第四章电子设备的减振与缓冲
缓冲间名词解释

缓冲间名词解释1. 什么是缓冲间?缓冲间是一种用于调节不同系统之间压力、速度、温度或其他物理量的设备或空间。
它可以起到缓冲作用,使得系统之间的传递更加平稳和稳定。
在各种工业和科技领域,缓冲间都扮演着重要角色。
2. 缓冲间的作用2.1 缓冲压力缓冲间可以用于缓冲压力的变化。
当液体或气体从一个高压区域流向一个低压区域时,缓冲间可以减缓压力的降低速度,使得系统能够更好地适应压力变化,避免压力冲击对设备和管道的损坏。
2.2 缓冲速度在运动学中,缓冲间可以用于缓冲速度的变化。
例如,当一个机械系统中的运动部件突然停止时,缓冲间可以通过吸收和分散能量,使得速度的变化更加平缓,避免冲击和损坏。
2.3 缓冲温度在热力学中,缓冲间可以用于缓冲温度的变化。
当一个系统的温度发生变化时,缓冲间可以吸收或释放热量,使得温度的变化更加平缓,避免热应力对系统的影响。
2.4 其他作用除了上述作用之外,缓冲间还可以用于缓冲其他物理量的变化,如电流、电压、湿度等。
它们在不同领域具有广泛的应用,如电子设备、化工工艺、制药生产、食品加工等。
3. 缓冲间的结构和原理3.1 结构缓冲间的结构根据具体的应用需求而异,但通常包括以下组成部分:•缓冲器:用于吸收和分散能量或物质的变化,如弹簧、液压缸、气囊等。
•控制系统:用于监测和调节缓冲间的工作状态,如传感器、阀门、控制器等。
•连接管道:用于将需要缓冲的物质或能量引入和排出缓冲间,如进口管道、出口管道等。
3.2 原理缓冲间的工作原理基于能量或物质的吸收和释放。
当外部系统发生变化时,缓冲器会吸收这些变化的能量或物质,并通过控制系统进行调节,使得变化的速度和幅度得到缓解和控制。
当外部系统需要吸收能量或物质时,缓冲器会释放相应的能量或物质,实现平稳的过渡和传递。
4. 缓冲间的应用领域缓冲间在各个领域都有广泛的应用,以下是一些常见的应用领域:4.1 机械工程在机械工程中,缓冲间常用于减震和减振。
例如,汽车的悬挂系统中使用缓冲间来吸收道路颠簸产生的震动,提供更加平稳的乘坐体验。
电子设备的减振与缓冲

电子产品结构工艺
频率比
隔振系数 与频率比 及阻尼比D关系曲线
当<1时,振动系数 >1,表明隔振系统不起减振作用,反而放大了振动干扰。
在这种情况下使用减振器没有好处。
当 =1时,振动系数 为最大,振动力有放大现象,此时系统处于共振状态。 当 = 2时,振动系数 =1,此时振动力等值传递,系统无隔振效果。故 = 2
差
振
振
振
动
动
动
方
方
方
向
向
向
② 调谐元件应有固定制动装置,使调谐元件在振动和冲击时不会自行移 动。
③ 可迅速拆下的元件、部件(如电子管、接插件等)应该用专门固定装 置给予紧固,防止在振动或冲击下自行脱出。下图(a)为固定电子管的 管卡;图(b)为固定磁芯体所使用的压簧。
④ 采用新型高分子轻质材抖封装元件,能对高冲击振动下易损部件进行防护。 ⑤ 应尽可能地使设备小型化。
实训 家用电器的减振设计剖析
一、实训目的
1.了解家用电器的结构及使用性能特点。 2.会分析家用电器整体结构布局在减振缓冲方面的功效。 3.会分析家用电器在减振缓冲方面采取的措施。
二、实训所需器材
1.工具:大、小螺丝刀一字形和十字形各一把;收纳盒一个。 2.器材:两台不同品牌的洗衣机
三、实训内容
1.正确拆装洗衣机。 2.对洗衣机内部的整体布局在减振方面的作用进行分析。 3.对洗衣机内部的具体减振措施进行分析。 4.对不同品牌的洗衣机的减振性能进行分析、比较。
② 被动隔振
动物体的振动得以有效的隔离。隔振对象是振源。
被动隔振:当外界环境传给支承结构以振动时,为减小支承结构的振动传递 到设备上而采取的隔振措施叫被动隔振。
③ 隔振系数
电子设备三防结构与设计

电子设备三防结构与设计电子设备的三防结构和设计是指在电子设备制造中,为了提高设备的防水、防尘和防震能力而采取的一系列措施。
随着电子设备的广泛应用,对设备可靠性和稳定性的要求也越来越高,特别是在恶劣环境条件下的使用,如户外,工业等场合,电子设备必须具备良好的防护能力。
本文将详细介绍电子设备三防结构与设计的相关内容。
首先,防水是电子设备的重要需求之一、电子设备的内部电子元件、线路板和相关连接器等都非常敏感,容易受到水的侵蚀而损坏。
因此,在设计防水结构时,首先需要确保设备的外壳具有良好的密封性能,阻止水分从外部渗入设备内部。
常用的防水结构设计包括采用封闭式外壳和密封胶垫等。
其中,封闭式外壳一般采用金属材料,具有较高的强度和硬度,能够有效地抵抗外界环境的侵蚀。
而密封胶垫则可以在外壳的连接部位和开口处进行填充,形成一层保护膜,防止水分渗入。
其次,防尘是电子设备三防结构的另一个重要方面。
尘埃和微小颗粒的存在会导致设备的正常运行受到干扰,进而影响设备的使用寿命。
因此,在设计防尘结构时,需要考虑设备的内部结构以及外壳的密封性能。
常见的防尘设计包括设置过滤器和空气流道。
过滤器可以阻止尘埃和颗粒物进入设备内部,并且可以定期更换或清洁以保持其防尘效果。
而空气流道的设计则可以通过气流的流动来阻止尘埃的积聚,减少设备内部的尘埃含量。
最后,防震是电子设备三防结构中的另一个重要方面。
在移动设备或运动设备中,由于震动和冲击的存在,设备的电子元件和线路板容易受到损坏。
因此,在设计防震结构时,需要考虑设备的内部固定和缓冲装置的设计。
内部固定可以通过使用阻尼材料或合理安装元件来实现,减少元件在震动或冲击中的位移。
缓冲装置可以通过使用橡胶垫、弹簧等材料来实现,减少外界冲击对设备内部的传递,保护设备的电子元件和线路板。
综上所述,电子设备的三防结构与设计是在电子设备制造中必不可少的一环。
通过合理的防水、防尘和防震设计,可以提高设备的可靠性和稳定性,延长设备的使用寿命。
电路中的缓冲器与驱动器

电路中的缓冲器与驱动器电子设备中的电路元件种类繁多,其中缓冲器与驱动器是两个常见的元件。
它们在电子设备的正常运行中起到了关键的作用。
本文将对电路中的缓冲器和驱动器进行介绍和探讨。
一、缓冲器缓冲器是一种电路元件,用于扩大电路的输出电流能力和减小输出信号的变形。
在电子设备中,信号经过一系列的处理和传输,如放大、滤波等,可能会导致信号的失真和变形。
缓冲器作为一个中间环节,可以在信号传输过程中提供稳定的输出电流和阻抗,从而减小信号的失真,使得信号可以正常地传递和处理。
缓冲器通常由晶体管或场效应晶体管构成,它们具有高输入阻抗和低输出阻抗,能够有效地隔离输入信号和输出负载。
此外,缓冲器还可以对输入信号进行放大或滤波,以满足不同电路的需求。
二、驱动器驱动器是一种电路元件,用于提供足够的电流或功率,驱动其他元件的正常工作。
在电子设备中,不同的元件可能需要不同的电流或功率来实现其功能。
驱动器作为一个接口,可以将控制信号转换为相关元件所需的电流或功率,并将其传递给相关元件,促使其正常地工作。
驱动器通常由运算放大器、数字转换器等元件构成,它们具有较高的增益和输出电流能力,能够提供足够的电流或功率来驱动其他元件。
此外,驱动器还可以对输入信号进行放大、变换或特殊处理,以满足不同元件的工作条件。
三、缓冲器与驱动器的应用缓冲器和驱动器在电子设备中广泛应用于各种领域。
例如,在计算机系统中,缓冲器可以用来扩大总线的电流能力和驱动能力,从而保证数据的快速传输和处理。
在音频系统中,驱动器可以用来提供足够的功率去驱动扬声器,从而实现音频信号的放大和播放。
在通信系统中,缓冲器和驱动器可以用来增强信号的传输能力和扩大通信的范围。
此外,缓冲器和驱动器还可以应用于各种传感器、测量仪器和控制系统等领域,以提供稳定的电流和驱动能力,保证设备的正常工作和性能。
总结:电路中的缓冲器和驱动器是两个常见的电子元件,它们在电子设备中起到了扩大输出能力和提供足够电流或功率的关键作用。
电子设备减震与缓冲1

电子设备减震与缓冲
减震和缓冲基本原理 2.减振原理
(2)隔振系数 图(b)是一质量为m、刚度为K、黏性阻尼系数为c的单自由度振动 系统(主动隔振)。 与图(a)相比,该系统多了一个阻尼器,阻尼器是指发生变形时 能产生能量消耗的装置 物体变形时的能量消耗多少用阻尼系数c(或阻尼比ξ)来表示, c(或ξ)越大,表明该物体变形时的能量消耗越多,反之就越少。
电子设备减震与缓冲
振动与冲击对电子设备的危害 二.振动与冲击对电子设备的危害 由此看出,振动与冲击对电子设备的影响是多方面的, 一般振动会引起元器件或材料的疲劳损坏, 而冲击则会因瞬时加速度很大而造成元器件或材料的 强度破坏。 振动引起的故障约占80%,冲击引起的故障约占20%。
电子设备减震与缓冲
电子设备减震与缓冲
减震和缓冲基本原理 2.减振原理
(2)隔振系数 实际上,振动过程中不可能没有阻尼,即没有能量损失。 如空气阻尼、弹性体变形时的阻尼等,都会引起能量损失。由于 有能量消耗,上述振动会很快停下来,这种可以及时停歇的振动 对电子设备的影响不大。 真正危害电子设备正常工作的是受到外部持续不停的机械作用, 因为这种持续不停的机械作用补充了阻尼消耗的能量,使振动一 直持续。因此,必须采取隔振措施,将这种作用对设备的影响降 到最小。
电子设备减震与缓冲
F0
m
m
K K c K c K
(b)主动隔振
(b)被动隔振
电子设备减震与缓冲
减震和缓冲基本原理 2.减振原理
(2)隔振系数 图(b)中的物体若没有阻尼作用,即阻尼系数c=0,就成为图(a) 的无阻尼单自由度振动 只要碰一下(给一个初始能量),根据能量守恒定理,由于运动过 程中没有能量损失,它将永远上下振动下去。
减震 原理

减震原理
减震器是一种用于减少机械设备振动和冲击的装置,通过吸收、分散或减弱振动和冲击的能量,保护机械设备的安全稳定运行。
减震器的原理包括两个方面:一是利用弹性元件吸收振动能量,二是利用流体介质减小或消散冲击力。
弹性元件是减震器中的重要组成部分。
它可以是弹簧、橡胶等具有一定弹性能力的材料。
当机械设备发生振动时,弹性元件可以通过弹性变形来吸收部分振动能量,使得振动幅度减小。
同时,弹性元件还可以起到缓冲的作用,使振动更加平稳。
流体介质也是减震器中常用的原理之一。
流体介质可以是气体、液体等,在机械设备中起到缓冲、减震、消散冲击力的作用。
当机械设备发生冲击时,流体介质可以通过在其内部流动和压缩来吸收和消散冲击力,减小对机械设备的影响。
减震器在工程领域中有着广泛的应用。
例如,在汽车领域中,减震器被用于降低行驶时车身的振动和冲击,提高乘坐舒适性和操控性能。
在建筑领域中,减震器被用于减少地震震动对建筑物的影响,保护建筑物和人员的安全。
总之,减震器通过利用弹性元件和流体介质的原理,能够减少机械设备的振动和冲击,提高设备的稳定性和安全性。
缓冲电容的作用

缓冲电容的作用缓冲电容,在电子世界里就像一个默默守护的卫士,虽然常常不被人注意,但它的作用却至关重要。
咱先想象一下,你正在参加一场接力赛跑。
电流就好比是接力赛中的运动员,在电路中快速奔跑传递能量。
可是呢,有时候赛道会出现一些小状况,比如突然有个小坑或者障碍物。
这时候缓冲电容就登场啦,它就像赛道旁边随时准备帮忙的助手。
当电流这个运动员跑过来,遇到一些不稳定的情况,像是电压突然出现波动,就好像赛道上突然出现的小坑,缓冲电容就会伸出援手,吸收或者释放能量来维持电压的稳定,确保电流这个运动员能够顺利地跑下去。
你说,如果没有这个助手,电流在不稳定的电压下跑起来得多费劲呀?在音频设备里,缓冲电容的作用就更有趣啦。
我们可以把音频信号想象成一首美妙的歌曲。
你知道吗?如果没有缓冲电容,这首“歌曲”可能就会跑调啦。
当音频信号在电路中传输时,可能会受到其他电子元件的干扰,就好像唱歌的时候有很多杂音来捣乱。
而缓冲电容呢,它就像一个专业的调音师,把那些捣乱的杂音给过滤掉,让音频信号能够流畅地传输,这样我们从音响里听到的音乐才会是那么的动听。
如果没有缓冲电容这个调音师,我们听音乐的时候可能就会被各种噪音所困扰,那听歌还有啥乐趣可言呢?再来看一下在电源电路中的缓冲电容。
电源就好像是一个大水库,给整个电子系统供水,也就是供电。
可是水库的水有时候可能会忽多忽少,不稳定。
这时候缓冲电容就如同水库旁边的一个小蓄水池。
当水库的水(电压)突然变多的时候,小蓄水池(缓冲电容)就会把多出来的水储存起来;而当水库的水突然变少的时候,小蓄水池又会把储存的水释放出来,保证整个供水系统(电路)有一个相对稳定的水压(电压)。
要是没有这个小蓄水池般的缓冲电容,那电子设备可能就会因为电压的不稳定而出现各种各样的问题,就像一个城市如果供水不稳定,居民的生活肯定会受到很大影响一样。
在数字电路中,缓冲电容也有着不可替代的作用。
数字电路就像一个繁忙的工厂,里面有很多机器(逻辑门)在不停地工作。
减振器工作原理

减振器工作原理
减振器是一种设备,用于减少或抑制机械、结构或系统中的振动。
它通过吸收、转换或分散振动能量来实现。
减振器的工作原理依赖于几个基本原理:
1. 质量阻尼:减振器中的质量能够吸收振动的动能,并将其转化为热量或其他形式的能量。
这种转化过程通过摩擦、液体阻力或其他形式的能量耗散来实现。
通过吸收振动能量,减振器可减少或抑制振动的幅度。
2. 弹簧阻尼:减振器中的弹簧可以提供一定的弹性支撑。
当外部作用力引起振动时,弹簧可以变形并产生反作用力。
这种反作用力可以与外部作用力抵消,从而减少振动的幅度。
3. 共振频率抑制:减振器可以通过调节其自身的共振频率,与待减振系统的共振频率形成差异。
当振动频率接近共振频率时,振动幅度会显著增大。
然而,通过减振器的调节,共振效应可以被抑制,使振动幅度保持在可接受的范围内。
4. 能量分散:减振器可以通过将振动能量分散到其他部分或结构中来减少振动幅度。
通过在振动系统中引入额外的质量、刚度或阻尼,能量可以在不同的部分之间转移,从而减少振动的传播和幅度。
综上所述,减振器通过吸收、转换或分散振动能量,以及调节
共振频率等方式来减少机械、结构或系统中的振动。
这些原理的应用使减振器成为有效的工具,用于控制和抑制振动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章电子设备的减振与缓冲4.1振动与冲击对电子设备的危害机械作用的分类电子设备在使用和运输过程中,不可避免地会受到振动、冲击等机械力的作用,具体有以下四种类型。
1.周期性振动这是指机械力的周期性运动对设备产生的振动干扰,并引起设备作周期性往复运动。
表征周期性振动的主要参数有:振动幅度和振动频率。
2.非周期性干扰——碰撞和冲击这是指机械力在作非周期性扰动对设备的作用。
其特点是作用时间短暂,但加速度很大。
根据对设备作用的频繁程度和强度大小,非周期性扰动力又可分为:(1)碰撞设备或元件在运输和使用过程中经常遇到的一种冲击力。
这种冲击作用的特点是次数较多,具有重复性,波形一般是正弦波。
(2)冲击设备或元件在运输和使用过程中遇到的非经常性的、非重复性的冲击力。
其特点是次数较少,不经常遇到但加速度大。
表征碰撞和冲击的参数:波形、峰值加速度、碰撞或冲击的持续时间、碰撞时间、碰撞次数等。
3.离心加速度这是指运载工具作非直线运动时设备受到的加速度。
4.随机振动这是指机械力的无规则运动对设备产生的振动干扰。
随机振动在数学分析上不能用确切的函数来表示,只能用概率和统计的方法来描述其规律。
随机振动主要是外力的随机性引起的,振动与冲击对电子设备的危害上述四种机械作用均会对电子设备造成影响,其中危害最大的是振动与冲击,如果结构设计不当,就会导致电子设备的损坏或无法工作。
它们造成的破坏主要有两种形式,其一是强度破坏:设备在某一激振频率下产生振幅很大的共振,最终振动加速度所引起的应力超过设备所能承受的极限强度而破坏;或者由于冲击所产生的冲击应力超过设备的极限强度而破坏。
其二是疲劳破坏:振动或冲击引起的应力虽远低于材料的强度,但由于长时间振动或多次冲击而产生的应力超过其疲劳极限,使材料发生疲劳损坏。
振动和冲击电子对电子设备造成的危害具体表现在:1.没有附加锁紧装置的接插装置会从插座中跳出来,并碰撞其他元器件而造成破坏。
2.电真空器件的电极变形、短路、折断;或者由于各电极作过多的相对运动而产生噪声,不能正常工作。
3.振动引起弹性元件产生变形,使具有触点的元件(电位器、波段开关、插头座等)产生接触不良或开路。
4.指示灯忽亮忽暗,仪表指针不断抖动(或指针脱落),使观察人员读数不准,视觉疲劳。
5.当零部件的固有频率和激振频率相同时,会产生共振现象。
例如,可变电容器极片共振时,会使电容量发生周期性变化等。
6.安装导线变形及位移,使其相对位置改变,引起电感量和分布电容发生变化,从而使电感电容的耦合发生变化。
7.机壳和基础变形,脆性材料(如玻璃、陶瓷、胶木、聚苯乙烯)断裂。
8.防潮和密封措施受到破坏。
9.锡焊和熔焊处断开,焊锡屑掉落在电路中间而造成短路故障。
10.螺钉、螺母松开甚至脱落,并撞击其它零部件,造成短路和破坏。
有些用来调整电气特性的螺丝受振后会产生偏移。
由此看出,振动与冲击对电子设备的影响是多方面的,一般振动引起的是元器件或材料的疲劳损坏,而冲击则是由于瞬时加速度很大而造成元器件或材料的强度破坏;振动引起的故障约占80%,冲击引起的故障约占20%。
4.2减振和缓冲基本原理为了减少或防止振动与冲击对电子设备的影响,通常采取两种措施:a) 通过材料选用和合理的结构设计,增强设备及元器件的耐振动耐冲击能力;b) 在设备或元器件上安装减振器,通过隔离振动与冲击,有效地减少振动与冲击对电子设备的影响。
隔振的基本原理1.振动系统的组成机械振动是物体受交变力的作用,在某一位置附近作往复运动。
如电动机放在一简支梁上,当电动机旋转时,由于转子的不平衡,质量的惯性力引起电动机产生上下和左右方向的往复运动,当限制其左右运动时,就构成最简单的单自由度自由振动系统,其组成有振动物体m和弹性物体k,故又称为m-k系统。
2.隔振原理隔振就是通过在设备或器件上安装减振装置,隔离或减少它们与外界间的机械振动传递。
(1)主动隔振与被动隔振主动隔振——在振动物体与安装基础之间安装弹性支承即隔振器,减少机器振动力向基础的传递量,使振动物体的振动得以有效的隔离;这种对振动物体采取隔离的措施称为主动隔振。
一般情况下,风机、水泵、压缩机及冲床的隔振都是主动隔振。
被动隔振——在仪器设备与基础之间安装弹性支承即隔振器,以减少基础的振动对仪器设备的影响程度,使仪器设备能正常工作或不受损坏;这种对仪器设备采取隔离的措施,称为被动动隔振。
一般情况下,仪器及精密设备的隔振都是被动隔振。
(2)隔振系数真正危害电子设备正常工作的是受到的外部持续不停的机械作用,因为这种持续不停的机械作用补充了阻尼消耗的能量,使振动一直持续。
因此,必须采取隔振措施,使这种持续不停的机械作用对设备的影响降到最小。
主动隔振系数:设外力F0=sin(ωt)垂直作用在物体M上,通过弹性与阻尼作用使基础同时受到弹簧力及阻尼力,此时物体同样也受到弹簧力及阻尼力,物体按一定的规律运动。
把基础所受到的弹簧力及阻尼力的合力FT与作用在物体上的FO力相比,这个比值η称为隔振系数,用式表示:η=FT/FO隔振系数的含义是:传到基础上的力是原振动力的百分之几。
如果物体直接固定在基础上,那么振动力就全部传到基础上,此时FT=FO,η=1。
所以,只有当η小于1时,才有隔振效果。
隔振系统的隔振系数可由下式计算:η={[1+4ξ2(f/f o)2]/[1-(f/f o)2]2+4ξ2(f/f o)2}0.5被动隔振系数:振动来自基础,其运动用U=U o sin(ωt)表示,也是周期振动。
与主动隔振一样,被动隔振也可用隔振系数η表示其隔振效果,它的含义是被隔离的物体振幅与基础振幅之比(或是振动速度幅值、加速度幅值的比值),用式计算:η=x O/ U O={[1+4ξ2(f/f o)2]/[1-(f/f o)2]2+4ξ2(f/f o)2}0.5()式中x O——物体的垂向振幅(m);U O——基础的垂向振幅(m)。
);式中f――振动力的频率(HZf o――隔振系统的固有频率(HZ);k――隔振器的刚度(N/m);m――物体的质量(kg);g——重力加速度(s2);ξ——减振器的阻尼比(橡胶减振器的阻尼比为~)。
被动隔振系数与积极隔振的振动传递率计算表达式完全一样从η的表达式可以看出,隔振系数η与频率比(f/f o)及阻尼比ξ有关,三者关系如图所示的曲线。
隔振系数η与频率比(f/f o)及阻尼比ξ关系曲线从图可以看出:当f/f o<<1时,隔振系数η=1。
此时振动力变化缓慢,且其几乎等值传递到基础上。
当f/f o =1时,隔振系数η为最大,振动力有放大现象,此时系统处于共振状态;对于不同的阻尼比ξ,曲线明显分开,表明阻尼对共振的影响大,η值随ξ增大而减小,所以,对于启、停频繁的设备,为防止设备在启动或停机过程中经过共振区域时产生过大的共振,减振器选用时应考虑阻尼大一些的。
当f/f o =2时,隔振系数η=1,振动力等值传递,此时系统无隔振效果;当f/f o>2时,隔振系数η<1,振动力减值传递,此时系统有隔振效果,η值可按式计算或从图中的曲线查出。
因此,要使隔振系统有效果,必须使η<1,即必须使频率比f/f o>2。
在电子设备的减振设计中一般取频率比f/f o为~,也就是说要获得满意的隔振效果,应该使隔振支承系统的固有频率为振动力频率的1/~1/。
阻尼的作用在振动传递率曲线上看得很清楚,在共振区内,阻尼可以抑制传递率的幅值,使物体的振幅不至于过大;在非共振区,阻尼反而使传递率增大。
因此,隔振与主动隔振,都应强调以下几点:当f/f o≈1时,发生共振,应力求避免;不论阻尼大小,只有f/f o>2,才有隔振效果;一般情况下,建议把频率比f/f o取为~。
隔振系统中控制振动及其传递主要有三个基本因素:隔振器的刚度k、被隔离物体质量m及系统支承即隔振器的阻尼比ξ。
它们各自的影响简述如下:①刚度k——隔振器的刚度越大,隔振效果越差,反之隔振效果越好。
因为:f0=(k/m)2πk越大,f0越大,f/f o越小,η就越大(在隔振区)隔振效果差;k越小,f0越小,f/f o越大,η就越小(在隔振区)隔振效果好。
因此,就隔振而言,刚度k应尽可能小;必须指出的是,过小的刚度k可能无法承受质量m,就像一个重物将一根弹簧压扁了,无法起到隔振作用,对于一个设计正确的隔振系统,支承的刚度计算既要考虑隔振效果的实现,同时还要兼顾其承载能力。
②质量m——被隔离物体的质量m使支承系统保持相对静止,物体质量越大,在确定振动力的作用下物体振动越小。
同样从式看出,m越大,则f0越小,在隔振区η就越小,隔振效果好。
增大质量还包括增大隔振底座的面积,以增大物体的惯性矩,可减小物体的摇晃,但质量往往是确定的,增加是有限的。
③阻尼比ξ——隔振系统的支承阻尼有以下的作用:在共振区减小共振峰值,抑制共振振幅;但是,在隔振区,随着ξ的增大,η也变大,隔振效果变差。
因此阻尼的作用有利也有弊,设计时应特别注意。
隔冲的基本原理冲击是一种急剧的瞬间作用。
例如飞机的起飞和着陆,火车、汽车的启动与停车,物体的起吊与跌落等都能产生较大的冲击。
在冲击发生时,虽然时间相当短,但作用十分强烈。
冲击作用下,电子设备的零部件的冲击应力超过其最大允许值时将导致设备损坏,有时也会因多次冲击作用形成疲劳积累,使设备发生疲劳破坏。
因此,对冲击的作用也必须进行隔离。
由能量定理可知:当外来冲击能量一定时,若冲击力作用的时间愈长则设备所受的冲击力愈力小,冲击加速度也愈小。
因此若能延长冲击力作用的接触时间,就可减轻电子设备所受冲击作用的影响。
和隔振一样,隔冲同样分为主动隔冲与被动隔冲,电子设备大都属于被动隔冲,在支撑基座与电子设备之间装一减振器进行冲击隔离,当外界冲击力作用在支撑基座上时,由于减振器中的弹性元件和阻尼元件产生变形,吸收能量并延长冲击力作用的接触时间,使传递给设备的冲击力减小了很多,达到缓冲的目的。
因此冲击减振器实际上是一个储能装置。
减振器的刚度越小,阻尼越大,则冲击力的作用接角时间愈长,减振器的变形愈大,设备受到的冲击力也就愈小,缓冲的效果愈好。
所以对一些易损坏的器件,在运输时常用刚度很小的橡皮筋带或钢丝弹簧将器材吊起,使之与支撑基座隔离。
但是,对一般电子设备来说,采用刚度很小的弹性体来缓冲是有困难的,因为刚度很小的弹性体在吸收冲击能量时,要产生相当大的位移,而电子设备的安装条件一般是不允许的。
为了解决这个矛盾,在缓冲时可使用橡胶金属减振器,其受力与变形的关系是非线性,刚度随着受力的增大而增大。
在一般情况下它的刚度较小,但当发生大变形时其刚度会变得很大。
由于阻尼的存在会使系统在变形时消耗能量,因此,在缓冲设计中增大减振器的阻尼,对有效地控制冲击十分有利。
4.3常用减振器的选用减振器的类型减振器的作用是隔离或减小振动及冲击对设备及元件的影响,通过其材料、结构的特点,吸收振动、冲击的能量并缓慢地释放,达到减振缓冲的目的。