第二章 一元函数微分学及其应用综述
一元函数微分学总结

一元函数微分学总结
一元函数微分学是微积分中的一个重要分支,研究的是一元函数的变化率以及相关的性质。
在这篇总结中,我们将介绍一元函数微分学的基本概念和公式,并拓展一些应用和实际问题。
一元函数微分学的基本概念包括导数、微分和微分方程。
导数是函数在某一点的变化率,表示函数曲线在该点的切线斜率。
计算导数的方法有几何法和代数法,其中代数法包括极限、求导法则和链式法则等。
微分是导数的微小变化,表示函数的增量与自变量的增量之间的关系。
微分方程是含有未知函数及其导数的方程,研究的是函数与其导数之间的关系。
在一元函数微分学中,有许多重要的公式和定理。
其中,导数的四则运算规则包括常数法则、幂法则、指数函数法则、对数函数法则等。
另外,还有著名的中值定理,如拉格朗日中值定理、柯西中值定理和罗尔中值定理等,用于分析函数在某一区间内的变化情况。
一元函数微分学的应用十分广泛。
在物理学中,微分学的应用包括速度、加速度、力等的计算,以及运动学和动力学问题的解决。
在经济学和金融学中,微分学的应用包括边际效应、收益曲线和成本曲线的分析,以及最优化问题的求解。
在工程学中,微分学的应用包括电路分析、控制论和信号处理等。
此外,一元函数微分学还可以用于解决
最优化问题、曲线拟合、数据分析和预测等实际问题。
总之,一元函数微分学是微积分的重要组成部分,研究的是一元函数的变化率和相关性质。
通过导数、微分和微分方程等概念和公式的运用,可以解决各种实际问题,并在许多学科领域中发挥重要作用。
一元函数微分学及其应用

下面的关键是求出dy=A x ∆中的A.若函数在一点0x 处可微时,则有(x)(x),y dy A x οο∆=+∆=∆+∆(x)(x),y A x A x x x xοο∆∆∆∆=+=+∆∆∆∆000(x )(x )l i m l i m l i m .x x x y A A A x x x οο∆→∆→∆→∆∆∆⎡⎤=+=+=⎢⎥∆∆∆⎣⎦ 即 '0(x ).A f =反之,若()f x 在0x 处可导,有'00l i m (x ),x y f x∆→∆=∆ 由函数极限与无穷小的关系可得:'0(x ),y f xα∆=+∆其中α是当0x ∆→时的无穷小,所以 因为(x),x αο∆=∆而(),0f x 与x ∆无关,由微分定义可知,函数在0x 处可微,且(),0.f x A = 定理 ()y f x =在0x 处可微的充分必要条件是函数()y fx =在0x 处可导,且()f x 在可 导点0x 处的微分为,(x).dy f x =∆ (2)若()y f x =在区间I 内每一点处都可微,称()y f x =在I 内可微,其微分为,(x).dy f dx = 当(x)f x =时,(x)(x),df dx x x ==∆=∆所以.dx x =∆因此,可以定义自变量x 的微分dx 为其增量x ∆,即.dx x =∆这样便有,(x)dy f dx =或,(x),dy f dx= 可见,导数就是函数的微分dy 与自变量的微分dx 之商,因此,导数也成为“微商”. 2.4.2 微分的几何意义如图2—7所示,设点00(x ,y )M 是曲线y (x)f =上一点,当自变量在0x 处有微小增量x ∆时,得到曲线上另一点00(x ,y ),N x y +∆+∆其中MQ ,x =∆QN =过点M 作曲线的切线MT,它的倾角为α,则QP='0tan (x ),MQ f x α=∆即.dy QP =所以,当自变量有改变量x ∆时,y ∆是曲线y=(x)f 上的对应点的纵坐标的增量,dy 则是曲线的切线上对应点的纵坐标的增量.当||x ∆很小的时候,0.y dy x∆-→∆因此在点M 邻近,可以用切线段来近高等数学 62似代替曲线段.2.4.3 微分公式和法则由可导与可微之间的关系'dy (x)dx,f =参照2.2.4中的公式立即可得微分公式和微分 运算法则.下面将函数和、差、商的微分法则和复合函数的微分法则列出来:1) 函数和、差、积、商的求导法则,由函数的和、差、积、商的求导法则,可推得相应的微分法则.设函数u u(x)=、v v(x)=都可导,则:①d(u v)du dv;±=± ②d(Cu)Cdu =(C 是常数);③(uv)udv vdu;d =+ ④2d()(v 0).u vdu udv v v -=≠ 2) 复合函数的微分法则设y (u),f =u (x)ϕ=都是可导函数,则复合函数[(x)]y f ϕ=的微分应为'''dy {f[(x)]}()dx (u)(x)dx,dy du dx f du dxϕϕ=== 因为'(x)dx du ϕ=,上式可写成'dy (u)f du = (2)(3)式说明,无论函数(u)y f =中的u 是自变量还是中间变量,它的微分表达形式都是dy='(u)f du ,这称作微分形式的不变性.例1 求函数ln tan 5x y =的微分.解:方法一: ln tan 'ln tan '(5)5ln5(lntanx)x x dy dx dx ==2ln tan ln tan sec ln 55ln 55.tan sin cos x x x dx dx x x x== 方法二:由微分形式不变性,可得ln tan ln tan 15ln 5(lntanx)5ln 5(tanx)tan x x dy d d x ==ln tan 2ln tan ln 5ln 55sec 5tan sin cos x xxdx dx x x x==2. 4. 4 利用微分进行近似计算对可导函数(x),f 当自变量在x 处产生微小该变量x ∆,对应的y 有改变,y ∆由微分与倒数的关系可知,'(x)x,y dy f ∆≈=∆即'(x)x,y f ∆≈∆第2章 一元函数微分学及其应用 63或 '(x x)(x)(x)x.f f f +∆≈+∆(4)式和(5)式称为微分近似计算公式.特别地,当x=0时,在(5)式中用x 代替x,∆得当x 较小时,利用(6)式可得几个函数的近似计算公式:①sinx ;x ≈ ②tan ;x x ≈ ③arcsin ;x x ≈ ④arctan ;x x ≈⑤1;x e x ≈+ ⑥ln(x 1);x +≈ ⑦ 1.x n≈+ 下面证明⑦.证:设(x)f =则11'1(x)(1),n f x n -=+ (0)1,f ='1(0),f n = 由公式(6)得 (x)1.x f n≈+ 上面七个公式的几何意义是:在点x=0的较小邻域内,等式两边的两个函数的图像是“吻合”的.例2 计算(1)ln 0.98; (2 (3)'sin 2930;的近似值. 解:(1)设(x)ln(1x),f =+相当于求自变量x=0.02时,函数(x)f 的函数值.由前面结论④可得ln 0.98ln(10.02)0.02.=-≈-(2)设(x)f 相当于求自变量x=0.02时,函数(x)f 的函数值.由前面结论⑤可得0.021 1.0067.3=≈+= (3)设(x)sin(x),f ='(x)cosx,f =由微分近似公式(5)式,可知'sin 2930sin()sin cos ()636066360o πππππ=-≈+- 0.50000.00760.4924.≈-=习题2—41. 求下列各函数的微分:(1) 3y x 3;x =+ (2) 1y x=- (3) y =(4) 2cos ;1x y x =- (5) 1arcsin(2x);2y = (6) arctan(e ).x y =2.求函数y tanx =在x 4π=处,对应0.05x ∆=的微分值.3.利用微分近似公式,求(1) 0cos29; (2) .4.若方程1x y xe =+确定函数(x),y y =求在x 0=处函数的微分.5.设函数(x)f 可导,求函数2y (x )f =的函数的微分dy.高等数学 642. 5 中值定理在本节,我们学习一元函数微分学的三个基本定理:Rolle 定理、Lagrange 中值定理、 Cauchy 中值定理,它们是导数应用的理论基础.2.5.1 Rolle 定理定理1 如果函数(x)f 满足:(1) 在闭区间[a,b]上连续;(2) 在开区间(a,b)内可导;(3) (a)(b);f f =则至少存在点(a,b),ξ∈使'()0f ξ=(见图2—8).证:若(x)f 在[a,b]上恒为常数,显然定理成立.假设(x)f 在闭区间[a,b]上的最大值为M,最小值为m,且M>m,则M 、m 中至少有一个不等于(a)f .不妨设(a),M f ≠由于(a)(b),f f =这说明最大值M 是在区间(a,b)内取得,由介值定理知道存在(a,b)ξ∈使()M.f ξ=分析该点的导数:'0(x)()()lim 0,x f f f x ξξξξ+→+-=≤- '0(x )()()l i m 0,x f f f x ξξξξ-→--=≥- 而(x)f 在ξ可导,应有'''()()(),f f f ξξξ+-==故只有'()0.f ξ=注:(1)定理表明函数图像在开区间(a,b)内至少存在一条水平切线;(2)定理说明在定理条件下方程'(x)0f =在(a,b)内至善有一个根,因此定理也叫做导数方程根的存在定理;(3)定理的三个条件中若有一个不满足,结论就不一定成立.图2—9给出了不满足其中一个条件时定理不存在的情况.例1 对函数32(x)x 4710f x x =+--在[-1,2]上验证Rolle 定理的正确性.解:(1)(2)0f f -==且(x)f 在[-1,2]上连续,在(-1,2)内可导,满足Rolle 定理的三 个条件.计算导数: '2(x)3x 87,f x =+-由于'(1)12,f -=-'(2)21,f =从而''(1)(2)0.f f -<由零点定理知存在(1,2)ξ∈-使'()0.f ξ=第2章 一元函数微分学及其应用 65例2 已知(x)(x 1)(x 2)(x 3)(x 4),f =----利用Rolle 定理讨论'(x)0f =根的 情况.解:(x)f 为多项式函数,在(,)-∞+∞内连续、可导.因为(1)(2)(3)(4)0,f f f f ====由Rolle 定理知'(x)0f =有分别位于区间(1,2)、(2,3)、(3,4)内的三个实根.又由于'(x)f 是一个三个多项式,最多有三个实根,所以它只有这三个根.2.5.2 Lagrange 中值定理Rolle 定理中(a)(b)f f =这个条件是比较特殊的,如果取消这个条件,则由下面的 Lagrange 中值定理.定理2 如果函数(x)f 满足:(1) 在闭区间[a,b]上连续;(2) 在开区间(a,b)内可导,则至少存在一点ξ∈(a,b),使'(b)(a)().f f f b aξ-=-先看一下定理2的几何含义(见图2—10),过连续曲线弧段的两端点(a,f(a)),B(b,f(b))A 作弦AB,其斜率(b)(a),f f k b a-=- 则在(a,b)内至少有一点ξ,过点(,f())ξξ的切线与弦AB 平行.证:引进辅助函数(b)(a)F(x)(x)(x),f f f kx f x b a-=-=-- 则(a)af(b)(a)(b),bf F F b a-==-且(x)F 满足Rolle 定理的另外两个条件,所以至少存在一点 ξ∈(a,b),使''(b)(a)()()0,f f F f b aξξ-=-=-即 '(b)(a)().f f f b aξ-=-注:在Lagrange 中值定理中,若(a)(b),f f =则得Rolle 定理的结论,所以Rolle 定理是Lagrange 中值定理的特殊情况.推论1 若(x)f 在区间I 上可导, '(x)0,f ≡则在I 上(x)f C ≡(C 为常数). 证:在区间I 上任取两点12,,x x 且12x x <,在区间12[,x ]x 上应用Lagrange 中值定理得: 存在12[,x ]x ξ∈使'2121(x )f(x )(),f f x x ξ-=-,但'(x)0,f ≡故12(x )(x ).f f =由12(,)x x 的任意性,可知(x)f 在区间I 上式一个常值函数.推论2 若函数(x),g(x)f 在(a,b)内可导,且对任意(a,b),x ∈有''(x)(x),f g =则。
第二章 一元函数微分学及其应用

x 0 x
x 0
x
L( x) lim
L( x) R( x) C ( x),
4、边际需求(书本65页)
4.2 弹性与弹性分析
弹性函数(书本66页)
若函数
y f (x)在
(a, b)可导,且对
x (a, b), f ( x) 0
则称
dy
Ey
x
边际函数
|Δx|要小得多,因此在点M附近,我们可以用切线段来近似
代替曲线段
书本p73
3.基本微分公式
由函数微分表达式 dy =f'(x)dx
可知
计算导数的微分,就是计算函数的导数,再
乘以自变量的微分。
4.微分四则运算
• = ,=()都可导,C为常数
• 书本p74
个极大值;如果对此领域内任一点x (x不等
于x。),都有f(x)>f(x。),则称f(x。)是函数
f(x)的一个极小值.
定理2.7(可导函数存在的必要条件)
• 设函数f(x)在点x。处导数存在,且在x。处取得极
值,则f'(x。)=0.
定理2.8 (函数极值存在的第一充分条件)
如果函数y= f(x)在x。连续,在x。的两侧附近可导,
• (1)如果f′(x)>0,x∈(a,b),则函数在[a,
b]内单调增加;
• (2)如果f′(x)< 0,x∈(a,b),则函数在[a,
b]内单调减少;
• (3)如果f′(x)=0,x∈(a,b),则函数在[a,
b]内恒为常数,即f(x)=C(C为常数).
• 导数值的大小及f(x)变化率的大小.如果f′(x)大,那么函数值
一元函数微分学的基本原理与应用

一元函数微分学的基本原理与应用微分学是数学中的一个分支,主要研究函数的变化率、极值和曲线的切线等问题。
在微分学中,一元函数是指只有一个自变量的函数。
本文将介绍一元函数微分学的基本原理和其应用。
一、微分的定义和基本原理微分学的基本概念之一是微分的定义。
对于一元函数 f(x),在某一点 x0 处的微分表示为 df(x0) 或简写为 dy,可以定义为 dx 的一个无穷小变化量,即:dy = f'(x0)dx其中,f'(x0) 表示在 x0 处的导数,表示函数在该点的斜率或变化率,dx 表示自变量 x 的无穷小变化量。
微分学的基本原理包括导数和微分的性质。
导数的定义如下:f'(x) = lim [f(x+Δx) - f(x)] / Δx (当Δx 趋近于 0 时)导数可以用来描述函数的斜率,即切线的倾斜程度。
在微分学中,常用的导数表示方式有函数的导函数、差商和极限等形式。
微分的基本性质包括线性性质、乘积法则、商法则和链式法则等。
根据这些性质,可以对各种类型的函数进行微分运算,进而得到函数的导数和微分。
二、应用举例:极值问题和曲线的切线微分学的应用非常广泛,以下是两个常见的应用例子:极值问题和曲线的切线。
1. 极值问题:求解一个函数的最大值和最小值。
通过对函数的微分,可以得到导数为零的点或导数不存在的点,并进行求解。
对于一元函数 f(x),当导数 f'(x) 的值为零或不存在时,函数在该点可能取得极值。
举例来说,若给定函数 f(x) = x^2 - 4x + 3,我们可以求解 f'(x) = 2x - 4,令导数等于零得到 2x - 4 = 0,解得 x = 2。
然后,通过二阶导数的符号判断该点是否是极值点。
若 f''(x) > 0,则 x = 2 是函数的极小值点;若 f''(x) < 0,则 x = 2 是函数的极大值点。
第2章--一元函数微分学

即 y lim f ( x x) f ( x)
x0
xቤተ መጻሕፍቲ ባይዱ
或 f ( x) lim f ( x h) f ( x) .
h0
h
注意: 1. f ( x0 ) f ( x) xx0 .
12
2.导函数(瞬时变化率)是函数平均变化率的逼近函 数.
播放 13
由定义求导数步骤:
(1) 求增量 y f (x x) f (x);
,
解得
x01
1,
x02
1,
从而知过点(0,-1)可作两条直线与 y x2 相切,
其斜率分别为 k1 2, k2 2,
二直线方程分别为 y 1 2x, y 1 2x.
19
四、可导与连续的关系
定理 若函数y=f(x)在点x0 处可导 则它在点x0 处必定连续 .
证明 设函数 f ( x)在点 x0可导,
x1
2 3
x2
2 3
切点为 2, 4 6 3 9
2, 4 6 3 9
所求切线方程为 y 4 6 和 y 4 6
9
9
57
三、复合函数和隐函数的求导法
1、复合函数的求导法则
定理 如果函数u ( x)在点 x0可导 , 而y f (u)
在点u0 ( x0 )可导 , 则复合函数 y f [( x)]在点
★ 若函数y=f(x)在开区间(a,b)内可导,且在左端 点处右可导和右端点处左可导,则称函数f(x)在闭 区间[a,b]内可导。
11
★对于任一x∈ I,都对应着 f (x) 的一个确定的 导数值, 这个函数叫做原来函数f ( x) 的导函数.
记作 y, f ( x), dy 或 df ( x) . dx dx
第二章一元函数微分学及其应用(1)

例4 求函数 f ( x ) a x (a 0, a 1) 的导数. 解
xh x a a (a x ) lim h 0 h h a 1 x a lim h 0 h
a x ln a .
即
(a x ) a x ln a .
( e x ) e x .
5. 导数的几Hale Waihona Puke 意义即更一般地 例如,
( x n ) nx n 1 .
( x ) x 1 .
1
( R )
1 1 1 2 . ( x ) x 2 x 2
( x ) (1) x
1
1 1
1 2. x
例3 设函数 f ( x ) sin x , 求(sin x )及(sin x ) 解
lim y lim [ f ( x 0 )x x ] 0
函数 f ( x )在点 x0 连续 .
注意: 该定理的逆定理不成立. ★ 连续函数不存在导数举例
, x0 x 函数 f ( x) | x | x , x 1
x 0
lim f ( x ) 0, lim f ( x) 0 ,
y
y f ( x)
N T
C
o
M
x0
x
x
导数的概念
dy dx
即
df ( x ) x x0 或 dx
x x0
,
f ( x0 x) f ( x0 ) y f '( x0 ) lim lim x 0 x x 0 x
其它形式
f ( x0 x) f ( x0 ) 如果极限 lim 不存在, 就说函数 x 0 x
一元函数微分学内容概要总结

一元函数微分学内容概要总结
一元函数微分学是微积分的重要内容之一,主要研究函数的变化率、斜率、极值、凹凸性等性质。
以下是一元函数微分学的内容概要总结:
1. 导数与微分,导数是函数在某一点的变化率,表示函数曲线在该点的切线斜率,常用符号表示为f'(x)或者dy/dx。
微分是函数在某一点附近的线性近似,常用符号表示为dy。
2. 函数的求导,通过求导可以得到函数在某一点的导数,可以通过极限的定义或者导数的运算法则进行求导。
3. 导数的应用,导数可以用来求函数的极值,判断函数的增减性和凹凸性,求曲线的渐近线,解决最优化问题等。
4. 微分方程,微分方程是关于未知函数及其导数的方程,是自然科学和工程技术中描述变化规律的重要数学工具。
5. 泰勒公式,泰勒公式是函数在某点附近的多项式逼近公式,可以用来近似计算函数的值。
6. 函数的高阶导数,除了一阶导数外,函数还可以有二阶导数、三阶导数等高阶导数,可以描述函数的曲率、加速度等性质。
7. 微分学与积分学的关系,微分学和积分学是微积分的两大分支,它们之间通过微积分基本定理建立了联系,即导数与原函数的
关系。
以上是一元函数微分学的内容概要总结,涵盖了导数与微分、
函数的求导、导数的应用、微分方程、泰勒公式、高阶导数以及微
分学与积分学的关系等内容。
希望能对你有所帮助。
一元函数微分学及其应用

第二章导数与微分第一节 导数 概念一. 两个引例引例1.引例2.这个重要设有曲线()x f y =,试求曲线上点()()000,M x f x 处切线的斜率.假设y =()f x 在0M 处连续.解:首先要明确一个概念:何谓曲线在0M 处的切线?它应该定义为曲线在0M 点处割线的极限位置,因此切线的斜率就应该是割线的斜率取极限.(作图) 在曲线上0M 的附近任取一点Q ,可作一条割线0M Q ,设()()x f x Q ,,则()()00f x f x yk k x x x∧-∆≈==-∆切割显然当Q 越接近于0M 点,这种近似计算的精确度越高.于是,令()()0000lim lim Q M x x f x f x k k x x →→-==-切割(2)注意:引例1与引例2的实际背景相差很大,但最后要求的量的数学结构却完全相同,将他们在数量关系上的共性抽象出来,就有下面的导数的概念.二.导数的概念:必考,,仍然和连续性一样用极限来定义。
1.定义1第一种:设函数()x f y =在()x U 0内有定义,如果极限()()00limx f x f x x x x →--存在,则称()x f y =在0x 处可导,0x 称为函数()x f 的可导点,且称上述极限值为函数()x f 在0x 处的导数,记为:0|x x dy dx =或0|x x dfdx =;或简记为()0f x '. 2.导数的等价定义第二种:如果记0x x x ∆=-,则定义1可改为:设函数()x f y =在()0U x 内有定义,如果极限()()000limx f x x f x x∆→+∆-∆存在,则称()x f y =在0x 处可导,0x 称为函数()x f 的可导点,且称上述极限值为函数()x f 在0x 处的导数,记为:0|x x dy dx =或0|x x dfdx =;或简记为()0f x '.3.导数的第3种定义:设函数()x f y =在()0U x 内有定义,如果极限()()00limx x f x h f x h→+-存在,则称()x f y =在0x 处可导,0x 称为函数()x f 的可导点,且称上述极限值为函数()x f 在0x 处的导数,记为:0|x x dy dx =或0|x x dfdx =;或简记为()0f x '.注意:(1)导数定义的本质是变化率的极限,至于表现为何种极限形式,这没有本质的区别,我们在使用时可根据需要选择其中的一种.但根据我的经验,定义1 在实际计算时用得教多;而第二种在理论证明时用得教多;最后一种等 价定义则很少用,只在一些考察导数概念的习题中偶尔出现.(2)如果()()00limx f x f x x x x →--不存在,则称函数()x f 在0x 处不可导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 一元函数微分学及其应用知识点拔2.1 导数的概念一、导数的概念1、函数)(x f 在点0x 导数的定义设函数)(x f y =在0x 的某个邻域内有定义,给自变量0x 以增量x ∆,而相应的函数增量为y ∆,若极限x x f x x f x y x x ∆-∆+=∆∆→∆→∆)()(lim lim0000(或写成000)()(limlim 0x x x f x f x y x x x --=∆∆→→∆)存在,则称函数)(x f y =在点0x 可导,并称此极限值为函数)(x f 在0x 点的导数.记作:000),(x x dxdyx x y x f ==''或,且有x x f x x f x f x ∆-∆+='→∆)()(lim)(0000 注释:① 函数在点0x 可导必须满足两个条件:a 、)(x f 必须在点0x 的某个邻域),(00δδ+-x x 内有定义,如:x y =在0=x 不可导,因在0<x 时无定义;b 、极限x yx ∆∆→∆lim必须存在,如:x y =,由于极限xy x ∆∆→∆0lim 不存在,所以x y =在0=x 不可导.② 函数在点0x 可导,不能保证函数在点0x 的邻域内可导.如:⎩⎨⎧=,x x x x f 为无理数为有理数,0,,)(2 在点0=x 处可导,且0)0(='f ,但在0≠x 时它不可导,也就是说,或函数)(x f 的0x 可导,则一定有xx x f x x f x ∆∆--∆+→∆)()(lim000存在,但是若极限xx x f x x f x ∆∆--∆+→∆)()(lim000存在,也不能说)(x f 在0x 点可导,因为它不能保证)(x f 在0x 点有定义.③ 几个常用导数定义的等价形式h x f h x f x f h )()(lim)(0000-+='→;h x f h x f x f h ---='→)()(lim )(0000;h h x f x f x f h )()(lim)(0000--='→;hx f h x f x f h 2)()2(lim )(0000-+='→;h h x f x f x f h 2)2()(lim)(0000-+-='→,一般地有h a x f h a x f x f h ⋅-⋅+='→)()(lim )(0000,ha h a x f x f x f h ⋅-⋅+-='→)()(lim)(0000(a 为常数);其通式为)()())((lim)(0000x u x f x u x f x f h -+='→,其中)(x u 为奇函数.2、函数)(x f 在区间上的导数定义如果函数)(x f y =在区间),(b a 内的某一点都可导,则称函数)(x f y =在区间),(b a 内可导,那么对于区间),(b a 内的任一点x ,都对应于一个确定的函数值)(x f ',这个新的函数称为函数)(x f y =的导函数,简称:导数,记作:)(x f '、y '、dx dy 、dxx df )(, 即xx f x x f x y x f x x ∆-∆+=∆∆='→∆→∆)()(lim lim)(00,其中),(b a x ∈.注释:函数)(x f y =在点0x 处的导数)(0x f '是导函数)(x f '在点0x x =处的函数值,即)()(0x x x f x f ='=',但])([)(00'≠'x f x f .二、导数的几何意义 1、几何意义可导函数)(x f y =在0x 点的导数)(0x f '是曲线)(x f y =在点)(,(00x f x 处的切线斜率. 2、切线方程与法线方程曲线)(x f y =在点)(,(00x f x 处的切线方程为:))((000x x x f y y -'=-; 曲线)(x f y =在点)(,(00x f x 处的法线方程:)()(1000x x x f y y -'-=-.三、左右导数的概念 1、左右导数的定义右导数:000000)()(lim )()(lim )(0x x x f x f x x f x x f x f x x x --=∆-∆+='++→→∆+; 左导数;000000)()(lim )()(lim )(0x x x f x f x x f x x f x f x x x --=∆-∆+='--→→∆-; 2、可导的充要条件定理 )(x f 在0x 可导)()(00x f x f -+'='⇔,即左、右导数存在且相等. 注释:该定理主要用于讨论分段函数在分段点处的导数是否存在. 四、可导与连续的关系定理 如果函数)(x f 在点0x 处可导,则)(x f 在点0x 处连续,反之不成立.注释:① 若函数在某一点连续,但函数在该点不一定可导,如x y =在0=x 连续,但在0=x 不可导,即函数在某点连续是它在该点可导的必要条件.② 函数在点0x 可导,不能得到它在点0x 的某个邻域内连续,如:⎩⎨⎧=,x x x x f 为无理数为有理数,0,,)(2在0=x 可导,且在0=x 连续,但在0≠x 的任何点都不连续.③ 函数在0x 处可导,不能得到它的导函数在0x 点连续,如:⎪⎩⎪⎨⎧=≠=0,0,0,1cos )(2x x xx x f 在0=x 可导,但⎪⎩⎪⎨⎧=≠+='0,00,1sin cos 2)(x x xx x x f 在0=x 不连续. 2.2 一元函数的求导法则一、基本初等函数的求导公式(略)二、导数的四则运算法则定理 设函数)(x u 与)(x v 在点x 处都可导,则(1)v u v u '±'='±)(;(2)v u v u v u '±'='⋅)(,特别地u C Cu '=')(,C 为常数;(3)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛,特别地2v v C v C '-='⎪⎭⎫⎝⎛,其中0≠v . 三、复合函数的求导法则定理 若函数)(x u ϕ=在x 点可导,而)(u f y =在对应的点u 处可导,则复合函数)]([x f y ϕ=在点x 可导,且有dxdudu dy dx dy ⋅= 或 )()]([)(x x f u u f y x x ϕϕ'⋅'='⋅'='. 四、反函数的求导法则定理 若函数)(y x ϕ=在某一区间内单调且可导,且0)(≠'y ϕ,则它的反函数)(x f y =在对应的区间上也可导,且有)(1)(y x f ϕ'=' 或dydx dx dy 1=. 注释:① 只有满足求导法则的条件时,才能使用求导法则.② 函数的和、差、积、商、复合函数是可导的,不能保证各自是可导的. 如:⎩⎨⎧=为无理数为有理数x x x f ,1,0)(,⎩⎨⎧=为无理数为有理数x x x g ,0,1)(,因1)()(=+x g x f ,0)()(=⋅x g x f ,0)]([=x g f ,1)]([=x f g 在任意点都是可导的,但)(x f 及)(x g 在任一点都不可导.2.3 高阶导数一、高阶导数的概念 1、二阶导数的定义若函数)(x f y =的导数)(x f '对自变量x 仍可导,则称)(x f '对x 的导数为函数)(x f y =的二阶导数,记作:)(x f ''、y ''、22dx y d 或22xfd .2、高阶导数定义二阶及其以上阶的导数叫高阶导数,一般地)()1(x fn -的导数,称为)(x f 的n 阶导数,记作:)()(x fn 、)(n y、nn dxy d 或n n dx f d ,即[]'=-)()()1()(x f x f n n (4≥n ). 3、高阶导数的运算法则 (1))()()()(n n n u u υυ±=± (2)莱布尼兹公式)0()()1(1)()0(0)(0)()()(v u C v u C v u C v u C uv n n n n n n n k n nk k k n n ⋅++⋅'+⋅==--=∑ ,其中u u =)0(,v v =)0(.二、几个常用函数的高阶导数!)()(n x n n =,)()1()1()()(n m x n m m m x n m n m ≥+--=- ,0)()(=n m x (正整数n m <), n x n x a a a )(ln )()(=,ax n n ax e a e =)()(,x n n x e e ---=)1()()(,x n x e e =)()(,)2sin()(sin )(πn x x n +=,)2cos()(cos )(πn x x n +=,nn n xn x )!1()1()(ln 1)(--=-, 1)()(!)1(1++-=⎪⎭⎫⎝⎛+n n n n b ax a n b ax ,1)()(!)1(1++-=⎪⎭⎫⎝⎛+n n n a x n b x ,1)(!)1(!+-=⎪⎭⎫⎝⎛n n n xn x .2.4 隐函数及由参数方程所确定的函数的导数一、隐函数的导数求隐函数的导数一般有以下三种方法: 1、公式法设方程0),(=y x F 决定了y 是x 的函数,则),(),(y x F y x F dx dyy x-=. 2、利用一阶微分形式的不变性方程两边同时微分,可得含有dx 、dy 的一个方程,从中求出微商dxdy即可. 3、利用复合函数的求导法则第一步:方程两边同时对x 求导,当遇到y 的表达式时,把y 看成是x 的函数(即先对y 求导,再乘以y 对x 的导数y '),可得到一个含有x 、y 、y '的方程;第二步:从上述方程中解出y '即可. 二、由参数方程所确定的函数的导数 1、一阶导数设⎩⎨⎧==)()(t y t x ψϕ(βα≤≤t ),)(t ϕ和)(t ψ都可导且0)(≠'t ϕ,则)()(t t dx dy ϕψ''=. 2、高阶导数:)(1][)1(t y dxy d t n nn ϕ'⋅'=-(2≥n ). 三、幂指函数的导数设幂指函数)()]([x v x u y =(其中0)(>x u ,1)(≠x u ),则幂指函数的求导公式为]ln [)]()()()(ln )([)(][])([)()(ln )()(u uvu v u x u x u x v x u x v x u e x u y v x v x u x v x v ⋅+'⋅='⋅+'⋅='=='. 2.5 函数的微分一、微分的概念 1、微分的定义设函数)(x f y =在0x 点的某个邻域内有定义,若函数的改变量y ∆可以表示为自变量增量x ∆的线性函数x ∆⋅A (其中A 是与0x 有关,而与x ∆无关的常数)与一个比x ∆高阶无穷小)(x o ∆之和,即)(x o x y ∆+∆⋅A =∆,则称函数)(x f 在0x 处可微,其中x ∆⋅A 称为函数)(x f 在0x 处的微分,记作:x A dyx x ∆⋅==0.注释:(1)函数)(x f 在点0x 可微必须满足两个条件:a 、函数)(x f 在0x 的某个邻域内必须有定义;b 、等式)(x o x y ∆+∆⋅A =∆成立.(2)若函数)(x f 在点0x 处可微,则dx x f dyx x )(00'==(由于x x x dx ∆=∆⋅'=)().2、可微的充要条件定理 )(x f 在0x 点可微⇔)(x f 在0x 可导.3、若函数)(x f 在区间I 上的任一点x 都可微,则称函数)(x f 为I 上的可微函数且有dx x f dy )('=.二、复合函数的微分法则定理 如果函数)(u f y =可微,函数)(x u u =也可微,则复合函数)]([x u f y =的微分为dx x u u f dy )()('⋅'=,也可以写成du u f dy )('=.2.6 微分中值定理一、罗尔(Rolle )中值定理定理(罗尔(Rolle )定理) 设函数)(x f 满足条件: (1)函数)(x f 在闭区间[]b a ,上连续; (2)函数)(x f 在开区间),(b a 内可导; (3))()(b f a f =,则至少存在一点),(b a ∈ξ,使得0)(='ξf .注释:罗尔中值定理可用来证明方程在某个范围内至有一个实根. 二、拉格朗日(Lagrange )中值定理定理(拉格朗日(Lagrange )定理) 设函数)(x f 满足条件: (1)函数)(x f 在[]b a ,上连续; (2)函数)(x f 在),(b a 内可导, 则至少存在一点),(b a ∈ξ,使得()ab a f b f f --=')()(ξ或())()()(a b f a f b f -'=-ξ.推论1 如果函数)(x f y =在区间),(b a 内的导数恒等于零,即0)(≡'x f ,则C x f ≡)((常数).推论2 如果函数)(x f 与)(x g 在区间),(b a 上的导数恒相等,即)()(x g x f '≡',则)(x f 与)(x g 只相差一个常数C ,即C x g x f +=)()((C 为常数).三、柯西中值定理定理(柯西(Cauchy )中值定理) 设函数)(x f 和)(x g 满足 (1)函数)(x f ,)(x g 在闭区间[]b a ,上连续;(2)函数)(x f ,)(x g 在开区间),(b a 内可导,且0)(≠'x g ,)()(b g a g ≠, 则至少存在一点),(b a ∈ξ,使得)()()()()()(ξξg f a g b g a f b f ''=--. 注释:① 柯西中值定理是拉格朗日中值定理的推广,即当x x g =)(时,Cauchy 中值定理就变成了拉格朗日中值定理.②Lagrange 中值定理是Rolle 中值定理的推广,即当)()(b f a f =时,Lagrange 中值定理就成了Rolle 中值定理.③在数学理论上Lagrange 中值定理最重要,有时也称为微分学基本定理,而Rolle 中值定理也看作是Lagrange 中值定理的预备定理,Cauchy 中值定理虽然更广,但使用不多,在实际应用中,使用Rolle 中值定理的最多,其次是Lagrange 定理,而使用Cauchy 中值定理的较少.2.7 函数的单调性与极值一、函数单调性的判定方法设函数)(x f 在[]b a ,上连续,在),(b a 内可导,如果在),(b a 内有0)(>'x f (或0)(<'x f ),则称)(x f 在[]b a ,上是严格单调增加的(或严格单调减少的).注释:① 若在),(b a 内有0)(>'x f (或0)(<'x f ),它是)(x f 在[]b a ,上严格单调增加(或严格单调减少)的充分条件,而不是必要条件,如:3x y =在(+∞∞-,)上单调增加,但032≥='x y .② 对于函数)(x f ,若0)(0>'x f (或0)(0<'x f ),不能得到)(x f 在0x 点的某邻域内单调增加(或单调减少).如:⎪⎩⎪⎨⎧=≠+=0,00,1cos )(2x x xx x x f 01)0(>='f ,但)(x f 在0=x 的任一邻域内不单调.③在满足判别法的条件时,函数不仅在开区间),(b a 内单调,而且在闭区间[]b a ,上也单调. 二、函数的极值 1、函数极值的概念定义 设函数)(x f 在点0x 的某个邻域内有定义,若对于该邻域内任何异于0x 的x 都有)()(0x f x f <(或)()(0x f x f >),则称)(0x f 是)(x f 的一个极大值(或极小值),而称0x 为极大值(极小值)点,极大值与极小值统称为极值,极大值点与极小值点统称极值点.注释:① 函数的极大(小)值只是局部性的概念,它不一定是全局性的最大(小)值. ② 根据极值的定义知,函数在所定义的区间端点处一定不取得极值,即极值点一定在区间的内部取得.2、极值存在的必要条件定理 若函数)(x f 在点),(0b a x ∈取得极值,则0)(0='x f 或)(x f 在0x 点不可导. 注释:① 使0)(0='x f 的点称为)(x f 的驻点.② 极值点不一定是驻点,如:x y =,0=x 是它的极小值点,但不是驻点,如果函数是可导的,则极值点一定是驻点.③ 驻点也不一定是极值点,如:3x y =,0=x 是它的驻点,但函数在0=x 不取得极值.3、极值存在的充分条件 (1)极值存在的第一充分条件定理 设)(x f 在0x 的某去心邻域内可导,且0)(0='x f 或)(0x f '不存在,但)(x f 在点0x 处连续,如果在该邻域内(1)当0x x <时,有0)(>'x f ,而当0x x >时,有0)(<'x f ,则)(x f 在0x x =点取得极大值;(2)当0x x <时,有0)(<'x f ,而当0x x >时,有0)(>'x f ,则)(x f 在0x x =点取得极小值;(3)若当0x x <或0x x >时,)(x f '不改变符号,则)(x f 在0x 点不取得极值. 注释:求连续函数极值的步骤为 (1)确定函数的定义域;(2)求)(x f '并令0)(='x f ,进而求出函数)(x f 的所有驻点和)(x f '不存在的点; (3)然后判定)(x f '在上述各点左右两侧的符号,若左正右负,则该点是极大值点,若左负右正,则该点是极小值点,若两侧)(x f '的符号相同,则该点不是极值点.(2)极值存在的第二充分条件定理 设函数)(x f 在点0x 具有二阶导数,且0)(0='x f ,0)(0≠''x f ,若0)(0<''x f ,则)(x f 在0x 点取极大值;若0)(0>''x f ,则)(x f 在0x 取极小值.(3)极值存在的第三充分条件定理 设)(x f 在点0x 的某邻域内存在直到1-n 阶导函数,而在点0x 存在n 阶导数,且0)(0)(=x f k (1,,2,1-=n k ),0)(0)(≠x f n ,则 (1)当n 为偶数时,)(x f 在点0x 取得极值,且当0)(0)(<x f n 时取极大值;当0)(0)(>x f n 时取最小值.(2)当n 为奇数时,)(x f 在点0x 不取得极值.注释:① 若)(x f 在点0x 的某邻域内连续,且在0x 的左侧单调增加,右侧单调减少,则它在0x 点必取得极大值,但反之不一定成立.如:⎪⎩⎪⎨⎧=≠+-=0,20),1sin 1(2)(22x x xx x f 在0=x 取得极大值,但它在0=x 的任一邻域内不单调.② 若0)(0='x f ,0)(0≠''x f ,则)(x f 在0x 点必取得极值,但0)(0=''x f 时,函数)(x f 在0x 处不一定取得极值,如:4x y =在0=x 处取极小值,而5x y =在0=x 不取极值.三、函数最值的求法(1)闭区间上连续函数的最值求法比较函数在该区间内的驻点、导数不存在的点以及区间端点处的函数值的大小,即可求出函数的最大值与最小值.(2)开区间上连续函数的最值求法若函数在开区间内连续、可导且有唯一驻点或不可导点,并在该点处取得极大(小)值,则此极大(小)值就是函数在该区间内的最大(小)值.(3)实际问题中的最值求法先建立目标函数)(x f y =并确定其定义域,如果函数在定义域内只有一个驻点或不可导点,并且知道该问题一定有最值,则函数在该点一定取得最值.注释:函数的最大(小)值,不一定是它的极大(小)值. 如:⎪⎩⎪⎨⎧≤≤-<<≤≤=32,321,110,)(x x x x x x f 在区间[]3,0上的最大值为1,但它不是函数的极大值.2.8 曲线的凹凸性及曲线的渐近线一、曲线凹凸性的概念及判别法 1、曲线凹凸性的定义设)(x f 在区间I 上连续,若对I 上的任意两点1x ,2x ,恒有2)()(22121x f x f x x f +≤⎪⎭⎫⎝⎛+ (或2)()(22121x f x f x x f +≥⎪⎭⎫⎝⎛+),则称曲线)(x f y =在区间I 上是凹(凸)的. 2、曲线凹凸性的判别法定理 设函数)(x f 在[]b a ,上连续,在),(b a 上二阶可导,若在),(b a 内有0)(<''x f (或0)(>''x f ),则称曲线)(x f y =在[]b a ,上是凸(凹)的.注释:此方法是判定曲线)(x f y =严格凸(或严格凹)的充分而非必要条件,即当曲线在区间I 上是严格凸(或严格凹)时,不一定有0)(<''x f (或0)(>''x f ). 如:4x y =在(+∞∞-,)上的图形是凹的,但0122≥=''x y .3、拐点的概念及其求法 (1)定义连续曲线上凹弧与凸弧的分界点叫曲线的拐点. (2)拐点的求法方法一:设)(x f 在0x 点连续,若0)(=''x f 或)(x f ''不存在的点0x ,则当)(x f ''在点0x 的两侧异号时,称点))(,(00x f x 是曲线)(x f y =的拐点;而当)(x f ''在点0x 的两侧同号时,点))(,(00x f x 不是曲线的拐点.方法二:设)(x f 在点0x 的邻域内二阶可导,在点0x 处三阶可导,且0)(0=''x f ,0)(0≠'''x f ,则0x 为曲线的拐点.二、曲线渐近线的求法水平渐近线:若b x f x =∞→)(lim (或b x f x =+∞→)(lim 或b x f x =-∞→)(lim )时,则直线b y =是曲线)(x f y =的一条水平渐近线;垂直渐近线:若∞=→)(lim 0x f x x (或∞=+→)(lim 0x f x x 或∞=-→)(lim 0x f x x ),则直线0x x =是曲线)(x f y =的垂直渐近线;斜渐近线:若k xx f x =∞→)(lim,且[]b kx x f x =-∞→)(lim ,则直线b kx y +=是曲线的一条斜渐近线.注释:① 当∞=∞=∞=-∞→+∞→∞→)(lim ,)(lim ,)(lim x f x f x f x x x 至少有一个成立时,曲线)(x f y =才可能有斜渐近线.② 一般情况下,当)(lim x f x ∞→是常数或无穷大之一时,水平渐近线与斜渐近线在同一图象中不能共存.2.9 函数不等式的证明方法、方程根的判定方法和辅助函数的构造方法一、函数不等式的常用证明方法函数不等式的证明,可以利用函数的单调性、微分中值定理、最值、凸凹性、导数定义等方法证明不等式.二、方程根的存在性判定方法讨论方程0)(=x f 根的存在性与根的个数问题,主要依据函数的性态(连续性、单调性、极值、凸凹性等)来解决.1、证明方程0)(=x f 至少有一个(或几个)实根的方法 方法一:利用零点定理证明;方法二:利用罗尔定理证明,这时方程0)(=x f 应改写为0)(='x F ;方法三:当证明方程0)(=x f 在某个区间内至少有n 个根时,需证明在该区间内的n 个子区间上分别至少有一个实根.2、证明方程0)(=x f 仅有一个(或n 个)实根的方法 (1)证明方程0)(=x f 仅有一个实根的方法首先根据零点定理或罗尔定理证明方程存在实根,然后利用)(x f 的单调性证明最多有一个实根,从而仅有一个实根.(2)证明方程仅有n 个根的方法首先求)(x f ',从而求得驻点和不可导的点,这些点把定义域为n 个子区间;然后讨论函数)(x f 在各个子区间上的单调性,并求出)(x f 的极值或最值;然后根据极值点与x 轴的相对位置,以及函数伸向无穷远处的情况,借助零点定理可得n 个根的存在性;最后结合各子区间上的单调性,说明方程仅有n 个根.三、构造辅助函数的重要方法——凑导法先将中值等式中的ξ变为x ,得0)(=x G ,再将)(x G 凑成某个函数)(x F 的导数,即G'=,则函数)(xF就是要构造的辅助函数,现列表如下:)x(F)(x。