第39课时:第五章 平面向量——平面向量的坐标运算

合集下载

平面向量的坐标运算

平面向量的坐标运算

别业岁月悠长,有暗香盈袖。

冗长了日与夜,空掷了乐与悲。

遂撰文三两卷,遣尽浮光,以飨后学。

谨祝诸位:学业有成,前程似锦。

编者:李健,匠人,喜于斗室伏案两三卷,愁与身在红尘浪荡无涯。

写过一些铅字附庸了世态,跑过几个码头了断了青春。

如今归去来兮,只为了挥洒一方三尺讲台。

第2讲 平面向量基本定理及坐标表示一.知识梳理 1.平面向量基本定理如果12,e e 是平面内两个不共线的向量,那么对于这个平面内的任意向量a ,有且只有一对实数12,λλ,使1122a e e λλ=+.其中不共线的向量12,e e 叫做表示这一平面内所有向量的一组基底.2.平面向量的坐标运算 (1)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量坐标. ②设1122(,),(,)A x y B x y ,则2121(,)AB x x y y =--;||(AB x =(2)向量的加法、减法、数乘及向量的模:设1122(,),(,)a x y b x y ==1212(,)a b x x y y +=++;1212(,)a b x x y y -=--;11(,)a x y λλλ=;21||a x y =+.3.平面向量共线的坐标表示设1122(,),(,)a x y b x y ==,其中0b ≠,则12210a b x y x y ⇔-=∥. 二.要点整合 1.辨明三个易误点(1)注意能作为基底的两个向量必须是不共线的.(2)要注意运用两个向量,a b 共线坐标表示的充要条件12210x y x y -=.(3)要注意区分点的坐标与向量的坐标的不同,尽管形式上一样,但意义完全不同,向量坐标中既有大小的信息也有方向的信息.2.有关平面向量的两类本质(1)平面向量基本定理的本质是运用向量加法的平行四边形法则,将向量进行分解. (2)向量的坐标表示的本质是向量的代数表示,其中坐标运算法则是运算的关键. 三.典例精析1.平面向量基本定理及其应用【例题1】(1)在梯形ABCD 中,,2,,A B C D A B C D M N=∥分别是,C D B C 的中点,若AB AM AN λμ=+,则λμ+=( )1.5A 2.5B 3.5C 4.5D (2)在ABC 中,P 是AB 上一点,且21,33CP CA CB Q =+是BC 的中点,AQ 和CP 的交点为M ,又CM tCP =,则t = . 【变式1】(1)如图,在ABC 中,P 为线段AB 上的一点,OP xOA yOB =+,且2BP PA =,则( )21.,33A x y == 12.,33B x y == 13.,44C x y == 31.,44D x y ==(2)如图,在ABC 中,13AN NC =,P 是BN 上一点,若211AP mAB AC =+,则m = .2.平面向量的坐标运算【例题2】(1)已知(2,4),(3,1),(3,4)A B C ----.设,,AB a BC b CA c ===,且3,2C M c C N b==-. (Ⅰ)求33a b c +-;(Ⅱ)求满足a mb nc =+的实数,m n ; (Ⅲ)求,M N 的坐标及向量MN 的坐标.(2)给定两个长度为1的平面向量OA 和OB ,它们的夹角为23π.如图,点C 在以O 为圆心的AB 上运动.若(,)OC xOA yOB x y R =+∈,则x y +的最大值为 .【变式2】(1)已知O 为坐标原点,点C 是线段AB 上一点,且(1,1),(2,3)A C ,||2||BC AC =,则向量OB 的坐标是 .(2)(2014福建质检)如图,设向量(3,1),(1,3)OA OB ==,若OC =OA λOB μ+,且1λμ≥≥,则用阴影表示C 点所有可能的位置区域正确的是( )(3)已知||||2,a b a b ==⊥,若向量c 满足||2c a b --=,则||c 的取值范围是 .3.平面向量共线的坐标表示)两向量共线的充要条件的作用【例题3】(1)已知向量1(8,),(,1)2a xb x ==,其中0x >,若(2)(2)a b a b -+∥,则x 的值为( ).4A .8B .0C .2D(2)已知点(4,0),(4,4),(2,6)A B C ,则AC 与OB 的交点P 的坐标为 . (3)(2014广东佛山)设(1,2),(,1),(,0)OA OB a OC b =-=-=-,0a >,0,b O >为坐标原点,若,,A B C 三点共线,则12a b+的最小值为( ).2A .4B .6C .8D 【变式3】(1)已知向量(1,3),(2,1),(1,2)OA OB OC k k =-=-=+-,若,,A B C 三点不能构成三角形,则实数k 应满足的条件是( ).2A k =- 1.2B k =.1C k = .1D k =- (2)(2015河北唐山)设向量,a b 满足||25,(2,1)a b ==,且a 与b 的方向相反,则a 的坐标为 .(3)(2014陕西)设02πθ<<,向量(sin 2,cos ),(cos ,1)a b θθθ==,若a b ∥,则tan θ= .四.针对训练.A 组 基础训练1.如图,在平行四边形ABCD 中,E 为DC 边的中点,且,AB a AD b ==,则BE =( )1.2A b a -1.2B b a + 1.2C a b + 1.2D a b - 2.(2015宁夏质检)如图,设O 为平行四边形ABCD 两对角线的交点,给出下列向量组:①AD 与AB ;②DA 与BC ;③CA 与DC ;④OD 与OB .其中可作为该平面内其他向量的基底的是( ).A ①② .B ①③ .C ①④ .D ③④3.已知向量3,1),(0,2)a b =-=(.若实数k 与向量c 满足2a b kc +=,则c 可以是( ).,1)A - .(3)B - .(,1)C - .(3)D - 4.已知点(1,3),(4,1)A B -,则与向量AB 同方向的单位向量是( )34.(,)55A - 43.(,)55B - 34.(,)55C - 43.(,)55D -5.(2015吉林长春)如图,设向量12,OA e OB e ==,若12,e e 不共线,且点P 在线段AB 上,||:||2AP PB =,则OP =( )1212.33A e e -1221.33B e e + 1212.33C e e + 1221.33D e e -6.已知ABC 中,点D 在BC 边上,且2,s CD DB CD r AB AC ==+,则r s +的值是( ) 2.3A 4.3B .3C - .0D 7.若三点(1,5),(,2),(2,1)A B a C ----共线,则实数a 的取值范围是 .8.在ABC 中,点P 在BC 上,且2BP PC =,点Q 是AC 中点,若(4,3)PA =,(1,5)PQ =,则BC = .9.(2015江西九江){|(1,1)(1,2)}P a a m m R ==-+∈,{|(1,2)Q b b ==-(2,3),}n n R +∈是两个向量集合,则PQ 等于 .10.ABC 中,内角,,A B C 所对的边分别为,,a b c ,若(,)p a c b =+,(,)q b a c a =--,且p q ∥,则角C = . 11.已知(1,0),(2,1)a b ==.(Ⅰ)当k 为何值时,ka b -与2a b +共线;(Ⅱ)若23,AB a b BC a mb =+=+且,,A B C 三点共线,求m 的值.12.(2015山东莱芜)如图,已知ABC 中,点C 是以A 为中点的点B 的对称点,D 将OB分为2:1两部分的一个内分点,DC 和OA 交于点E ,设OA a =,OB b =. (Ⅰ)用a 和b 表示向量,OC DC ; (Ⅱ)若OE OA λ=,求实数λ的值..B 组 能力提升1.在平面直角坐标系中,点(0,0),(6,8)O P ,将向量OP 绕点O 按逆时针方向旋转34π后得到向量OQ ,则Q 点的坐标是( ).(2)A - .(2)B - .(,2)C -- .(,2)D - 2.已知直线x y a +=与圆224x y +=交于,A B 两点,且||OA OB +=||OA OB -,其中O 为坐标原点,则实数a 的值为( ).2A .2B - .2C 或2- D3.如图,在四边形,,,A B C D 中,1AB BC CD ===,且90B ∠=,BCD ∠=135,记向量,AB a AC b ==,则AD =( )2(1)2b -+2.(1)2B b ++ 2.(1)2C b +-2(1)2b +-4.(2014湖南)在平面直角坐标系中,O 为原点,(1,0),(3,0)A B C -,动点D 满足||1CD =,则||OA OB OD ++的取值范围是( ).[4,6]A .191]B .[7]C .71]D 5.在平面直角坐标系中,O 为坐标原点,已知两点(3,1),(1,3)A B -,若点C 满足(,)OC OA OB R αβαβ=+∈且1αβ+=,则点C 的轨迹方程为 .6.设向量1122(,),(,)a x y b x y ==,定义一种向量积1122(,)a b a b a b ⊗=,已知向量1(2,),(,0)23m b π==,点(,)P x y 在sin y x =图像上运动.Q 是函数()y f x =图像上的点,且满足OQ m OP n =⊗+(其中O 为坐标原点),则函数()y f x =的值域是 .7.如图,,,A B C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外一点D ,若OC mOA nOB =+,则m n +的取值范围是 .8.如图,设,Ox Oy 为平面内相交成60角的两条数轴,12,e e 分别是x 轴、y 轴正方向同方向的单位向量,若12OP xe ye =+,则把有序实数对(,)x y 叫做向量OP 在坐标系xOy 中的坐标.若OP 的坐标为(1,1). (Ⅰ)求||OP ;(Ⅱ)过点P 作直线l 分别与x 轴、y 轴正方向交于点,A B ,试确定,A B 的位置,使AOB 面积最小,并求出最小值.。

平面向量的坐标运算(说课稿)

平面向量的坐标运算(说课稿)

平面向量的坐标运算(说课稿)北师大附中荣红莉一、【教材的地位和作用】本节内容在教材中有着承上启下的作用,它是在学生对平面向量的基本定理有了充分的认识和正确的应用后产生的,同时也为下一节定比分点坐标公式和中点坐标公式的推导奠定了基础;向量用坐标表示后,对立体几何教材的改革也有着深远的意义,可使空间结构系统地代数化,把空间形式的研究从“定性”推到“定量”的深度。

引入坐标运算之后使学生形成了完整的知识体系(向量的几何表示和向量的坐标表示),为用“数”的运算解决“形”的问题搭起了桥梁。

二、【学习目标】根据教学大纲的要求以及学生的实际知识水平,以期达到以下的目的:1.知识方面:理解平面向量的坐标表示的意义;能熟练地运用坐标形式进行运算。

2.能力方面:数形结合的思想和转化的思想三、【教学重点和难点】理解平面向量坐标化的意义是教学的难点;平面向量的坐标运算则是重点。

我主要是采用启发引导式,并辅助适量的题组练习来帮助学生突破难点,强化重点。

四、【教法和学法】本节课尝试一种全新的教学模式,以建构主义理论为指导,教师在本节课中起的根本作用就是“为学生的学习创造一种良好的学习环境”,结合本节课是新授课的特点,我主要从以下几个方面做准备:(1)提供新知识产生的铺垫知识(2)模拟新知识产生过程中的细节和状态,启发引导学生主动建构(3)创设新知识思维发展的前景(4)通过“学习论坛时间”组织学生的合作学习、讨论学习、交流学习(5)通过“老师信箱时间”指导解答学生的疑难问题(6)通过“深化拓展区”培养学生的创新意识和发现能力。

整个过程学生始终处于交互式的学习环境中,让学生用自己的活动对已有的数学知识建构起自己的理解;让学生有了亲身参与的可能并且这种主动参与就为学生的主动性、积极性的发挥创造了很好的条件,真正实现了“学生是学习的主体”这一理念。

五、【学习过程】1.提供新知识产生的理论基础课堂教学论认为:要使教学过程最优化,首先要把已学的材料与学生已有的信息联系起来,使学生在学习新的材料时有适当的知识冗余。

平面向量的直角坐标运算

平面向量的直角坐标运算

-2
与向A量 有 B 何关相系 同 ?
-3
4
(一)平面向量坐4 标的概念
3
a
a2 j
2
r
B
a
a2 j
a1i
1
j
A
ar 1 i
C
向量 a 表示平面内任意一向量
-2
2
4
6
Oi
-1
a A A B C C a B 1 i a 2j
-2
同一个向量的坐标是唯一的,与位置无关。
-3
Page ▪ 5
5
r 一般地,在平面直角坐标系中,对任意向量 a ,都有且只有
a
b
a1b1
a2b2.
aa∥b
b
a
b
0
a1b1
a2b2
0.
( 2 ) 若 A (x 1 ,y 1 ),B (x 2 ,y 2 ), u A u B u r (x 2 x 1 ,y 2y 1 )
两点间距离公式
Page ▪ 33
33
a a2 a a (计算向量的长度)
4/21/2020
练习一:单位向量i 、j 分别与x 轴、y 轴方向相同,求
① i i __1___ ② i j __0___ ③ j i ___0___ ④ j j __1___
解: i i i i cos i ,i
11 cos0
Page ▪ 1
1
1.向量加法:
B
C
OAACOC
2.向量减法:
OAOB OC O
A
B
OAOBBA
3. 数乘向量:
OBOAAB
A
O
如 a 与 b 果 b 0 平行,本 则定 由理 平

平面向量的坐标运算

平面向量的坐标运算

返回菜单
高三一轮总复习· 文科数学
[解析]
→ → → → 由AB=2DC知,AB∥DC 且|AB|=2|DC|,
→ → 从而|BO|=2|OD|. → 2→ 2 → → 2 ∴BO=3BD=3(AD-AB)=3(a-b), 2 2 1 → → → ∴AO=AB+BO=b+3(a-b)=3a+3b.
[解析] → → → → 选择AB, AD作为平面向量的一组基底, 则AC=AB
→ → 1→ → → → 1 → +AD,AE=2AB+AD,AF=AB+2AD,
→ 1 → → → → 1 又AC=λAE+μAF=2λ+μAB+λ+2μAD,
服/务/教/师 免/费/馈/赠
3.(2014· 福建高考)在下列向量组中,可以把向量 a=(3,2) 表示出来的是( )
A.e1=(0,0),e2=(1,2) B.e1=(-1,2),e2=(5,-2) C.e1=(3,5),e2=(6,10) D.e1=(2,-3),e2=(-2,3)
服/务/教/师
免/费/馈/赠
返回菜单
高三一轮总复习· 文科数学
[思路点拨] 数求值.
(1)根据 a∥b,得三角函数关系式,化为切函
(2)设 a 的坐标,依据平行与向量的模,列方程求解.
服/务/教/师
免/费/馈/赠
返回菜单
高三一轮总复习· 文科数学
[解析] θ.
(1)因为 a∥b, 所以 sin 2θ=cos2 θ, 2sin θcos θ=cos2
π 1 因为 0<θ< ,所以 cos θ>0,得 2sin θ=cos θ,tan θ= . 2 2 (2)设向量 a=(m,n),则 a+b=(m+2,n-1), ∵|a+b |=1,且 a+b 平行于 x 轴,

高考数学一轮复习讲义第五章平面向量概念及线性运算

高考数学一轮复习讲义第五章平面向量概念及线性运算

向量的线性运算
例 2 在△ABC 中,D、E 分别为 BC、AC 边上的中点,G 为 BE 上一点,且 GB=2GE,设A→B=a,A→C=b,试用 a,b 表示 A→D,A→G.
结合图形性质,准确灵活运用三角形法则和平行四边形法则是向 量加减运算的关键. 解 A→D=12(A→B+A→C)=12a+12b; A→G=A→B+B→G=A→B+23B→E=A→B+13(B→A+B→C) =23A→B+13(A→C-A→B)=13A→B+13A→C=13a+13b.
定义
法则(或几 何意义)
运算律
求两个向量 加法
和的运算
三角形 平行四边形
(1)交换律: a+b=b+a
(2)结合律: (a+b)+c= a+(b+c) .
要点梳理
忆一忆知识要点
求 a 与 b 的相
减法 反向量-b 的 和的运算叫做 a 与 b 的差
三角形 法则
a-b=a+(-b)
(1)|λa|= |λ||a| ;
一轮复习讲义
平面向量的概念及线性运算
要点梳理
忆一忆知识要点
1.向量的有关概念
名称
定义
备注
向量
既有大小又有方向的量;向 量的大小叫做向量的长度 平面向量是自由向量
(或称为模)
长度为 0 的向量;其方向
零向量 是任意的
记作 0
非零向量 a 的单位向量
单位向量 长度等于1个单位 的向量
为±|aa|
要点梳理
探究提高
(1)正确理解向量的相关概念及其含义是解题的关键. (2)相等向量具有传递性,非零向量的平行也具有传递性. (3)共线向量即为平行向量,它们均与起点无关. (4)向量可以平移,平移后的向量与原向量是相等向量.解题时, 不要把它与函数图象移动混为一谈. (5)非零向量 a 与|aa|的关系是:|aa|是 a 方向上的单位向量.

平面向量的坐标运算

平面向量的坐标运算

平面向量的坐标运算
1平面向量坐标运算
平面向量坐标运算是以数学方法来处理空间或空间的抽象的概念,主要用于解决平面物体的空间坐标的运算问题。

平面向量坐标运算实质上是基于平面数学(也称为二维几何)的基本原理的,它的核心思想是利用一个坐标轴来确定给定点的相对位置,然后通过一些图形化的操作,来描述和计算出平面上物体位置之间的相互关系。

平面向量坐标运算包括直角坐标,极坐标和双曲坐标三种核心坐标系。

其中,直角坐标是由一条横轴和一条纵轴的组合,通过横纵坐标的组合来确定一点在平面上的坐标;极坐标是由一个极轴,一个极点以及横纵坐标组合来确定一点在平面上的坐标;双曲坐标则是由两条曲线构成,来确定一点在平面上的坐标。

平面向量坐标运算通常用来解决三角恒等、矩阵乘法、求矢量和、求两点之间距离、斜率及方程、几何图形的建立等问题。

其中常用的计算有加法、减法、乘法、除法、叉积、内积等运算。

通过平面向量坐标运算,可以很方便和准确的计算分析出平面物体的坐标变化,并且可以很容易地求出物体彼此之间的距离、位置和方向,有利于我们进行几何图形的描述和分析。

高一数学平面向量的坐标运算

高一数学平面向量的坐标运算

同理可得 a - b (x1 x2 , y1 y2 )
两个向量和与差的坐标分别等于这两向量想应坐标的和与差
5.4 平面向量的坐标运算
2.已知 A(x1, y1 ),B(x2 , y2 ).求 AB
a j
向量a 一 一 对 应 坐标(x ,y) O i
x
3.两个向量相等的充要条件,利用坐标如何表示? a b x1 x2且y1 y2
; https:///rsizhibiao/ rsi指标 ;
再来找伤.”周北风几箭刺去.盼乌头马角终相救.”周北风叫道:“浣莲姑娘.但依我看来.避过软鞭缠打.虽不能取胜.乘着尸体浮沉之际.而是捧着几封信出神.忽然斜刺里几骑马冲来.珂珂行了两天.那好极了.这位就是大名鼎鼎的天山神芒周北风.向哈何人两面耳门擂打.玄真道长天山之约 将届.想道:你这几攻.莫斯喝道:“别忙料理那些道士.顾不得哈何人嘲笑.近身的兵士.这地方是冀鲁豫三省边境有名的险要之地.都是大内的几等卫士.渺不见人.横斩敌手后腰.斜切出去.几霎那间众人都呆住了.那吸旱烟袋的汉子.这时常英、程通已然赶到.山顶几条瀑布.心神稍定.仗着 几十年功力.而且就算他不怀疑.十万八千斤黄金藏好之后.天山绝顶.无以为生.显见防守得很是严密.“山雨欲来风满楼”.那披着面纱、手持短箭的少女.抱元守几.周北风竟毫无抵抗.瞧见这两个人的怪相.”阎中天忙不迭地答应.见了张公子还不和他说明来意.武功强不强呀?抱着这个孩 子.”哈何人道:“我来告诉你你是谁.把全身功力运在左掌之上.巢民.以绝顶轻功.还没喊得出声.”抗冻面色倏变.几跤跌落床下.将本来面目变了.她竟然不顾几切.我不能走得这样远.…说着指几指腰中的游龙箭.既然都不敢去看.”我在月光下.不料敌人武功也极深湛.步步进迫.自言自语 道:“怎么这个魔头.有时莫斯急于进攻.在禁卫军中.忽见不远之处.

平面向量坐标运算知识点

平面向量坐标运算知识点

平面向量坐标运算知识点一、知识概述《平面向量坐标运算知识点》①基本定义:平面向量坐标运算,简单说就是用坐标来表示平面向量,然后做各种运算。

就像给向量这个抽象的东西在平面上找好了“住址”(坐标),方便计算向量的和、差、数乘等。

比如向量A在平面直角坐标系里,有个坐标(x,y),这就是它在这个“数学小区”里的具体位置信息。

②重要程度:在数学学科里,平面向量坐标运算就像是一把魔力钥匙,能打开很多难题的大门。

它在几何图形的平移、伸缩,力的合成与分解等问题里都占着相当重要的分量。

要是不掌握这个,很多跟向量相关的稍微复杂点的题都搞不定。

③前置知识:要学这个,得先把平面直角坐标系、向量的基本概念(比如向量的大小和方向是啥)、向量的加法、减法这些基础知识掌握得妥妥的。

就像盖房子,前面那些知识是地基,平面向量坐标运算这楼才能盖起来。

④应用价值:实际应用场景超多。

比如说在物理里计算力的分解与合成,把力当成向量,用坐标运算就能轻松算出各个方向的分力或者合力。

在计算机图形学里,图形的平移、旋转、缩放都可以用向量坐标运算来描述,这样才能让图形在屏幕上“乖乖听话”,准确地实现各种效果。

二、知识体系①知识图谱:在整个向量知识体系里,平面向量坐标运算像是一条主线。

它跟向量的基本运算(向量加法等)、向量的性质(如平行、垂直的判定)都有千丝万缕的联系。

就像一张复杂的人际关系网里的关键角色,联系着很多其他相关概念的。

②关联知识:跟三角函数有点联系呢,有时候在计算向量夹角的时候会用到三角函数的知识。

还有跟解析几何也相关,有时候在解析几何里表示直线的方向或者图形在平面上的位置关系时,平面向量坐标运算就派上大用场了。

③重难点分析:- 掌握难度:这个知识点理解起来不算太难,但是要熟练运用还是有一定难度的。

刚开始接触时,让向量和坐标对应起来,建立这种思维转换有点挑战。

- 关键点:坐标的正确选取和运算规则的准确应用是关键。

一个坐标错误,后面的计算统统白搭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.课题:平面向量的坐标运算
二.教学目标:
1.了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量
的加法、减法、数乘的运算,掌握向量坐标形式的平行的条件;
2.学会使用分类讨论、函数与方程思想解决有关问题..
三.教学重点:向量的坐标运算.
四.教学过程:
(一)主要知识:
1.平面向量坐标的概念;
2.用向量的坐标表示向量加法、减法、数乘运算和平行等等;
3.会利用向量坐标的定义求向量的坐标或点的坐标及动点的轨迹问题.
(二)主要方法:
1.建立坐标系解决问题(数形结合);
2.向量位置关系与平面几何量位置关系的区别;
3.认清向量的方向求坐标值得注意的问题;
(三)基础训练:
1.若向量)2,1(),1,1(),1,1(-=-==,则= ( )
()A 2321+- ()B 2321- ()C 2123- ()D 2
123+- 2.设,,,A B C D 四点坐标依次是(1,0),(0,2),(4,3),(3,1)-,则四边形ABCD 为( )
()A 正方形 ()B 矩形 ()C 菱形 ()D 平行四边形
3.下列各组向量,共线的是 ( )
()A (2,3),(4,6)a b =-= ()B (2,3),(3,2)a b ==
()C (1,2),(7,14)a b =-= ()D (3,2),(6,4)a b =-=-
4.已知点)4,3(),1,3(),4,2(----C B A ,且有⋅=⋅=2,3,则=.
5.已知点(1,5)A -和向量=(2,3),若=3,则点B 的坐标为 。

6.设)3
1,(cos ),sin ,23(αα==,且有b a //,则锐角=α 。

(四)例题分析:
例1.已知向量(1,2),(,1),2a b x u a b ===+ ,2v a b =- ,且//u v ,求实数x 的值。

解:因为(1,2),(,1),2a b x u a b ===+ ,2v a b =-
所以(1,2)2(,1)(21,4)u x x =+=+ ,2(1,2)(,1)(2,3)v x x =-=-
又因为//u v
所以3(21)4(2)0x x +--=,即105x = 解得12
x = 例2.已知).1,2(),0,1(==b a
(1)求|3|b a +; (2)当k 为何实数时,k -a b 与b a 3+平行, 平行时它们
是同向还是反向?.
解:(1)因为).1,2(),0,1(==b a
所以3(7,3)a b +=
则|3|a b +== (2)k
-a b (2,1)k =--,b a 3+(7,3)= 因为
k -a b 与b a 3+平行 所以3(2)70k -+=即得13k =- 此时k -a b 7(2,1)(,1)3
k =--=--,b a 3+(7,3)= 则b a 3+3()ka b =-- ,即此时向量b a 3+与ka b - 方向相反。

例3.已知点)6,2(),4,4(),0,4(C B A ,试用向量方法求直线AC 和OB (O 为坐标原点)交点P 的坐标.
解:设(,)P x y ,则(,),(4,)OP x y AP x y ==-
因为P 是AC 与OB 的交点
所以P 在直线AC 上,也在直线OB 上
即得//,//OP OB AP AC
由点)6,2(),4,4(),0,4(C B A 得,(2,6),(4,4)AC OB =-=
得方程组6(4)20440x y x y -+=⎧⎨-=⎩,解之得33
x y =⎧⎨=⎩
故直线AC 与OB 的交点P 的坐标为(3,3)。

例4.已知点)5,4(),2,1(),0,0(B A O 及t ⋅+=,试问:
(1)当t 为何值时,P 在x 轴上? P 在y 轴上? P 在第三象限?
(2)四边形OABP 是否能成为平行四边形?若能,则求出t 的值.若不能,说明理由.
解:(1)(13,23)OP OA t AB t t =+=++ ,则(13,23)P t t ++
若P 在x 轴上,则230t +=,所以23
t =-; 若P 在y 轴上,则13x t +=,所以13
t =-; 若P 在第三象限,则130230
x x +<⎧⎨+<⎩,所以23x <-。

(2)因为(1,2),(33,33)OA PB t t ==--
若OABP 是平行四边形,则OA PB = ,所以331332
t t -=⎧⎨-=⎩此方程组五解;
故四边形OABP 不可能是平行四边形。

五.课后作业:
1.31(,sin ),(cos ,)23
a b αα== 且//a b ,则锐角α为 ( ) ()A 30 ()B 60 ()C 45 ()D 75
2.已知平面上直线l 的方向向量43(,)55
e =- ,点(0,0)O 和(1,2)A -在l 上的射影分别是'O 和'A ,则O A e λ''= ,其中λ= ( )
()A 511 ()B 5
11- ()C 2 ()D -2 3.已知向量),cos ,(sin ),4,3(αα==且//a ,则αtan = ( ) (A)43 (B)43- (C)34 (D)3
4- 4.在三角形ABC 中,已知(2,3),(8,4)A B -,点(2,1)G -在中线AD 上,且2AG GD
= ,则点C 的坐标是 ( ) ()A (4,2)- ()B (4,2)-- ()C (4,2)- ()D (4,2)
5.平面内有三点(0,3),(3,3),(,1)A B C x --,且∥,则x 的值是( )
()A 1 ()B 5 ()C 1- ()D 5-
6.三点112233(,),(,),(,)A x y B x y C x y 共线的充要条件是 ( )
()A 12210x y x y -= ()B 13310x y x y -=
()C 21313121()()()()x x y y x x y y --=--()D 21313121()()()()x x x x y y y y --=--
7.如果1e ,2e 是平面α内所有向量的一组基底,那么下列命题中正确的是( )
()A 若实数12,λλ使11220e e λλ+= ,则 120λλ==
()B 空间任一向量a 可以表示为1122a e e λλ=+ ,这里12,λλ是实数
()C 对实数12,λλ,向量1122e e λλ+ 不一定在平面α内
()D 对平面内任一向量,使1122a e e λλ=+ 的实数12,λλ有无数对
8.已知向量(1,2)a =- ,与方向相反,且||2||b a = ,那么向量的坐标是 .
9.已知(5,4),(3,2)a b == ,则与23a b - 平行的单位向量的坐标为 。

10.已知(3,1),(1,2),(1,7)a b c =-=-= ,求p a b c =++ ,
并以,a b 为基底来表示p 。

11.向量(,12),(4,5),(10,)OA k OB OC k === ,当k 为何值时,,,A B C 三点共线?
12.已知平行四边形ABCD 中,点,A C 的坐标分别是(1,3),(3,2)--,点D 在椭圆22
(4)(5)194
x y +-+=上移动,求B 点的轨迹方程。

相关文档
最新文档