付金额大于 2000 元的人 数有变化?说明理由.
解 (2)X 的所有可能取值为 0,1,2. 记事件 C 为“从样本仅使用 A 的学生中随机抽取 1 人,该学生上个月的 支付金额大于 1000 元”,事件 D 为“从样本仅使用 B 的学生中随机抽取 1 人,该学生上个月的支付金额大于 1000 元”. 由题设知,事件 C,D 相互独立,
9+3
14+1
且 P(C)= 30 =0.4,P(D)= 25 =0.6,
所以 P(X=2)=P(CD)=P(C)P(D)=0.24,
P(X=1)=P(C-D ∪-C D)=P(C)P(-D )+P(-C )·P(D)=0.4×(1-0.6)+(1-
0.4)×0.6=0.52,
பைடு நூலகம்
P(X=0)=P(-C -D )=P(-C )P(-D )=0.24.
解 (3)记事件 E 为“从样本仅使用 A 的学生中随机抽查 3 人,他们本月 的支付金额都大于 2000 元”.
假设样本仅使用 A 的学生中,本月支付金额大于 2000 元的人数没有变 化,则由上个月的样本数据,得 P(E)=CC33330=40160.
答案示例一:可以认为有变化.理由如下: P(E)比较小,概率比较小的事件一般不容易发生.一旦发生,就有理由 认为本月的支付金额大于 2000 元的人数发生了变化,所以可以认为有变化. 答案示例二:无法确定有没有变化.理由如下: 事件 E 是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生 的,所以无法确定有没有变化.
高考第一轮复习——概率(古典概率、条件概率、离散性随机变量)(理)

1. 2. (均3. 4.1. 2. 1. 2.1. 2. 集合的观点:设试验的基本事件总数构成集合I ,事件A 包含的事件数构成集合A ,则I A ⊆。
3. 古典概型的特征:(1)每次试验的结果只有一个基本事件出现;(2)试验结果具有有限性;(3)试验结果出现等可能性。
4. 互斥事件概率(1)互斥事件:在一个随机试验中,一次试验中不可能同时发生的两个事件A ,B 称为互斥事件。
(2)互为事件概率计算公式:若事件A ,B 互斥,则)()()(B P A P B A P +=+(3)对立事件:在一个随机试验中,一次试验中两个事件A ,B 不会同时发生,但必有一个事件发生,这样的两个事件称为对立事件。
记作:A B =,由对立事件定义知:)(1)(A P A P -=(4)互斥事件与对立事件的关系:对立必互斥,互斥未必对立。
用集合的观点分析对立事件与互斥事件:设两个互斥事件A ,B 包含的所有结果构成集合A ,B ,则φ=B A (如图1所示)图1设两个对立事件A ,A 包含的所有结果构成的集合为A A ,则I A A A A =φ= 且,(如图2所示))n1的面积成1. B 发P (2. 。
3. 注: )B 。
B A 与也相互独立。
四、二项分布、超几何分布、正态分布1. 二项分步:(1)n 次独立重复试验的概念:在相同的条件下,重复做n 次试验,各次试验的结果相互独立。
N 次独立重复试验的特征:①每次试验的条件相同,某一事件发生的概率不变,②各次试验的结果互不影响,且每次试验只有两个结果发生或不发生。
(2)二项分步概率计算公式:一般地,在一次试验中某事件发生的概率为P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率为),,2,1,0(,)1()(n k p p C k P k n kk n n =-=-,若随机变量由此式确定,则X 服从参数n ,p 的二项分布,记作:),(~p n B X 。
专题02 充分条件与必要条件-备战2019年高考数学之高三复习大一轮热点聚焦与扩展(原卷版)

专题02 充分条件与必要条件【热点聚焦与扩展】高考对命题及其关系和充分条件、必要条件的考查主要是以小题的形式来考查,由于知识载体丰富,因此题目有一定综合性,属于中、低档题.命题重点主要有三个:一是以函数、方程、三角函数、数列、不等式、立体几何线面关系、平面解析几何等为背景的充分条件和必要条件的判定与探求;二是考查等价转化与化归思想;三是由充分条件和必要条件探求参数的取值范围. 1、定义:(1)对于两个条件,p q ,如果命题“若p 则q ”是真命题,则称条件p 能够推出条件q ,记为p q ⇒, (2)充分条件与必要条件:如果条件,p q 满足p q ⇒,则称条件p 是条件q 的充分条件;称条件q 是条件p 的必要条件2、对于两个条件而言,往往以其中一个条件为主角,考虑另一个条件与它的关系,这种关系既包含充分方面,也包含必要方面。
所以在判断时既要判断“若p 则q ”的真假,也要判断“若q 则p ”真假3、两个条件之间可能的充分必要关系:(1)p 能推出q ,但q 推不出p ,则称p 是q 的充分不必要条件 (2)p 推不出q ,但q 能推出p ,则称p 是q 的必要不充分条件(3)p 能推出q ,且q 能推出p ,记为p q ⇔,则称p 是q 的充要条件,也称,p q 等价 (4)p 推不出q ,且q 推不出p ,则称p 是q 的既不充分也不必要条件 4、如何判断两个条件的充分必要关系(1)定义法:若 ,p q q p ⇒≠> ,则p 是q 的充分而不必要条件;若,p q q p ≠>⇒ ,则p 是q 的必要而不充分条件;若,p q q p ⇒⇒,则p 是q 的充要条件; 若,p q q p ≠>≠> ,则p 是q 的既不充分也不必要条件。
(2)等价法:即利用p q ⇒与q p ⌝⌝⇒;q p ⇒与p q ⌝⌝⇒;p q ⇔与q p ⌝⌝⇔的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3) 充要关系可以从集合的观点理解,即若满足命题p 的集合为M ,满足命题q 的集合为N ,则M 是N 的真子集等价于p 是q 的充分不必要条件,N 是M 的真子集等价于p 是q 的必要不充分条件,M =N 等价于p 和q 互为充要条件,M ,N 不存在相互包含关系等价于p 既不是q 的充分条件也不是q 的必要条件. 4、充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解. (2)要注意区间端点值的检验.5、对于充要条件的证明问题,可用直接证法,即分别证明充分性与必要性.此时应注意分清楚哪是条件,哪是结论,充分性即由条件证明结论;而必要性则是由结论成立来证明条件也成立,千万不要张冠李戴;也可用等价法,即进行等价转化,此时应注意的是所得出的必须是前后能互相推出,而不仅仅是“推出”一方面(即由前者可推出后者,但后者不能推出前者).【经典例题】例1【2017天津,理4】设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 (A )充分而不必要条件 (B )必要而不充分条件(C )充要条件(D )既不充分也不必要条件 例2【2018届山东省天成大联考高三第二次考试】已知,,,,则是( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件例3【2018届江西省高三监测】已知命题p : 2230x x +->;命题q : 01x ax a ->--,且q ⌝的一个必要不充分条件是p ⌝,则a 的取值范围是( ) A. []3,0- B. ][(),30,-∞-⋃+∞ C. ()3,0- D. ()(),30,-∞-⋃+∞ 例4【2018届东北三省三校高三第二次模拟】设,则使成立的必要不充分条件是( )A.B.C.D.例5【2018届河北省保定市高三第一次模拟】已知非向量()(),2,,2a x x b x ==-,则0x <或4x >是向量a 与b 夹角为锐角的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件例6. “b ≤y x b =+与圆221x y +=有公共点”的 A. 充分而不必要条件 B. 必要而不充分条件 C. 充分必要条件 D. 既不充分也不必要条件例7【2018届天津市十二重点中学高三联考一】设条件p :函数()()23log 2f x x x =-在(),a +∞上单调递增,条件q :存在x R ∈使得不等式2121x x a ++-≤成立,则p 是q 的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件例8【2018届四川省棠湖中学高三3月月考】“1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭”是“22log log a b >”的A. 充分不必要条件B. 充要条件C. 必要不充分条件D. 既不充分也不必要条件 例9【2018届北京市西城区156中学高三上学期期中】设,,是两个不同的平面,则“”是“”的( ).A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分又不必要条件例10.已知{{}2|5,|A x x B x x ax x a =-≥=-≤-,当“x A ∈”是“x B ∈”的充分不必要条件,则a 的取值范围是__________【精选精练】1.【2018届河南省濮阳市高三二模】对于实数,,“”是“方程对应的曲线是椭圆”的( )A. 必要不充分条件B. 充分不必要条件C. 充分必要条件D. 既不充分也不必要条件2.【2018届河北省衡水中学高三十五模】已知等差数列{}n a 的前n 项和为n S ,“1009a , 1010a 是方程43220x x -⋅+=的两根”是“20181009S =”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.【2018届上海市黄浦区高三4月模拟(二模)】在空间中,“直线 平面”是“直线与平面内无穷多条直线都垂直 ”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 非充分非必要条件4.【2018届上海市杨浦区高三二模】已知22110a b +≠, 22220a b +≠,则“11220a b a b =”是“直线1111:0l a x b y c ++=与2222:0l a x b y c ++=平行”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要5.【2018届重庆市高三4月二诊】“1cos22α=”是“()6k k Z παπ=+∈”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件6.【2018届吉林省四平市高三质量检测】"1"a =是“函数22cos sin y ax ax =-的最小正周期为π”的( )A. 充分不必要条件B. 必要不充分条件C. 充分且必要条件D. 既不充分也不必要条件7.【2018届北京东城五中2017-2018学年高三上期中】已知向量a 、b 为非零向量,则“0a b ⋅>”是“a 、b 的夹角为锐角”的( ).A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.【2018届江西省上饶市高三下学期二模】“3a =-”是“直线()1:110l ax a y -++=与直线2:210l x ay --=垂直”的 ( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 9.【2018届山东省聊城市高三一模】设等比数列{}n a 的各项均为正数,其n 前项和为n S ,则“1921202S S S +>”是“数列{}n a 是递增数列”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件10.【2018届河南省八市学评高三下学期第一次】设等差数列{}n a 的首项1a 大于0,公差为d ,则“0d <”是“{}14na a 为递减数列”的( )A. 充要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件11.设命题:p 实数m 使曲线222426120x y x y m m +---++=表示一个圆;命题:q 实数m 使曲线221x y m m a-=-表示双曲线.若p 是q 的充分不必要条件,求正实数a 的取值范围. 12.已知命题p : {11}A x a x a =-<<+,命题q : {}2430B x x x =-+≥.(1)若,A B A B R ⋂=∅⋃=,求实数a 的值; (2)若p 是q 的充分条件,求实数a 的取值范围.。
高考数学一轮复习 热点难点精讲精析 11.3随机变量及其分布

高考一轮复习热点难点精讲精析:11.3随机变量及其分布一、离散型随机变量及其分布列 (一)随机变量的概念 ※相关链接※1.所谓随机变量,就是试验结果和实数之间的一个对应关系。
这与函数概念在本质上是相同的,不同的是函数的自变量是实数,而随机变量的自变量是试验结果。
2.如果随机变量可能取的值为有限个,则我们能够把其结果一一列举出来。
3.随机变量是随机试验的结果数量化,变量的取值对应随机试验的某一个随机事件,在学习中,要注意随机变量与以前所学的变量的区别与联系。
※例题解析※〖例〗写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果。
(1)一个口袋中装有2个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ。
(2)投掷两枚骰子,所得点数之和为X ,所得点数的最大值为Y 。
思路解析:(1)3个球中,可能有1个白球,也可能有两个,还可能没有。
(2)投掷结果为(,)i j ,其中16,16i j ≤≤≤≤且,i j N ∈。
利用投掷结果确定X ,Y 。
解答:(1)ξ可取0,1,2。
ξ=0表示所取3个球中没有白球;ξ=1表示所取3个球中有一个白球,2个黑球; ξ=2表示所取3个球鞋中有2个白球,1个黑球。
(1)X 的可能取值2,3,4,5,……,12。
Y 的可能取值为1,2,3,……,6。
若以(,)i j 表示先后投掷的两枚骰子出现的点数。
则X=2表示(1,1),X=3表示(1,2),(2,1),X=4表示(1,3),(2,2),(3,1),……,X=12表示(6,6);Y=1表示(1,1),Y=2表示(1,2),(2,1),(2,2),Y=3表示(1,3),(2,3),(3,3),(3,1),(3,2),……,Y=6表示(1,6),(2,6),(3,6),……,(6,6),(6,5),……,(6,1)。
(二)离散型随机变量的分布列※相关链接※1.分布列可由三种形式,即表格、等式和图象表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题66 含有条件概率的随机变量问题【热点聚焦与扩展】纵观近几年的高考试题,离散型随机变量的分布列及其数字特征是高考命题的热点.往往以实际问题为背景考查离散型随机变量的数字特征在实际问题中的应用,其中不乏含有条件概率的问题.考查数据处理能力以及分析问题解决问题的能力.此类问题,概率统计问题一同考查.难度控制在中等.本专题在分析研究近几年高考题及各地模拟题的基础上,举例说明.1、条件概率:事件B 在事件A 已经发生的情况下,发生的概率称为B 在A 条件下的条件概率,记为|B A2、条件概率的计算方法:(1)按照条件概率的计算公式:()()()|P AB P B A P A =(2)考虑事件A 发生后,题目产生了如何的变化,并写出事件B 在这种情况下的概率例如:5张奖券中有一张有奖,甲,乙,丙三人先后抽取,且抽完后不放回,已知甲没有中奖,则乙中奖的概率: 按照(1)的方法:设事件A 为“甲没中奖”,事件B 为“乙中奖”,则所求事件为|B A ,按照公式,分别计算()(),P AB P A ,利用古典概型可得:()25415P AB A ==,()45P A =,所以()()()1|4P AB P B A P A == 按照(2)的方法:考虑甲已经抽完了,且没有中奖,此时还有4张奖券,1张有奖.那么轮到乙抽时,乙抽中的概率即为143、含条件概率的乘法公式:设事件,A B ,则,A B 同时发生的概率()()()|P AB P A P B A =⋅ ,此时()|P B A 通常用方案(2)进行计算4、处理此类问题要注意以下几点:(1)要分析好几个事件间的先后顺序,以及先发生的事件对后面事件的概率产生如何的影响(即后面的事件算的是条件概率)(2)根据随机变量的不同取值,事件发生的过程会有所不同,要注意区别(3)若随机变量取到某个值时,情况较为复杂,不利于正面分析,则可以考虑先求出其它取值时的概率,然后用间接法解决.【经典例题】例1.【2018届江西省新余市高三第二次模】中不放回地依次取)【答案】AA .例2.【2018届青海省西宁市一模】先后掷一枚质地均匀骰子(骰子的六个面上分别标有1,2,3,4,5,6个点)两次,落在水平桌面后,记正面朝上的点数分别为,x y ,设事件A 为“x y +为偶数”,事件B 为“,x y 中有偶数,且x y ≠”,则概率(|)P B A =( ) A.13 B. 14 C. 15 D. 16【答案】A例3.【2018届江西省南昌市三模】质检部门对某工厂甲、乙两个车间生产的(1个零件中随机抽取测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;(2【答案】(12)见解析【解析】分析:(1件全合格”;事件.故所求概率为.(2)可能取值为分布列为例4.【2018届安徽省合肥市第一中学冲刺】深受广大球迷喜爱的某支欧洲足球队.在对球员的使用上总是进行数据分析,为了考察甲球员对球队的贡献,现作如下数据统计:(1的值,据此能否有(2)根据以往的数据统计,乙球员能够胜任前锋、中锋、后卫以及守门员四个位置,且出场率分别为:则:1)当他参加比赛时,求球队某场比赛输球的概率;2)当他参加比赛时,在球队输了某场比赛的条件下,求乙球员担当前锋的概率;3)如果你是教练员,应用概率统计有关知识.该如何使用乙球员?附表及公式:【答案】(1)2)1)0.32, 2)0.32, 3)多让乙球员担当守门员,场次.详解:(1,的把握认为球队胜利与甲球员参赛有关.(2)1表示“乙球员担当后卫”;3次. {例5.【2018届四川省成都市第七中学三诊】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:(10.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.②记抽到45.【答案】(1)见解析;(2)见解析.详解:(1)由频率分布直方图知45岁以下与45岁以上各50人,所以在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异.(2)①设“抽到1人是45岁以下”为事件A,“抽到的另一人是45岁以上”为事件B,的分布列为:例6.【2018届河北省石家庄二中三模】某市为准备参加省中学生运动会,对本市甲、乙两个田径队的所有跳高运动员进行了测试,将全体运动员的成绩绘制成频率分布直方图.同时用茎叶图表示甲,乙两队运动员本次测试的成绩(单位:且均为整数),由于某些原因,茎叶图中乙队的部分数据丢失,.(1)内的运动人数(2)在甲,乙两队所有成绩在绩均“优秀”的概率;(3.【答案】(123)见解析【解析】分析:由频率分布直方图可知,成绩在2,频率为(3,分别求三个概率,由此求出的分布列和数学期望详解:(1,中运动员的频率为,人数为名,∴;(2以上运动员总数为:人成绩优秀”,事件点睛:随机变量分布列及数学期望问题要善于灵活运用三个性质:一是p i ≥0(i =1,2,…);三是p 1+p 2+…+p n =1检验分布列的正误例7.【2018届广东省佛山市检测二】单位计划组织55名职工进行一种疾病的筛查,先到本单位医务室进行血检,血检呈阳性者再到医院进一步检测.已知随机一人血检呈阳性的概率为 1% ,且每个人血检是否呈阳性相互独立. (Ⅰ) 根据经验,采用分组检测法可有效减少工作量,具体操作如下:将待检人员随机等分成若干组,先将每组的血样混在一起化验,若结果呈阴性,则可断定本组血样全部为阴性,不必再化验;若结果呈阳性,则本组中至少有一人呈阳性,再逐个化验. 现有两个分组方案:方案一: 将 55 人分成 11 组,每组 5 人; 方案二:将 55 人分成5组,每组 11 人; 试分析哪一个方案工作量更少?(Ⅱ) 若该疾病的患病率为 0.4% ,且患该疾病者血检呈阳性的概率为99% ,该单位有一职工血检呈阳性,求该职工确实患该疾病的概率.(参考数据: 5110990.9510.990.895.==,)【答案】(1)方案二工作量更少.(2)39.6%. 【解析】分析:(Ⅰ)方案一中化验次数为1或者6,方案二中化验次数为1或13,分别求出两种方案化验次数的分布列,求出期望,通过比较期望大小可得结论;(Ⅱ) 设事件A :血检呈阳性;事件B :患疾病.则题意有()()P A 0.01,P B)0.004,p A|B 0.99===(,利用条件概率公式可得,注意要求的概率是P(B|A). 详解:(Ⅰ)方法1:设方案一中每组的化验次数为X ,则X 的取值为1,6. 所以()()5510.990.951,610.990.049P X P X =====-=,所以X 的分布列为所以10.95160.049 1.245EX =⨯+⨯=.故方案一的化验总次数的期望为: 11EX 110.24513.695⨯=⨯=次. 设方案二中每组的化验次数为Y ,则Y 的取值为1,12, 所以()()1111P Y 10.990.895,1210.990.105P Y =====-=,所以Y 的分布列为所以EY 10.895120.105 2.155=⨯+⨯=.(Ⅱ)设事件A :血检呈阳性;事件B :患疾病.则由题意有()()P A 0.01P B)0.004p A|B 0.99===,(,, 由条件概率公式()()()P A|B P AB P B =,得()()()|0.0040.99P AB P B P AB ==⨯,故()()()0.0040.99|0.3960.01P AB P B A P A ⨯===, 所以血检呈阳性的人确实患病的概率为 39.6%.例8.【2018届吉林省长春市第十一高中、东北师范大学附属中学、吉林一中,重庆一中等五校1月联合模拟】为了调查观众对电视剧《风筝》的喜爱程度,某电视台举办了一次现场调查活动.在参加此活动的甲、乙两地观众中,各随机抽取了8名观众对该电视剧评分做调查(满分100分),被抽取的观众的评分结果如图所示 (Ⅰ)计算:①甲地被抽取的观众评分的中位数; ②乙地被抽取的观众评分的极差;(Ⅱ)用频率估计概率,若从乙地的所有观众中再随机抽取4人进行评分调查,记抽取的4人评分不低于90分的人数为X ,求X 的分布列与期望;(Ⅲ)从甲、乙两地分别抽取的8名观众中各抽取一人,在已知两人中至少一人评分不低于90分的条件下,求乙地被抽取的观众评分低于90分的概率.【答案】(1)83,21(2)见解析(3)37(Ⅲ)设事件A 为“从甲、乙两地分别抽取的8名观众中各抽取一人,两人中至少一人评分不低于90分”,事件B 为“从甲、乙两地分别抽取的8名观众中各抽取一人,乙地观众评分低于90分”,则()716P A =()316P AB=根据条件概率公式,可求乙地被抽取的观众评分低于90分的概率.试题解析:(Ⅰ)由茎叶图可知,甲地被抽取的观众评分的中位数是83,乙地被抽取的观众评分的极差是977621-=(Ⅱ)记“从乙地抽取1人进行评分调查,其评分不低于90分”为事件M,则()21 84P M==随机变量X的所有可能取值为0,1,2,3,4,,且14,4 X B⎛⎫~ ⎪⎝⎭所以()4411144k k kP x k C-⎛⎫⎛⎫==-⎪ ⎪⎝⎭⎝⎭,0,1,2,3,4 k=所以X的分布列为∴()1414E x=⨯=所以在已知两人中至少一人评分不低于90分的条件下,乙地被抽取的观众评分低于90分的概率为37.例9.一个盒子内装有8张卡片,每张卡片上面写着1个数字,这8个数字各不相同,且奇数有3个,偶数有5个.每张卡片被取出的概率相等.(1)如果从盒子中一次随机取出2张卡片,并且将取出的2张卡片上的数字相加得到一个新数,求所得新数是奇数的概率;(2)现从盒子中一次随机取出1张卡片,每次取出的卡片都不放回盒子,若取出的卡片上写着的数是偶数则停止取出卡片,否则继续取出卡片.设取出了ξ次才停止取出卡片,求ξ的分布列和数学期望. 【答案】(1)15;(2)期望2. 【解析】(1)思路:本题可用古典概型解决,事件Ω为“8张卡片中取出2张卡片”,所以()28n C Ω=事件A 为“所得新数为奇数”,可知需要一奇一偶相加即可,则()1135n A C C =⋅,从而可计算出()P A解:设A 为“所得新数为奇数”()1135281528C C P A C ⋅∴==解:ξ可取的值为1,2,3,4()518P ξ∴== ()351528756P ξ==⋅=()3255387656P ξ==⋅⋅=()3211487656P ξ==⋅⋅= ξ∴的分布列为:123485656562E ξ∴=⨯+⨯+⨯+⨯=例10.有,,A B C 三个盒子,每个盒子中放有红,黄,蓝颜色的球各一个,所有的球仅有颜色上的区别(1)从每个盒子中任意取出一个球,记事件S 为“取得红色的三个球“,事件T 为”取得颜色互不相同的三个球“,求()(),P S P T(2)先从A 盒中任取一球放入B 盒,再从B 盒中任取一球放入C 盒,最后从C 盒中任取一球放入A 盒,设此时A 盒中红球的个数为ξ,求ξ的分布列与数学期望【答案】(1)12,;279(2)期望1.思路二:本题也可用概率的乘法进行计算.S 表示每个盒均取出红球(取出红球的概率为13),因为每盒之间互不影响,所以()111333P S =⨯⨯;T 要求每盒颜色不同,所以前一个盒取出球的颜色会影响到下一个盒取球的选择.第一个盒取出一个颜色,则第二个盒只能取另外两个颜色的球(概率为23),而第三个盒只能取出剩下颜色的那个球(概率为13),所以()21133P T =⨯⨯解:(1)()111133327P S =⨯⨯=()2121339P T =⨯⨯=(2)思路:分析可知整个过程对于A 而言是取出一个球,再进入一个球,所以ξ可取的值为0,1,2,情况较为简单的为0ξ=和2ξ=的情况,当0ξ=时,意味着从A 盒中取出了红球到B (概率为13),此时B 盒中为2红2非红,C 盒中的情况取决于B 盒中取出球的颜色,可进行分类讨论:若取出的是红球(概率为12),则C 盒中为2红2非红,然后从C 中取出非红球即可(概率为12);若取出的不是红球(概率为12),则C 盒中为1红3非红,再从C 中取出非红球即可(概率为34),综上可得:()11113503222424P ξ⎡⎤==⨯⨯+⨯=⎢⎥⎣⎦;当2ξ=时,意味着从A 盒中取出了非红球到B (概率为23),此时B 盒中为1红3非红,C 盒中的情况取决于B 盒中取出球的颜色,可进行分类讨论:若取出的是红球(概率为14),则C 盒中为2红2非红,然后()21131523424424P ξ⎡⎤==⨯⨯+⨯=⎢⎥⎣⎦ ()()()7110212P P P ξξξ==-=-==ξ∴的分布列为:0121241224E ξ∴=⨯+⨯+⨯=【精选精练】1.【2018届河南省安阳35)B.C.【答案】A【解析】分析:本题考查条件概率.为了方便表示,设“某天的空气质量为优良”为事件A ,“后一天的空气质量为优良”为事件B.详解:设“某天的空气质量为优良”为事件A,“后一天的空气质量为优良”为事件B,故选A.2.【2018的概率为()C. D.【答案】A本题选择A选项.3.【2018届东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)一模】从标有1、2、3、4、5的五张卡中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为()【答案】B【解析】由题意,记“第一次抽到奇数”为事件A,记“第二次抽到偶数”为事件B故选B.4.某种电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为12,两次闭合后都出现红灯的概率为15,则在第一次闭合后出现红灯的条件下第二次闭合后出现红灯的概率为( ) A. 110 B. 15 C. 25 D. 12【答案】C【解析】设“开关第一次闭合后出现红灯”为事件A ,“第二次闭合后出现红灯”为事件B ,由题意得()()11,25P A P AB ==.由条件概率的定义可得()()125(|)152P AB P B A P A ===.选C .5. 某迷宫有三个通道,进入迷宫的每个人都要经过一个智能门,首次到达此门,系统会随机(即等可能)为你打开一个通道,若是1号通道,则需要1个小时走出迷宫;若是2号,3号通道,则分别需要2小时,3小时返回智能门,再次到达智能门时,系统会随机打开一个你未到过的通道,直至走出迷宫为止,令ξ表示走出迷宫所需的时间,求ξ的分布列和数学期望 【答案】期望2.()113P ξ== ()1113326P ξ==⨯=()1114326P ξ==⨯= ()11111632323P ξ==⨯+⨯=ξ∴的分布列为:11117134636632E ξ∴=⨯+⨯+⨯+⨯=6.某学校要对学生进行身体素质全面测试,对每位学生都要进行9选3考核(即共9项测试,随机选取3项),若全部合格,则颁发合格证;若不合格,则重新参加下期的9选3考核,直至合格为止,若学生小李抽到“引体向上”一项,则第一次参加考试合格的概率为12,第二次参加考试合格的概率为23,第三次参加考试合格的概率为45,若第四次抽到可要求调换项目,其它选项小李均可一次性通过 (1)求小李第一次考试即通过的概率P x ¥kw (2)求小李参加考核的次数ξ分布列 【答案】(1)5;(2)【解析】(1)思路:由题意可知,小李能够通过考试的概率取决于是否能够抽到“引体向上”这个项目,如果没有抽到,则必能通过;若抽到“引体向上”则通过的概率为12.后面通过测试的概率受到前面抽签的(2)思路:依题目要求可知ξ可取的值为1,2,3,4,在参加下一次考核时,意味着前几次考核失败,所以当ξ取2,3,4时,要考虑前面考核失败的情况与该次考核成功两个方面同时成立.解:ξ可取的值为1,2,3,4()516P ξ== ()3288339912426327C C P C C ξ⎛⎫==⨯+⋅=⎪⎝⎭()23288833399911473635405C C C P C C C ξ⎛⎫⎛⎫==⋅⋅⋅+⋅=⎪ ⎪⎝⎭⎝⎭ ()2288339911114635810C C P C C ξ⎛⎫⎛⎫==⋅⋅⋅⋅=⎪ ⎪⎝⎭⎝⎭ ξ∴的分布列为:7.袋中有大小相同的三个球,编号分别为1,2,3,从袋中每次取出一个球,若取到的球的编号为2,则把该球编号记下再把编号数改为1后放回袋中继续取球;若取到的球的编号为奇数,则取球停止,取球停止后用X 表示“所有被取球的编号之和” (1)求X的分布列(2)求X 的数学期望及方差【答案】(1)(2)81解:(1)X 可取的值为1,3,5()113P X ∴==()112533339P X ==+⋅=()1115339P X ==⋅=X ∴的分布列为:(2)1353999EX =⨯+⨯+⨯=222123523123176135********DX ⎛⎫⎛⎫⎛⎫=-+-+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 8.深圳市某校中学生篮球队假期集训,集训前共有6个篮球,其中3个是新球(即没有用过的球),3个是旧球(即至少用过一次的球).每次训练,都从中任意取出2个球,用完后放回. (1)设第一次训练时取到的新球个数为ξ,求ξ的分布列和数学期望; (2)求第二次训练时恰好取到一个新球的概率. 【答案】(1)期望1; (2)3875.()2326125C P C ξ===ξ∴的分布列为:0121555E ξ∴=⨯+⨯+⨯=(2)思路:本题要注意一个常识,即新球训练过后就变成了旧球,所以要计算第二次恰好取到一个新球的概率,需要了解经过第一次训练后,所剩的球有几个新球,几个旧球.所以要对第一次取球的情况进行分类讨论:若第一次取2个新球,则第二次训练时有5旧1新;若第一次取到1个新球,则第二次训练时有4旧2新;若第一次取到2个旧球,则第二次训练依然为3旧3新,分别计算概率再相加即可解:设事件i A 为“第一次训练取出了i 个新球”,则()23326i i i C C P A C -= 设事件B 为“从六个球取出两个球,其中恰好有一个新球” 事件C 为“第二次恰好取出一个新球”9.若盒中装有同一型号的灯泡共10个,其中有8个合格品,2个次品(1)某工人师傅有放回地连续从该盒中取灯泡3次,每次取一只灯泡,求2次取到次品的概率(2)某工人师傅用该盒中的灯泡去更换会议室的一只已坏灯泡,每次从中取一灯泡,若是正品则用它更换已坏灯泡,若是次品则将其报废(不再放回原盒中),求成功更换会议室的已坏灯泡所用灯泡只数X 的分布列和数学期望 【答案】(1)12;(2) 期望9.【解析】(1)思路:每次有放回的取灯泡,相当于做了3次独立重复试验,每次试验中取到合格品的概率为45,取到次品的概率为15,在3次试验中2次取到次品,1次取得合格品,所以考虑利用公式求解取到次品的概率解:X 可取的值为1,2,3()415P X ∴==()18825945P X ==⋅= ()11135945P X ==⋅= X ∴的分布列为:123545459EX ∴=⨯+⨯+⨯=10.【2018届吉林省长春市质量监测(三)】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,大量的统计数据表明,参与调查者中关注此问题的约占80%.123 4 5到的频率分布直方图如图所示(1)(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取求在第13组被抽到(3)若从所有参与调查的人中任意选出.【答案】3【解析】试题分析:(1)由频率分布直方图求出(2)设从12人中随机抽取3人,第1组已被抽到1人为3组抽到2(30,1,2,3,求出相应.(3)从所有参与调查的人中任意选出1人,关注“生态文明”的概率为的可能取值为0,1,2,3.所以的分布列为11.【2018届百校联盟TOP20一月联考】质检部门对某工厂甲、乙两个车间生产的12个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过20克的为合格.(1)从甲、乙两车间分别随机抽取2个零件,求甲车间至少一个零件合格且乙车间至少一个零件合格的概率; (2)质检部门从甲车间8个零件中随机抽取4件进行检测,若至少2件合格,检测即可通过,若至少3 件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;(3)若从甲、乙两车间12个零件中随机抽取2个零件,用X 表示乙车间的零件个数,求X 的分布列与数学期望.【答案】(1)5584P =(2)1753(3)分布列见解析()23E X =试题解析:(1)由题意得甲车间的合格零件数为4,乙车间的合格的零件数为2,故所求概率为22422284551184C C P C C ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭.即甲车间至少一个零件合格且乙车间至少一个零件合格的概率为5584. (2)设事件A 表示“2件合格,2件不合格”;事件B 表示“3件合格,1件不合格”;事件C 表示“4件全合格”; 事件D 表示“检测通过”;事件E 表示“检测良好”.则()()()()2231444444444888361615370707070C C C C C PD P A P B P C C C C =++=++=++=, ∴()()()()()11617|535353P C P B P E D P D P D =+=+=.∴随机变量X的分布列为∴()141612 0123333113E X=⨯+⨯+⨯=.点睛:(1)在求某事件的概率时,若事件较为复杂时,可通过求它的对立事件的概率来求解.对于含有“至多”、“至少”等词语的概率问题,一般用对立事件的概率来解较为简单.(2)求概率时,当题目中含有“在……发生的条件下,求……发生的概率”的字样时,一般用条件概率求解,解题时要分清楚谁是条件,然后再利用公式求解.12.为了调查观众对电视剧《风筝》的喜爱程度,某电视台举办了一次现场调查活动.在参加此活动的甲、乙两地大量观众中,各随机抽取了8名观众对该电视剧评分做调查(满分100分),被抽取的观众的评分结果如图所示.(1)从甲地抽取的8名观众和乙地抽取的8名观众中分别各选取一人,在已知两人中至少一人评分不低于90分的条件下,求乙地被选取的观众评分低于90分的概率.(2)从甲地抽取出来的8名观众中选取1人,从乙地抽取出来的8名观众中选取2人去参加代表大会,记选取的3人中评分不低于90.【答案】(1(2)见解析(2)E(X)=34.。