轴对称与轴对称图形测试题
轴对称与轴对称图形测试题

一、选择题(每题3分,共30分)1. 下列图案是我国几家银行的标志,其中不是..轴对称图形的是( )2. 如下书写的四个汉字,其中为轴对称图形的是() A . B . C. D.3 . 如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( ) A .在AC 、BC 两边高线的交点处 B .在AC 、BC 两边中线的交点处C .在AC 、BC 两边垂直平分线的交点处 D.在∠A 、∠B 两内角平分线的交点处4 . 如图,直线L 1,L 2,L3表示三条相互交叉的公路,现要建一个货物中转站,•要求它到三条公路的距离相等,则可供选择的地址有( ) A .一处 B .二处 C .三处 D .四处 5 . 等腰三角形的对称轴是( )A .顶角的平分线B .底边上的高C .底边上的中线D .底边上的高所在的直线 6 . 如图,AB AC BD BC ==,,若40A ∠=,则ABD ∠的度数是( ) A .20B .30C .35D .407 . 下列说法不成立的是( )A.若两图形关于某直线对称,那么对称轴是对应点连线的中垂线B.两图形若关于某直线对称,则两图形能重合.C.等腰三角形是轴对称图形D.线段的对称轴只有一条8 . .如图,在四边形ABCD 中,边AB 与AD 关于AC 对称,则下面结论正确的是() ①CA 平分∠BCD ;②AC 平分∠BAD ;③DB ⊥AC ;④BE=DE. A.②B.①②C.②③④ D.①②③④9. 哪一面镜子里是他的像( )A .B .C .D .AC图4第3题BADC10 .一个等腰三角形但不是等边三角形,它的角平分线、高线、中线总数共( )条 A .9 B. 7 C. 6 D. 3 二、填空题(每题3分,共30分)11. 观察下面的英文字母,其中是轴对称图形的有_____个. A ,C ,D ,E ,F ,H ,J ,S ,M ,Y ,Z12 . 等腰三角形的一个内角是700,则它的另外两个角的度数分别是_____.13 . 如图,三角形ABC 中,AB=AC ,∠A=40度,AB 的垂直平分线MN 交AC 于D ,连接BD ,∠DBC 等于_____度.14. 如图所示的两个三角形关于某条直线对称,∠1=110°,∠2=46°,则x =. 15. 如图,镜子中的实际号___________.16. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D,点D 到AB 的距离为5cm,则CD=_____cm.17. 已知AD 是等边△ABC 的高,BE 是AC 边的中线,AD 与BE 交于点F ,则∠AFE=______. 18.如图是一个轴对称图形,AD 所在的直线是对称轴,仔细观察图形,回答下列问题: (1) 线段BO 、CF 的对称线段是_____________; (2)△ACE 的对称三角形是______________.19. 一辆汽车的车牌在水中的倒影如图所示,则该车的车牌是____.20 . 小明把一X 长方形的纸对折2次,描上一个四边形,再剪去这个图形(镂空),展开长方形纸,得到如下图案,设折痕为123,,l l l ,观察图形并填空:第14题四边形①与四边形②关于______成轴对称;折痕2l 既是_____与______的对称轴;又是_____与______的对称轴;整体看也是_____与______的对称轴. 三、解答题(共40分)21.(本题满分10分)如图,分别以AB 为对称轴,画出各图形的对称图形.22. (本题满分10分)如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.23. (本题满分10分)如图,在△ABC 中,已知AB =AC ,AD 为∠BAC 的平分线,且∠2=25°,求∠BAC 和∠B 的度数.24. (本题满分10分) 如图,△ABC 中,∠BAC=1100,DE 、FG 分别为AB 、AC 的垂直平分线,E 、G 分别为垂足.(1) 求∠DAF 的度数. (2)如果BC ﹦10cm ,求△DAF 的周长.八年级数学(上)自主学习达标检测(二)一、填空题(每题2分,共32分)1.线段轴是对称图形,它有_______条对称轴,正三角形的对称轴有条.2.下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑,哪一个..与其他三个..不同?请指出这个图形,并说明理由.答:这个图形是:(写出序号即可),理由是. 3.等腰△ABC 中,若∠A=30°,则∠B=________.BAB A4.△ABC 中,AD ⊥BC 于D ,且BD=CD ,若AB=3,则AC=____.5.在Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若CD=4,则点D 到AB 的距离是__________. 6.判断下列图形(如图所示)是不是轴对称图形.7.等腰△ABC 中,AB=AC=10,∠A=30°,则腰AB 上的高等于___________.8.如图,△ABC 中,AD 垂直平分边BC ,且△ABC 的周长为24,则AB+BD = ;又若∠CAB=60°,则∠CAD =.9.如图,△ABC 中,EF 垂直平分AB ,GH 垂直平分AC ,设EF 与GH 相交于O ,则点O 与边BC 的关系如何?请用一句话表示:..xkb1.10.如图:等腰梯形ABCD 中,AD ∥BC ,AB=6,AD=5,BC=8,且AB ∥DE ,则△DEC 的周长是____________. 11.请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.12.等腰梯形的腰长为2,上、下底之和为10且有一底角为60°,则它的两底长分别为____________. 13.等腰三角形的周长是25 cm,一腰上的中线将周长分为3∶2两部分,则此三角形的底边长为___. 14.如图,三角形1与_____成轴对称图形,整个图形中共有_____条对称轴.BECDA ABCDB HFAECGO第8题图 第9题图 第10题图第14题图 第15题图 第16题图15.如图,将长方形ABCD 沿对角线BD 折叠,使点C 恰好落在如图C 1的位置,若∠DBC=30º,则∠ABC 1=________.16.如图是小明制作的风筝,为了平衡制成了轴对称图形,已知OC 是对称轴,∠A=35º,∠BCO=30º,那么∠AOB=_______. 二、解答题(共68分)17.(5分)已知点M )5,3(b a -,N )32,9(b a +关于x 轴对称,求ab 的值.18.(5分)已知AB=AC ,BD=DC ,AE 平分∠FAC ,问:AE 与AD 是否垂直?为什么?19.(5分)如图,已知:△ABC 中,BC <AC ,AB 边上的垂直平分线DE 交AB 于D ,交AC 于E ,AC=9 cm ,△BCE 的周长为15 cm ,求BC 的长.20.(5分)如图所示,已知△ABC 和直线MN .求作:△A ′B ′C ′,使△A ′B ′C ′和△ABC 关于直线MN 对称.(不要求写作法,只保留作图痕迹)22.(5分)如图,在ABC 中,AB=AC ,A=92,延长AB 到D ,使BD=BC ,连结DC .求D 的度数,ACD 的度数.ADBCABCD EF23.(5分)有一本书折了其中一页的一角,如图:测得AD=30cm,BE=20cm ,∠BEG=60°,求折痕EF 的长.24.(8分)如图所示,在△ABC 中,CD 是AB 上的中线,且DA=DB=DC .(1)已知∠A=︒30,求∠ACB 的度数;(2)已知∠A=︒40,求∠ACB 的度数; (3)已知∠A=︒x ,求∠ACB 的度数;(4)请你根据解题结果归纳出一个结论.25.(6分)如图所示,在等边三角形ABC 中,∠B 、∠C 的平分线交于点O ,OB 和OC 的垂直平分线交BC 于E 、F ,试用你所学的知识说明BE=EF=FC 的道理.26.(7分)已知AB=AC ,D 是AB 上一点,DE ⊥BC 于E ,ED 的延长线交CA 的延长线于F ,试说明△ADF 是等腰三角形的理由.27.(7分)等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP=∠ACQ ,BP=CQ ,问△APQ 是什么形状的三角形?试说明你的结论.BABOEFCAFBCDE28.(5分)如图①是一X画有小方格的等腰直角三角形纸片,将图①按箭头方向折叠成图②,再将图②按箭头方向折叠成图③.(1)请把上述两次折叠的折痕用实线画在图④中.(2)在折叠后的图形③中,沿直线l剪掉标有A的部分,把剩余部分展开,将所得到的图形在图⑤中用阴影表示出来.一、选择题1.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形. 正确的说法有()个A.1个B.2个C.3个D.4个2.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形. 其中是轴对称图形有()个A.1个B.2个C.3个D.4个3.已知∠AOB=30°,点P在∠AOB的内部,P1与P关于OA对称,P2与P关于OB对称,则△P1OP2是()A.含30°角的直角三角形;B.顶角是30的等腰三角形;C.等边三角形D.等腰直角三角形.4.如图:等边三角形ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°5. 等腰梯形两底长为4cm和10cm,面积为21cm2,则这个梯形较小的底角是()度. A.45°B.30°C.60°D.90°P AECBDOA6.已知点P 在线段AB 的中垂线上,点Q 在线段AB 的中垂线外,则( ) A .PA+PB >QA+QBB .PA+PB <QA+QB D .PA+PB =QA+QBD .不能确定7.已知△ABC 与△A 1B 1C 1关于直线MN 对称,且BC 与B 1C 1交与直线MN 上一点O ,则( ) A .点O 是BC 的中点B .点O 是B 1C 1的中点 C .线段OA 与OA 1关于直线MN 不对8.如图:已知∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD= () A .4 B .3 C .2 D .19.∠AOB 的平分线上一点P 到OA 的距离为5,Q 是OB 上任一点,则( ) A .PQ >5 B .PQ ≥5 C .PQ <5 D .PQ ≤510.等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为( ) A .3cm 或5cm B .3cm 或7cm C .3cmD .5cm二.填空题11.线段轴是对称图形,它有_______条对称轴. 12.等腰△ABC 中,若∠A=30°,则∠B=________.13.在Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若CD=4,则点D 到AB 的距离是__________. 14.等腰△ABC 中,AB=AC=10,∠A=30°,则腰AB 上的高等于___________. 15.如图:等腰梯形ABCD 中,AD ∥BC ,AB=6,AD=5,BC=8,且AB ∥DE ,则△DEC 的周长是____________.16.等腰梯形的腰长为2,上、下底之和为10且有一底角为60°,则它的两底长分别为____________.17.若D 为△ABC 的边BC 上一点,且AD=BD ,AB=AC=CD ,则∠BAC=____________.18.△ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若∠BAC=115°,则∠EAF=___________. 三.解答题19.如图:已知∠AOB 和C 、D 两点,求作一点P ,使PC=PD ,且P 到∠AOB两边的距离相等.B20.如图:AD 为△ABC 的高,∠B=2∠C ,用轴对称图形说明:CD=AB+BD .22.如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D , ①若△BCD 的周长为8,求BC 的长;②若BC=4,求△BCD 的周长.1.2,3 2.④,不是轴对称图形3.75度或30度4.3 5.4 6.(1)(3)(6)是轴对称图形,(2)(4)(5)不是轴对称图形 7.5 8.12 9.点O 到BC 两端的距离相等 10.15 11.正反写的4和6 12.4,6 13.353cm 或5cm 14.2、4,2 15.30度 16.130度 17.9 18.垂直 19.BC=6cm 20.略 21.略 22.22度,66度 23.20cm 24.(1)90度;(2)90度;(3)90度;(4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90度 25.略 26.略 27.是等边三角形 28.略 1.A 2.B 3.C 4.C 5.A6.D7.C8.C9.B10.C11.2 12.30°、75°、120°13.414.515.1516.4、617.72°18.50° 19.提示:作CD 的中垂线和∠AOB 的平分线,两线的交点即为所作的点P ; 20.提示:在CD 上取一点E 使DE =BD ,连结AE ; 21.EF =20㎝; 22.①BC =3,②9;23.提示:△APQ 为等边三角形,先证△ABP ≌△ACQ 得AP =AQ ,再证∠PAQ =60°即可.。
人教版八年级上册数学《轴对称》单元综合检测(附答案)

m+3=1,n−1=−2,
解得m=−2,n=−1,
点睛:本题考查了关于x轴对称的点的坐标;容易与关于y轴对称的点的坐标混淆.
A. 16cmB. 20cmC. 24cmD. 26cm
6.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为
A 40海里B. 60海里C. 70海里D. 80海里
7.如图,△ABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D,E两点,并连接BD,DE,若∠A=30°,AB=AC,则∠BDE的度数为()
(2)经过多少秒,△BMN 直角三角形.
一、选择题(本题共12小题,每小题3分,共36分)
1.下列四个交通标志图中为轴对称图形的是( )
A.AB.BC.CD.D
【答案】D
【解析】
解:A、B、C不是轴对称图形,D是轴对称图形.故选D.
2.在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标是()
【答案】3
【解析】
试题解析:∵等边△ABC中,AB=8,
∴AB=BC=6.
∵AD⊥BC,
故答案为3.
14.已知点A(m+3,2)与点B(1,n-1)关于x轴对称,则m=________,n=________.
【答案】(1).-2(2).-1
【解析】
分析:根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.
A.45B.52.5C.67.5D.75
【答案】C
【解析】
试题分析:根据AB=AC,利用三角形内角和定理求出∠ABC的度数,再利用等腰三角形的性质和三角形内角和定理求出∠DBC=30°,然后即可求出∠BDE的度数:
2020第二章《轴对称图形》单元测试(含答案)

第二章《轴对称图形》单元测试(满分100分,时间90分钟)一、选择题:(每题3分,共24分)1.若等腰三角形的一个角等于42°,则它的底角为 ( )A.42°B.69°C.69°或84°D.42°或69°2.到三角形三条边的距离都相等的点是这个三角形的 ( )A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点3.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点4.若一个三角形的一个外角的平分线平行于三角形的一条边,则此三角形肯定是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形5把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行6.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点7.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C 也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A. 6 B.7 C.8D.98.如图是由下面五种基本图形中的两种拼接而成,这两种基本图形是()A.①⑤B.②④C.③⑤D.②⑤二、填空题(每题3分,共24分)9.已知以下四个汽车标志图案:其中是轴对称图形的图案是(只需填入图案代号).10.星期天小华去书店买书时,从镜子内看到背后墙上普通时钟的时针(粗)与分针(细)的位置如图所示,此时时针表示的时间是时分.(按12小时制填写)11.已知等腰三角形的一个内角为70°,则它的顶角为度.12.如图,在△ABC中,AC=9cm,BC=7cm,AB的垂直平分线交AB于点D,交边AC于点E,则△BCE的周长为cm.13.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是度.14.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为.15.如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE的周长是cm.16.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于.三、解答题(共52分)17.(本题6分)如图,在△ABC中,M、N分别是BC与EF的中点,CF⊥AB,BE⊥AC.求证:MN⊥EF18.(本题6分)如图,四边形EFGH为长方形的台球桌面,现有一白球A和一彩球B,在图中的GH边上找一点O,当击打白球A时,使白球A碰撞台边GH上的O点,反弹后能击中彩球B.19.(本题8分)(1)如图,分别作出点P关于OA、OB的对称点P1、P2,连接P1P2,分别交OA、OB于点M、N,连接PM,PN;(2)若P1P2=5cm,则△PMN的周长为.20.(本10分)某供电部门准备在输电主干线上连结一个分支线路,分支点为M,同时向所落成的A,B两个居民小区送电.(1)如果居民小区A,B在主干线L的两旁,如图1,那么分支点M在什么地方时总线路最短?(2)如果居民小区A,B在主干线L的同旁,如图2,那么分支点M在什么地方时总线路最短?21.(本题10分)如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB 和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.22.(本题12分)(1)如图(一),P是∠AOB平分线上一点,试过点P画一条直线,交角的两边于点C、D,使△OCD是等腰三角形,且CD是底边;(2)若点P不在角平分线上,如图(二),如何过点P画直线与角的两边相交组成等腰三角形?(3)问题(2)中能画出几个满足条件的等腰三角形?一、选择题:(每题3分,共24分)1.若等腰三角形的一个角等于42°,则它的底角为()A.42°B.69°C.69°或84°D.42°或69°【答案】D2.到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点【答案】D3.如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点【答案】C.4.若一个三角形的一个外角的平分线平行于三角形的一条边,则此三角形肯定是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形【答案】C.5把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是()A.对应点连线与对称轴垂直B.对应点连线被对称轴平分C.对应点连线被对称轴垂直平分D.对应点连线互相平行【答案】B6.如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且P A=PB,下列确定P 点的方法正确的是()A.P是∠A与∠B两角平分线的交点B.P为∠A的角平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点【答案】B7.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.9【答案】C8.如图是由下面五种基本图形中的两种拼接而成,这两种基本图形是()A.①⑤B.②④C.③⑤D.②⑤【答案】D二、填空题(每题3分,共24分)9.已知以下四个汽车标志图案:其中是轴对称图形的图案是(只需填入图案代号).【答案】①,③10.星期天小华去书店买书时,从镜子内看到背后墙上普通时钟的时针(粗)与分针(细)的位置如图所示,此时时针表示的时间是时分.(按12小时制填写)【答案】1:3011.已知等腰三角形的一个内角为70°,则它的顶角为度.【答案】40或7012.如图,在△ABC中,AC=9cm,BC=7cm,AB的垂直平分线交AB于点D,交边AC于点E,则△BCE的周长为cm.【答案】1613.如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是度.【答案】6014.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当P A=CQ时,连PQ交AC边于D,则DE的长为.【答案】15.如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC,则△PDE的周长是cm.【答案】816.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于.【答案】∠AEF=115°三、解答题(共52分)17.(本题6分)如图,在△ABC中,M、N分别是BC与EF的中点,CF⊥AB,BE⊥AC.求证:MN⊥EF【答案】证明:如图,连接MF、ME,∵MF、ME分别为Rt△FBC是和Rt△EBC斜边上的中线,∴MF=ME=BC,在△MEF中,MF=ME,点N是EF的中点,∴MN⊥EF.18.(本题6分)如图,四边形EFGH为长方形的台球桌面,现有一白球A和一彩球B,在图中的GH边上找一点O,当击打白球A时,使白球A碰撞台边GH上的O点,反弹后能击中彩球B.【答案】如图,作点A关于GH的对称点A′,连接AB′,交EF于点O,将白球A打到台边GH的点O处,反弹后能击中彩球B.19.(本题8分)(1)如图,分别作出点P关于OA、OB的对称点P1、P2,连接P1P2,分别交OA、OB于点M、N,连接PM,PN;(2)若P1P2=5cm,则△PMN的周长为.【答案】(1)依题意,如下图所示:(2)∵点P关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴L△PMN=PM+PN+MN=P1M+MN+P2N=P1P2=5cm.故答案为:5cm20.(本10分)某供电部门准备在输电主干线上连结一个分支线路,分支点为M,同时向所落成的A,B两个居民小区送电.(1)如果居民小区A,B在主干线L的两旁,如图1,那么分支点M在什么地方时总线路最短?(2)如果居民小区A,B在主干线L的同旁,如图2,那么分支点M在什么地方时总线路最短?【答案】:(1)如图1,连接AB,AB与l的交点P就是所求分支点M分支点开在此处,总线路最短;(2)如图2,作B点关于直线l的对称点B2,连接AB2交直线l于点M,此处即为分支点.21.(本题10分)如图,在△ABC中,∠A=90°,AB=AC,O是BC的中点,如果在AB和AC上分别有一个动点M、N在移动,且在移动时保持AN=BM,请你判断△OMN的形状,并说明理由.【答案】解:△OMN是等腰直角三角形.理由:连接OA.∵在△ABC中,∠A=90°,AB=AC,O是BC的中点,∴AO=BO=CO(直角三角形斜边上的中线是斜边的一半);∠B=∠C=45°;在△OAN和OBM中,,∴△OAN≌△OBM(SAS),∴ON=OM(全等三角形的对应边相等);∴∠AON=∠BOM(全等三角形的对应角相等);又∵∠BOM+∠AOM=90°,∴∠NOM=∠AON+∠AOM=90°,∴△OMN是等腰直角三角形.22.(本题12分)(1)如图(一),P是∠AOB平分线上一点,试过点P画一条直线,交角的两边于点C、D,使△OCD是等腰三角形,且CD是底边;(2)若点P不在角平分线上,如图(二),如何过点P画直线与角的两边相交组成等腰三角形?(3)问题(2)中能画出几个满足条件的等腰三角形?【答案】解:(1)如图,直线CD为过点P的一条垂线且垂足为P,则△OCD是等腰三角形.∵OP为∠AOB的角平分线∴∠AOP=∠BOP∵∠CPO=∠DPO=90°,OP=OP∴△COP≌△DOP(ASA)∴OC=OD∴△OCD是等腰三角形.(2)如图,过点O作∠AOB的角平分线OD,过点P作PD⊥OD于点D,延长交OA,OB于点M,N,则△OMN为等腰三角形.∵OD为∠AOB的角平分线∴∠AOD=∠BOD∵∠MPO=∠NPO=90°,OD=OD∴△MOD≌△NOD(ASA)∴OM=ON∴△OMN是等腰三角形.(3)应该可画3个.①过P作∠AOB中平分线的垂线,交OA,OB于M,N,则△OMN是等腰三角形.②过P作OA垂线,交OA,OB于E,F,在EA上作EG=OE,连FG,过P作FG平行线,交OA,OB于M,N,则△OMN是等腰三角形.③过P作OB垂线,交OA,OB于E,F,在FB上作FG=OF,连EG,过P作EG平行线,交OA,OB于M,N,则△OMN是等腰三角形.所以有三个这样的等腰三角形.- 11 -。
第二章 轴对称图形单元测试(含答案)

第二章轴对称图形单元测试一、选择题1.下列图形(含阴影部分)中,属于轴对称图形的有( )A.1个B.2个C.3个D.4个2.小亮在镜中看到身后墙上的时钟如下,则实际时间最接近8:00的是( )3.下列图形:①等腰三角形;②平行四边形;③等边三角形;④等腰梯形;⑤长方形.其中,一定是轴对称图形的有( )A.2个B.3个C.4个D.5个4.如图,AC=AD,BC=BD,则有( )A.AB垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB5.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A、B.下列结论中,不一定成立的是( )A.PA=PB B.PO平分∠APB C.OA=OB D.AB垂直平分OP6.在等腰△ABC中,AB=AC,一边上的中线BD将这个三角形的周长分为15和12两个部分,则该等腰三角形的底边长为( )A.7 B.10 C.7或10 D.7或117.在梯形ABCD中,AD∥BC,AD=1,BC=4,∠C=70°,∠B=40°,则AB的长为( )A.2 B.3 C.4 D.58.如图,在等腰梯形ABCD中,AD∥BC,AC、BD相交于点O,有下列五个结论:①△AOB≌△DOC;②∠DAC=∠DCA;③梯形ABCD是轴对称图形;④∠DAB+∠DCB=180°;⑤AC=BD.其中,正确的个数是( )A.2 B.3 C.4 D.59.如图,已知△ABC,求作一点P,使点P到∠BAC两边的距离相等,且PA=PB.下列确定点P的方法正确的是( )A.P为∠BAC、∠ABC的平分线的交点B.P为∠BAC的平分线与AB的垂直平分线的交点C.P为AC、AB两边上的高的交点D.P为AC、AB两边的垂直平分线的交点10.如图,在△ABC中,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列五个结论:①∠DEF=∠DFE;②AE=AF;③AD垂直平分EF;④EF垂直平分AD;⑤△ABD与△ACD的面积相等.其中,正确的个数是( )A.4 B.3 C.2 D.1二、填空题11.请同学们写出两个具有轴对称性的汉字:__________.12.(1)如图,在Rt△ABC中,∠C=90°,BD是三角形的角平分线,交AC于点D,AD= 2.2 cm,AC=3.7 cm,则点D到AB边的距离是__________cm.(2)在△ABC中,AB=AC,AB的垂直平分线与AC所在的直线相交所得到锐角为50°,则∠B的度数为__________.13.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F.(1)若△AEF的周长为10 cm,则BC的长为__________cm.(2)若∠EAF=100°,则∠BAC__________.14.(1)如图①,在Rt△ABC中,若AB=AC,AD=AE,∠BAD=40°,则∠EDC=__________.(2)如图②,∠ACB=90°,E、F为AB上的点,AE=AC,BC=BF,则∠ECF=__________.15.(1)若直角三角形斜边上的高和中线分别为10 cm、12 cm,则它的面积为__________cm2.(2)已知等腰三角形的一个外角为100°,则这个等腰三角形的顶角为__________.16.(1)如图①,在等腰梯形ABCD中,AD∥BC,∠B=60°,AD=4,BC=7,则梯形ABCD的周长是__________.(2)如图②,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AD交BC于点D,DE∥AC,DE交AB于点E,M为BE的中点,连接DM.在不添加任何辅助线和字母的情况下,图中的等腰三角形共有__________个.17. 如图,在Rt△ABC中,∠BAC=90°,AB=3,M为边BC上的点,连接AM.如果将△ABM 沿直线AM翻折后,点B恰好落在边AC的中点处,那么点M到AC的距离是__________.18.如图,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH,…,添加的钢管长度都与OE相等,则最多能添加这样的钢管__________根.三、解答题19.利用网格作图,(1)请你在图①中画出线段AB关于线段CD所在直线成轴对称的图形;(2)请你在图②中添加一条线段,使图中的3条线段组成一个轴对称图形.请画出所有情形;(3)请你先在图③的BC上找一点P,使点P到AB、AC的距离相等,再在射线AP上找一点Q,使QB=QC.20.如图,在AABC中,BD、CE是高,G、F分别是BC、DE的中点,连接GF,试判断GF与DE有何特殊的位置关系?请说明理由.21.如图,在△ABC中,AB=AC,BC=BD=ED=EA,求∠A的度数.22.如图,在梯形ABCD 中,AD ∥BC ,AB =DC =AD ,BC =AC ,求该梯形中各内角的度数.23.如图,在等腰△ABC 中,顶角的平分线BD 交AC 于点D ,AD =3,作△ABC 的高AE 交CB 的延长线于点E ,且AE 与BC 的长是方程组55101,10552x y m x y m +=-⎧⎨-=-⎩的解.已知()1205ABCm m S=≠,求△ABC 的周长.24.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点P为BC边上一点,PE⊥AB于点E,PF⊥DC于点F,BG⊥CD于点G,试说明PE+PF=BG.25.在梯形ABCD中,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从点A开始沿边AD向点D以1 cm/s的速度移动,点Q从点C开始沿边CB向点B以2 cm/s的速度移动,如果点P、Q分别从两点同时出发,多少秒后,梯形PBQD是等腰梯形?参考答案一、1.B 2. D3.C4.A5.D6.D7.B8.C9.B 10.B二、11.答案不唯一,如目、田12.(1)1.5 (2)70°或20°13.(1)10 (2)140°14.(1)20°(2)45°15.(1)120 (2)80°或20°16.(1)17 (2)3 17.2 18.8三、19.略20.GF⊥DE理由:连接GE、GD.因为BD是△ABC的高,所以∠BDC=90°.因为G是BC的中点,所以DG=12BC.同理,EG=12BC.所以DG=EG.又因为F是DE的中点,所以在△EGD中,GF⊥DE.21.设∠A=x.因为AE=ED,所以∠ADE=∠A=x.又∠BED为△AED的外角,所以∠BED=∠ADE+∠A=2x.因为BD=ED,所以∠DBE=∠DEB=2x.因为∠BDC为△ABD 的外角,所以∠BDC=∠EBD+∠A=3x.因为BD=BC,所以∠BDC=∠C=3x.因为AB=AC,所以∠ABC=∠C=3x.又因为△ABC的内角和为180°,所以22+3x+3x=180°.解得x=(1807) °,即∠A=(1807) °22.如图,设∠1=x.因为AB=AD,所以∠1=∠2=x.因为AD∥BC,所以∠2=∠3=x.所以∠ABC=∠1+∠3=2x.因为AD∥BC,AB=DC,所以∠ABC=∠DCB=2x,AC=BD.又因为BC=AC,所以BC=BD.所以∠4=∠BCD=2x.因ABCD的内角和为180°.所以x+2x+2x=180°,解得x=36°.所以∠ABC=∠DCB=72°.因为AD∥BC,所以∠ABC+∠BAD=180°,∠DCB+∠ADC=180°,所以∠BAD=∠ADC=108°23.55101,10552,x y mx y m+=-⎧⎨-=-⎩①②由①+②得,15x=15m-3.所以x=m-15.①×2-②得15y=15m,所以y=m.由125ABCmS =,得12xy=125m,即1 2·(m1-5)m=125m.因为m≠0,所以1112(m- )=255,解得m=5.此时x=4.8,y=5.⎧⎨⎩由于AB=BC>AE,所以BC=5,AE=4.8.又因为AB=BC,BD平分∠ABC,所以AD=DC=3,即AC=6.所以△ABC的周长为6+5 x 2=16。
《第13章轴对称》测试卷(含答案)

《第13章轴对称》测试卷一、细心选一选1.下列图形是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E、F为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)AD平分∠EDF;(4)EF 垂直平分AD.其中正确的有()A.1个 B.2个 C.3个 D.4个3.有一个等腰三角形的周长为13,其中一边长为3,则这个等腰三角形的底边长为()A.7 B.3 C.7或3 D.54.△ABC中,AB=AC,∠ABC=36°,D、E是BC上的点,∠BAD=∠DAE=∠EAC,则图中等腰三角形的个数是()A.2个 B.3个 C.4个 D.6个5.如图,已知∠AOB=40°,OM平分∠AOB,MA⊥OA,MB⊥OB,垂足分别为A、B两点,则∠MAB等于()A.50°B.40°C.30°D.20°6.下列语句中正确的有()句①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧.A.1 B.2 C.3 D.47.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC 的三条中线的交点B.△ABC 三边的中垂线的交点C.△ABC 三条角平分线的交点D.△ABC 三条高所在直线的交点8.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,P是AB上一动点,连接OP,将线段OP绕点O逆时针旋转60°得到线段OD,若使点D恰好落在BC 上,则线段AP的长是()A.4 B.5 C.6 D.8二、耐心填一填9.请写出4个是轴对称图形的汉字:.10.若等腰三角形的一个外角为130°,则它的底角为度.11.小明从镜子中看到对面电子钟如图所示,这时的时刻应是.12.在等腰梯形ABCD中,AD∥BC,AB=AD=CD=8cm,∠C=60°,则梯形ABCD的周长为.13.已知,在△ABC中,AB=AC=32cm,DE垂直平分AB交AC于E.(1)∠A=50°,则∠EBC=°;(2)若BC=21cm,则△BCE的周长是.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.15.如图,由Rt△CDE≌Rt△ACF,可得∠DCE+∠ACF=90°,从而∠ACB=90°.设小方格的边长为1,取AB的中点M,连接CM.则CM=,理由是:.16.如图所示,已知O是∠APB内的一点,点M,N分别是O点关于PA,PB的对称点,MN与PA,PB分别相交于点E,F,已知MN=5cm,则△OEF的周长cm.17.一个等腰三角形一腰上的高与另一腰的夹角为45°,三角形顶角度数.18.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有个.三、动手作一作:19.现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.20.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.四.精心解一解(本题有4小题,共30分)21.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.22.如图梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,求∠C的度数.23.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB 的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.24.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.试回答:(1)图中等腰三角形是.猜想:EF与BE、CF之间的关系是.理由:(2)如图②,若AB≠AC,图中等腰三角形是.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.五、附加题:25.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC 的哪条边上相遇?《第13章轴对称图形》测试题参考答案一、细心选一选1.A;2.C;3.B;4.D;5.D;6.B;7.C;8.C;二、耐心填一填9.如中、日、土、甲等;10.65°或50°;11.10:51;12.40cm;13.15;53cm;14.3;15.5;直角三角形斜边上的中线等于斜边的一半;16.5;17.45°或135°;18.8;三、动手作一作:19.现有9个相同的小正三角形拼成的大正三角形,将其部分涂黑.如图(1),(2)所示.观察图(1),图(2)中涂黑部分构成的图案.它们具有如下特征:①都是轴对称图形;②涂黑部分都是三个小正三角形.请在图(3),图(4)内分别设计一个新图案,使图案具有上述两个特征.解:如图.20.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.解:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P.四.精心解一解21.如图,在△ABC中,AB=AC,AD平分∠BAC.求证:∠DBC=∠DCB.证明:∵AD平分∠BAC,∴∠BAD=∠CAD.∴在△ABD和△ACD中,∴△ABD≌△ACD,∴BD=CD,∴∠DBC=∠DCB.22.如图梯形ABCD中,AD∥BC,AB=AD=CD,BD⊥CD,求∠C的度数.解:∵AB=AD=CD∴∠ABD=∠ADB∵AD∥BC∴∠ADB=∠DBC∴∠ABD=∠DBC∴BD为∠B的平分线∵AD∥BC,AB=AD=CD∴梯形ABCD为等腰梯形∴∠B=∠C∵BD⊥CD∴∠C+∠C=90°∴∠C=60°23.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB 的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△ADE和△BFE中,,∴△ADE≌△BFE(AAS);(2)解:EG与DF的位置关系是EG垂直平分DF,理由为:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△ADE≌△BFE得:DE=FE,即GE为DF上的中线,∴GE垂直平分DF.24.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.试回答:(1)图中等腰三角形是△AEF、△OEB、△OFC、△OBC、△ABC.猜想:EF 与BE、CF之间的关系是EF=BE+CF.理由:(2)如图②,若AB≠AC,图中等腰三角形是△EOB、△FOC.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.解:(1)图中是等腰三角形的有:△AEF、△OEB、△OFC、△OBC、△ABC;EF、BE、FC的关系是EF=BE+FC.理由如下:∵OB、OC平分∠ABC、∠ACB,∴∠ABO=∠OBC,∠ACO=∠OCB;∵EF∥BC,∴∠EOB=∠OBC=∠EBO,∠FOC=∠OCB=∠FCO;即EO=EB,FO=FC;∴EF=EO+OF=BE+CF.(2)当AB≠AC时,△EOB、△FOC仍为等腰三角形,(1)的结论仍然成立.(证明过程同(1))(3)△EOB和△FOC仍是等腰三角形,EF=BE﹣FC.理由如下:同(1)可证得△EOB是等腰三角形;∵EO∥BC,∴∠FOC=∠OCG;∵OC平分∠ACG,∴∠ACO=∠FOC=∠OCG,∴FO=FC,故△FOC是等腰三角形;∴EF=EO﹣FO=BE﹣FC.五、附加题:25.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC 的哪条边上相遇?解:(1)①∵t=1s,∴BP=CQ=3×1=3cm,∵AB=10cm,点D为AB的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD和△CQP中,∴△BPD≌△CQP(SAS).②∵v P≠v Q,∴BP≠CQ,若△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q运动的时间s,∴cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,解得.∴点P共运动了×3=80cm.△ABC周长为:10+10+8=28cm,若是运动了三圈即为:28×3=84cm,∵84﹣80=4cm<AB的长度,∴点P、点Q在AB边上相遇,∴经过s点P与点Q第一次在边AB上相遇.。
初二数学轴对称图形经典题

初二数学增补习题一、选择题1.以下命题中:①两个全等三角形合在一同是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直均分线;④一条线段能够看着是以它的垂直均分线为对称轴的轴对称图形.正确的说法有()个A.1 个B.2 个C.3 个D.4 个2.以下图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形.此中是轴对称图形有()个A.1 个B.2 个C.3 个D.4 个3.已知∠ AOB=30°,点 P 在∠ AOB的内部, P1与 P 对于 OA对称, P2与 P 对于 OB对称,则△P OP是()12A.含 30°角的直角三角形;B.顶角是 30 的等腰三角形;A C.等边三角形D.等腰直角三角形 .4.如图:等边三角形ABC中, BD= CE, AD与 BE订交于点 P,则∠ APE的度数是()A.45°B.55°EP C.60°D.75°5. 等腰梯形两底长为4cm 和 10cm,面积为 21cm2,则这个梯形较小B CD 的底角是()度 .A.45°B.30°C.60°D.90°6.已知点 P 在线段 AB的中垂线上,点Q 在线段 AB的中垂线外,则()A . PA+PB> QA+QB B. PA+PB< QA+QBD . PA+PB= QA+QB D.不可以确立7.已知△ ABC与△ A1B1C1对于直线 MN对称,且 BC与 B1C1交与直线 MN上一点 O,则()A.点 O 是 BC 的中点B.点 O是 B C 的中点11C .线段 OA与 OA1对于直线MN对称D.以上都不对8.如图:已知∠AOP=∠BOP=15°, PC∥ OA,B PD⊥ OA,若 PC=4,则 PD=()A.4B. 3CC.2D. 1P9.∠ AOB的均分线上一点P 到 OA的距离为 5, Q 是 OB上任一点,则()O AA .PQ>5B.PQ≥5DC .PQ<5D.PQ≤510 .等腰三角形的周长为15cm,此中一边长为 3cm.则该等腰三角形的底长为()A.3cm 或 5cm B . 3cm 或 7cm C. 3cm D. 5cm 二.填空题11.线段轴是对称图形,它有_______ 条对称轴.12.等腰△ ABC中,若∠ A=30°,则∠ B=________.13.在 Rt △ ABC中,∠C=90°,AD均分∠ BAC交 BC于 D,若 CD=4,则点 D到 AB的距离是__________ .14.等腰△ ABC中, AB=AC=10,∠ A=30°,则腰 AB上的高等于 ___________ .15.如图:等腰梯形ABCD中, AD∥ BC, AB=6, AD=5, BC=8,且 AB∥ DE,则△ DEC的周长是____________ .A D 16.等腰梯形的腰长为2,上、下底之和为10 且有一底角为60°,则它的两底长分别为____________ .17.若 D 为△ ABC的边 BC上一点,且 AD=BD, AB=AC=CD,CBE 则∠ BAC=____________.18.△ ABC中,AB、AC的垂直均分线分别交BC 于点 E、F,若∠ BAC=115°,则∠ EAF=___________.三.解答题19.如图:已知∠ AOB和 C、 D 两点,求作一点 P,使 PC=PD,且 P 到∠ AOB两边的距离相等.②如图:某地有两所大学和两条订交错的公路,(点 M,N表示大学, AO,BO表示公路) .AC·A· DO M现计划修筑O N B 一座物质库房,希望库房到两所大学的B 距离相等,到两条公路的距离也相等。
轴对称选择测试卷

轴对称选择测试题1.下列各图中,是轴对称图案的是()2.下列说法中,正确的是( )A.两个全等三角形组成一个轴对称图形 B.直角三角形一定是轴对称图形C.轴对称图形是由两个图形组成的 D.等边三角形是有三条对称轴的轴对称图形3.如图,ΔABC和ΔA’B’C’关于直线对称,下列结论中:①ΔABC≌ΔA’B’C’;②△BAC’≌△B’AC;③l垂直平分CC’;④直线BC和B’C’的交点不一定在l上,正确的有( ) A.4个 B.3个C.2个 D.1个4.如图,∠AOB内一点P,P1、P2分别是P关于OA、OB的对称点,P1P2交OA于M,交OB于N,若P1P2=5cm,则ΔPMN的周长是( ) A. 3cm B. 4cm C. 5cm D. 6cm5.如图,把一个正方形对折两次后沿虚线剪下,展开后所得的图形是()6.已知两条互不平行的线段AB和A′B′关于直线1对称,AB和A′B′所在的直线交于点P,下面四个结论:①AB=A′B′;②点P在直线1上;③若A、A′是对应点,则直线1垂直平分线段AA′;④若B、B′是对应点,则PB=PB′,其中正确的是()A、①③④B、③④C、①②D、①②③④7.如图,直线l1与l2相交,且夹角为60°,点P在角的内部,小明用下面的方法作P的对称点:先以l1为对称轴作点P关于l1的对称点P1,再以l2为对称轴作P1关于l2的对称点P2,然后再以l1为对称轴作P2关于l1的对称点P3,以l2为对称轴作P3关于l2的对称点P4,…,如此继续,得到一系列的点P1,P2,…,P n,若P n与P重合,则n的可以是()A.2016 B.2015 C.2014 D.20128.下列语句:①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③一个轴对称图形不一定只有一条对称轴;④两个轴对称图形的对应点一定在对称轴的两侧. 其中正确的个数是()A.1B.2C.3D.49.下列说法:①角是轴对称图形,对称轴是角的平分线;②等腰三角形至少有1条对称轴,至多有3条对称轴;③关于某直线对称的两个三角形一定是全等三角形;④两图形关于某直线对称,对称点一定在直线的两旁. 其中正确说法的个数有() A.1个 B.2个 C.3个 D.4个10.已知O为锐角△ABC的∠C平分线上一点,O关于AC、BC的对称点分别为P、Q,则△POQ一定是( )A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形11.在△ABC中,AB=AC,下列推理中错误的是()A、如果AD是中线,那么AD⊥BC,∠BAD=∠DACB、如果BD是高,那么BD是角平分线C、如果AD是高,那么∠BAD=∠DAC、BD=DCD、如果AD是角平分线,那么AD也是BC边的垂直平分线12.三角形的三边长a,b,c满足式子(a-b)2+(b-c)2+︱c-a︱=0,那么这个三角形是()A、钝角三角形B、等边三角形C、等腰非等边三角形D、以上都不对13.正三角形ABC所在平面内有一点P,使得△PAB、△PBC、△PCA都是等腰三角形,则这样的P点有()A 1个B 4个C 7个D 10个14.如图,QC=AP=AQ=BP=PQ,则∠BAC=()A、1250 B、1300 C、900 D、120015.如图,△ABC中,AB=AC,BD、CE为中线,图中共有等腰三角形()个 A、4 B、6 C、3 D、516.如图,AB=AC,AE=EC,∠ACE=280,则∠B的度数是()A、600 B、700 C、760 D、45017.如图是一个等边三角形木框,甲虫P在边框AC上(端点A、C除外),设甲虫P到另外两边距离之和为d,等边三角形ABC的高为h,则d与h的大小关系是() A、d>h B、d<h C、d=h D、无法确定18.等腰三角形的底边长为10cm,一腰上的中线把三角形的周长分成两部分,其中一部分比另一部分长4cm,则这个三角形的腰长是() A.6cm B.14cm C.6cm或14cm D.17cm或11cm19.△MNP中,∠P=600,MN=NP,MQ⊥PN于点Q,延长MN至G,取NG=NQ,连结GQ,若△MNP的周长为12,MQ=a,则△MGQ周长是()A.8+2a B.8+a C.6+a D.6+2a20.在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C=()A 25° B 30° C 35° D 45°21.有一个等腰三角形,三边分别是3x-2,4x-3,6-2x,则等腰三角形的周长()A 9 B 8 C 8.5或9 D 1022.等边三角形两条角平分线所夹锐角的度数是()A.120° B.150° C.60° D.90°23.如果一个三角形的一条边上的中点到其他两边的距离相等,那么它一定是()A 等边三角形B 等腰三角形C 不等边三角形D 不等腰钝角三角形24.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20°或100° B.120° C.20°或120° D.36°25.等腰三角形一腰上的高与另一腰的夹角是50°,则这个等腰三角形的底角为()A.70° B.20° C.70°或20° D.40°或140°26.在△ABC中,AB=AC,BC=x ,若△ABC的周长为24,则x的取值范围是()A 1≤x≤12B 0<x≤12C 0<x<12D 6<x<1227.已知∠AOB=30°,点P在∠AOB的内部,P1与P关于OB对称,P2与P关于OA对称,则O,P1,P2三点构成的三角形是()A.直角三角形 B.钝角三角形 C.等腰三角形 D.等边三角形28.如图,已知△ABC中,CD平分∠ACB交AB于D,又DE∥BC,交AC于E,若DE=4 cm,AE=5 cm,则AC等于()A.5 cmB.4 cmC.9 cmD.1 cm29.如图,在△ABC中,已知AB=AC,DE垂直平分AC,∠A=500, 则∠DCB的度数是( )A 150 B 300 C 500 D 65030.如图,等边△ABC中,BD=CE,AD与BE相交于P点,则∠APE的度数是()A. 450 B. 550 C. 600 D.75031.如图,点E是等边△ABC内一点,且EA=EB,△ABC外一点D满足BD=AC,且BE平分∠DBC,则∠BDE的度数是()A.30° B.45° C.60° D.75°32.如图,在△ABC中,AB=AC,∠BAC=500,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC 上,F在AC上)折叠,点C与点O恰好重合,则∠OEC度数是()A 1000 B 1100 C 1200 D 130033.如图,AC+BC=24,AO、BO是角平分线,且MN∥BA,△CMN的周长为()A 12 B 24 C 36 D不确定34.如图,△ABC的顶点坐标分别为A(-4,-3),B(0,-3),C(-2,1),如将B点向右平移2个单位后再向上平移4个单位到达B1点,若设△ABC的面积为S1,△AB1C的面积为S2,则S1,S2的大小关系为()A S1>S2B S1=S2C S1<S2D 不能确定35.若等腰△腰上的高是腰长的一半,则这个等腰△的底角是()A 750或150 B 750 C 150 D 750和30036.下列说法:①等腰三角形的底角是锐角;②等腰三角形两腰上的高相等;③等腰三角形的角平分线、中线和高是同一条线段;④等腰三角形两腰上的中线相等,其中错误的有( )个 A.0 B.1 C.2 D.337.已知M(a,3)和N(4,b)关于y轴对称,则(a+b)2008的值为()A 1 B -1 C 72007 D -7200738.在下列说法中,正确的是() A 如果两个三角形全等,则它们必是关于直线成轴对称的图形 B 如果两个三角形关于某直线成轴对称,那么它们是全等三角形C 等腰三角形是关于底边中线成轴对称的图形D 一条线段是关于经过该线段中点的直线成轴对称的图形39.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( ) A.在AC、BC两边高线的交点处 B.在AC、BC两边中线的交点处 C.在AC、BC两边垂直平分线的交点处 D.在∠A、∠B两内角平分线的交点处40.如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行直线,桥要与河岸垂直)()轴对称选择测试题答案1 B2 D3 B4 C5 B6 D7 A8 B9 B 10 B 11 B 12 B 13 C 14 D 15 A16 C 17 C 18 C 19 D 20 A 21 C 22 C 23 B 24 C 25 C 26 C 27 D 28 C29 A 30 C 31 A 32 A 33 B 34 B 35 B 36 C 37 A 38 B 39 C 40 D7.分析:根据题意画出图形进而得出每对称6次回到P点,进而得出符合题意的答案.解:如图所示:P1,P2,…,P n,每对称6次回到P点,∵2016÷6=336,∴P n与P重合,则n的可以是:2016.故选:A.。
人教版八年级上册数学《轴对称》单元检测(附答案)

人教版数学八年级上学期《轴对称》单元测试满分120分时间100分钟一.选择题(每题3分,共计30分)1.(2020•泰兴市一模)如图,四个图标分别是剑桥大学、北京理工大学、浙江大学和北京大学的校徽的重要组成部分,其中是轴对称图形的是()A.B.C.D.2.(2020•大丰区期末)如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B 度数为()A.30°B.60°C.90°D.120°3.(2020•顺德区四模)若点A(﹣3,2)与点B关于x轴对称,则点B的坐标是() A.(﹣3,2) B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)4.(2020•忻州期末)如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位5.(2020•宿豫区期中)如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长等于()A.12 B.10 C.8 D.66.(2020•碑林区模拟)如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°7.(2020 •北镇市期中)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的高,若AD=3cm,则斜边AB的长为()A.3cm B.6cm C.9cm D.12cm8.(2020•上城区二模)若等腰三角形的一个外角度数为100°,则该等腰三角形顶角的度数为()A.80°B.100° C.20°或100°D.20°或80°9.(2020•方城县期末)如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根 B.8根C.9根D.10根10.(2020•射阳县期末)如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2020的坐标是()A.(5,3) B.(3,5) C.(0,2) D.(2,0)二.填空题(每题3分,共计15分)11.(2020•萧山区期末)在平面直角坐标系xOy中,点(﹣3,2)与点(3,2)关于(填写x或y)轴对称.12.(2020•厦门模拟)如图,AB=AC,AD∥BC,∠DAC=50°,则∠B的度数是.13.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.14.(2020•宿豫区期中)如图,在△ABC中,AB=10,AC=8,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.则△AMN的周长为.15.(2020•平潭县期末)已知A(0,2)和B(4,2),点P在x轴上,若要使PA+PB最小,则点P的坐标为.三.解答题(共75分)16.(8分)(2020 •南岗区期中)用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.17.(9分)(2020•平谷区期末)如图,已知∠AOB,作∠AOB的平分线OC,将直角尺DEMN 如图所示摆放,使EM边与OB边重合,顶点D落在OA边上,DN边与OC交于点P.(1)猜想△DOP是三角形;(2)补全下面证明过程:∵OC平分∠AOB∴=∵DN∥EM∴=∴=∴=18.(9分)(2020•沙坪坝区自主招生)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC 交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.19.(9分)(2020黑河期末)如图,在正方形网格中,△ABC的三个顶点都在格点上,A(2,3),B(1,1),C(4,2).结合所给的平面直角坐标系解答下列问题:(1)直接写出△ABC的面积;(2)请在图中作出与△ABC关于x轴对称的△A'B'C';(3)在(2)的条件下,若M(x,y)是△ABC内部任意一点,请直接写点M在△A'B'C'内部的对应点M'的坐标.20.(9分)(2020•兴化市期中)△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于点E、F.(1)求证:EF=BE+FC;(2)若△ABC的周长比△AEF的周长大10,试求出BC的长度.21.(10分)(2020•曹县期末)如图,已知△ABC,点B在直线a上,直线a,b相交于点O.(1)画△ABC关于直线a对称的△A1B1C1;(2)在直线b上画出点P,使BP+CP最小.22.(10分)(2020•永安市期末)已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC 上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.23.(11分)(2020•济源期末)如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是厘米/秒.(直接写出答案)参考答案一.选择题(每题3分,共计30分)1.(2020•泰兴市一模)如图,四个图标分别是剑桥大学、北京理工大学、浙江大学和北京大学的校徽的重要组成部分,其中是轴对称图形的是()A.B.C.D.【解析】D【解答】A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.2.(2020•大丰区期末)如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B 度数为()A.30°B.60°C.90°D.120°【解析】C【解答】∵△ABC与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∴∠C=∠C′=60°,∵∠A=30°,∴∠B=180°﹣∠A﹣∠C=90°,故选:C.3.(2020•顺德区四模)若点A(﹣3,2)与点B关于x轴对称,则点B的坐标是() A.(﹣3,2) B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)【解析】B【解答】∵点A(﹣3,2)与点B关于x轴对称,∴点B的坐标是(﹣3,﹣2).故选:B.4.(2020•忻州期末)如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位【解析】A【解答】∵纵坐标乘以﹣1,∴变化前后纵坐标互为相反数,又∵横坐标不变,∴所得三角形与原三角形关于x轴对称.故选:A.5.(2020•宿豫区期中)如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长等于()A.12 B.10 C.8 D.6【解析】B【解答】∵DE是AB的垂直平分线,∴EA=EB,由题意得,BC+CE+BE=18,则BC+CE+AE=18,即BC+AC=18,又BC=8,∴AC=10,故选:B.6.(2020•碑林区模拟)如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°【解析】B【解答】∵CD=DE,∴∠DEC=∠C=75°,∴∠D=180°﹣∠C﹣∠DEC=180°﹣75°﹣75°=30°,∵AB∥CD,∴∠A=∠D=30°;故选:B.7.(2020 •北镇市期中)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的高,若AD=3cm,则斜边AB的长为()A.3cm B.6cm C.9cm D.12cm【解析】D【解答】∵CD是斜边AB上的高,∴∠ADC=90°,∵∠A=60°,∠ACB=90°,∴∠B=180°﹣∠ACB﹣∠A=30°,∠ACD=180°﹣∠ADC﹣∠A=30°,∵AD=3cm,∴AC=2AD=6cm,∴AB=2AC=12cm,故选:D.8.(2020•上城区二模)若等腰三角形的一个外角度数为100°,则该等腰三角形顶角的度数为()A.80°B.100° C.20°或100°D.20°或80°【解析】D【解答】当100°的角是顶角的外角时,顶角的度数为180°﹣100°=80°;当100°的角是底角的外角时,底角的度数为180°﹣100°=80°,所以顶角的度数为180°﹣2×80°=20°;故顶角的度数为80°或20°.故选:D.9.(2020•方城县期末)如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根 B.8根C.9根D.10根【解析】B【解答】∵添加的钢管长度都与BD相等,∠ABC=10°,∴∠DBE=∠DEB=10°,∴∠EDF=∠DBE+∠DEB=20°,∵DE=EF,∴∠EDF=∠EFD=20°,∴∠FEG=∠ABC+∠EFD=30°,…由此思路可知:第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,第四个是40°,第五个是50°,第六个是60°,第七个是70°,第八个是80°,第九个是90°(与三角形内角和为180°相矛盾)就不存在了.所以一共有8个,∴添加这样的钢管的根数最多是8根.故选:B.10.(2020•射阳县期末)如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2020的坐标是()A.(5,3) B.(3,5) C.(0,2) D.(2,0)【解析】D【解答】由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,0),点P5的坐标为(5,3),2020÷4=505,∴P2020的坐标为(2,0),故选:D.二.填空题(每题3分,共计15分)11.(2020•萧山区期末)在平面直角坐标系xOy中,点(﹣3,2)与点(3,2)关于(填写x或y)轴对称.【解析】y【解答】∵点(﹣3,2)与点(3,2)的横坐标互为相反数,纵坐标相同,∴点(﹣3,2)与点(3,2)关于y轴对称,故答案为y.12.(2020•厦门模拟)如图,AB=AC,AD∥BC,∠DAC=50°,则∠B的度数是.【解析】50°【解答】∵AD∥BC,∠DAC=50°,∴∠C=∠DAC=50°,∵AB=AC,∴∠B=∠C=50°,故答案为:50°.13.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.【解析】6【解答】∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE∥AB,DF∥AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.14.(2020•宿豫区期中)如图,在△ABC中,AB=10,AC=8,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.则△AMN的周长为.【解析】18【解答】∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∵MN∥BC,∴∠MOB=∠OBC,∴∠ABO=∠MOB,∴BM=OM,同理CN=ON,∴△AMN的周长是:AM+NM+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=10+8=18.故答案为:18.15.(2020•平潭县期末)已知A(0,2)和B(4,2),点P在x轴上,若要使PA+PB最小,则点P的坐标为.【解析】(2,0)【解答】如图,∵A(0,2)∴点A关于x轴的对称点A′(0,﹣2),∵B(4,2),连接A′B交x轴于点P, ∵AB=4,AB∥x轴,O是AA′中点,∴P是A′B的中点,∴OP是△A′AB的中位线,∴OP=12AB=2,若要使PA+PB最小,则点P的坐标为(2,0).故答案为(2,0).三.解答题(共75分)16.(8分)(2020 •南岗区期中)用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.解:(1)当等腰三角形的腰长为4,∴底边长为18﹣4×2=10,∵4+4<10,∴4、4、10不能组成三角形,当等腰三角形的底边长为4,∴腰长为(18﹣4)÷2=7,∵4+7>7,∴4、7、7能组成三角形,综上所述,其他两边分别为4和7.(2)设等腰三角形的三边长为x、x、y,由题意可知:2x+y=18,且2x>y,∴y<9,∵x=18−y2=9−y2,x与y都是整数,∴y是2的倍数, ∴y=2时,x=8, y=4时,x=7,y=8,x=5.17.(9分)(2020•平谷区期末)如图,已知∠AOB,作∠AOB的平分线OC,将直角尺DEMN 如图所示摆放,使EM边与OB边重合,顶点D落在OA边上,DN边与OC交于点P.(1)猜想△DOP是等腰三角形;(2)补全下面证明过程:∵OC平分∠AOB∴∠DOP=∠BOP∵DN∥EM∴∠DPO=∠BOP∴∠DOP=∠DPO∴OD=PD解:(1)我们猜想△DOP是等腰三角形;(2)补全下面证明过程:∵OC平分∠AOB,∴∠DOP=∠BOP,∵DN∥EM,∴∠DPO=∠BOP,∴∠DOP=∠DPO,∴OD=PD.故答案为:等腰,∠DOP,∠BOP,∠DPO,∠BOP,∠DOP,∠DPO,OD,PD.18.(9分)(2020•沙坪坝区自主招生)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC 交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.证明:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∠A=36°,∴BD=AD,即△ABD是等腰三角形;(2)∵点E是AB的中点,∴AE=EB,∴∠DEB=90°,∴∠BDE=90°﹣36°=54°.19.(9分)(2020黑河期末)如图,在正方形网格中,△ABC的三个顶点都在格点上,A(2,3),B(1,1),C(4,2).结合所给的平面直角坐标系解答下列问题:(1)直接写出△ABC的面积;(2)请在图中作出与△ABC关于x轴对称的△A'B'C';(3)在(2)的条件下,若M(x,y)是△ABC内部任意一点,请直接写点M在△A'B'C'内部的对应点M'的坐标.解:(1)△ABC的面积为2×3−12×1×2−12×1×2−12×1×3=52;(2)如图所示,△A'B'C'即为所求.(3)点M在△A'B'C'内部的对应点M'的坐标为(x,﹣y).20.(9分)(2020•兴化市期中)△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于点E、F.(1)求证:EF=BE+FC;(2)若△ABC的周长比△AEF的周长大10,试求出BC的长度.解:(1)∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵∠ABC和∠ACB的平分线交于点O,∴∠EBO=∠OBC,∠OCB=∠FCO,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,OF=FC;∴EF=BE+FC;(2)由(1)证得BE=OE,OF=CF,∴△AEF的周长=AE+EF+AF=AE+EO+OF+AF=AE+BE+FC+AF=AB+AC,∵△ABC的周长比△AEF的周长大10,∴BC=AB+AC+BC﹣AB+AC=10.21.(10分)(2020•曹县期末)如图,已知△ABC,点B在直线a上,直线a,b相交于点O.(1)画△ABC关于直线a对称的△A1B1C1;(2)在直线b上画出点P,使BP+CP最小.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,点P即为所求.22.(10分)(2020•永安市期末)已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC 上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.解:(1)∵△ABC是等边三角形,∴∠B=∠A=∠C=60°,∵∠B+∠1+∠DEB=180°,∠DEB+∠DEF+∠2=180°,∵∠DEF=60°,∴∠1+∠DEB=∠2+∠DEB,∴∠2=∠1=50°;(2)∵∠B+∠1+∠DEB=180°,∠FDE+∠3+∠DEF=180°,又∵∠B=60°,∠DEF=60°,∠1=∠3,∴∠FDE=∠DEB,∴DF∥BC.23.(11分)(2020•济源期末)如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是厘米/秒.(直接写出答案)解:(1)①△BMN≌△CDM.理由如下:∵V N=V M=3厘米/秒,且t=2秒,∴CM=2×3=6(cm)BN=2×3=6(cm)BM=BC﹣CM=10﹣6=4(cm)∴BN=CM∵CD=4(cm)∴BM=CD∵∠B=∠C=60°,∴△BMN≌△CDM.(SAS)②设运动时间为t秒,△BMN是直角三角形有两种情况:Ⅰ.当∠NMB=90°时,∵∠B=60°,∴∠BNM=90°﹣∠B=90°﹣60°=30°.∴BN=2BM,∴3t=2×(10﹣3t)∴t=209(秒);Ⅱ.当∠BNM=90°时,∵∠B=60°,∴∠BMN=90°﹣∠B=90°﹣60°=30°.∴BM=2BN,∴10﹣3t=2×3t∴t=109(秒).∴当t=209秒或t=109秒时,△BMN是直角三角形;(2)分两种情况讨论:I.若点M运动速度快,则3×25﹣10=25V N,解得V N=2.6;Ⅱ.若点N运动速度快,则25V N﹣20=3×25,解得V N=3.8.故答案是3.8或2.6.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轴对称与轴对称图形测试题Revised on November 25, 2020E CBAD一、 选择题(每题3分,共30分)1. 下列图案是我国几家银行的标志,其中不是..轴对称图形的是( ) 2. 如下书写的四个汉字,其中为轴对称图形的是( )A .B . C. D.3 . 如图,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在( )A .在AC 、BC 两边高线的交点处B .在AC 、BC 两边中线的交点处C .在AC 、BC 两边垂直平分线的交点处D .在∠A 、∠B 两内角平分线的交点处 4 . 如图,直线L 1,L 2,L 3表示三条相互交叉的公路,现要建一个货物中转站,•要求它到三条公路的距离相等,则可供选择的地址有( ) A .一处 B .二处 C .三处 D .四处 5 . 等腰三角形的对称轴是( )A .顶角的平分线B .底边上的高C .底边上的中线D .底边上的高所在的直线6 . 如图,AB AC BD BC ==,,若40A ∠=,则ABD ∠的度数是( ) A .20B .30C .35D .407 . 下列说法不成立的是( )A.若两图形关于某直线对称,那么对称轴是对应点连线的中垂线B.两图形若关于某直线对称,则两图形能重合.C.等腰三角形是轴对称图形D.线段的对称轴只有一条8 . .如图,在四边形ABCD 中,边AB 与AD 关于AC 对称,则下面结论正确的是( )①CA 平分∠BCD ;②AC 平分∠BAD ;③DB ⊥AC ;④BE=DE.A.②B.①②C.②③④D.①②③④A B C DABC图4 第3题 BADCABCD 9. 哪一面镜子里是他的像( )10 .一个等腰三角形但不是等边三角形,它的角平分线、高线、中线总数共( )条A .9 B. 7 C. 6 D. 3 二、填空题(每题3分,共30分)11. 观察下面的英文字母,其中是轴对称图形的有_____个.A ,C ,D ,E ,F ,H ,J ,S ,M ,Y ,Z12 . 等腰三角形的一个内角是700,则它的另外两个角的度数分别是_____. 13 . 如图,三角形ABC 中,AB=AC ,∠A=40度,AB 的垂直平分线MN 交AC 于D ,连接BD ,∠DBC 等于_____度.14. 如图所示的两个三角形关于某条直线对称,∠1=110°,∠2=46°,则x = .15. 如图,镜子中号码的实际号___________.16. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D,点D 到AB 的距离为5cm,则CD=_____cm.17. 已知AD 是等边△ABC 的高,BE 是AC 边的中线,AD 与BE 交于点F ,则∠AFE=______.18 .如图是一个轴对称图形,AD 所在的直线是对称轴,仔细观察图形,回答下列问题:(1) 线段BO 、CF 的对称线段是_____________; (2)△ACE 的对称三角形是______________.19. 一辆汽车的车牌在水中的倒影如图所示,则该车的车牌号码是____.20 . 小明把一张长方形的纸对折2次,描上一个四边形,再剪去这个图形(镂空),展开长方形纸,得到如下图案,设折痕为123,,l l l ,观察图形并填空:1x2第14四边形①与四边形②关于______成轴对称;折痕2l 既是_____与______的对称轴;又是_____与______的对称轴;整体看也是_____与______的对称轴. 三、 解答题(共40分)21. (本题满分10分)如图,分别以AB 为对称轴,画出各图形的对称图形.22. (本题满分10分)如图,已知点M 、N 和∠AOB,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.23. (本题满分10分)如图,在△ABC 中,已知AB =AC ,AD 为∠BAC 的平分线,且∠2=25°,求∠BAC 和∠B 的度数.24. (本题满分10分) 如图,△ABC 中,∠BAC=1100,DE 、FG 分别为AB 、AC 的垂直平分线,E 、G 分别为垂足.(1) 求∠DAF 的度数. (2)如果BC ﹦10cm ,求△DAF 的周长.一、填空题(每题2分,共32分)1.线段轴是对称图形,它有_______ 2.下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑,哪一个..与其他三.个.不同请指出这个图形,并说明理由.答:这个图形是: (写出序号即可),理由是 .3.等腰△ABC 中,若∠A=30°,则∠B=________.4.△ABC 中,AD ⊥BC 于D ,且BD=CD ,若AB=3,则AC=__ __.5.在Rt△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若CD=4,则点D 到AB 的距离是__________.6.判断下列图形(如图所示)是不是轴对称图形.7.等腰△ABC 中,AB=AC=10,∠A=30°,则腰AB 上的高等于___________. 8.如图,△ABC 中,AD 垂直平分边BC ,且△ABC 的周长为24,则AB+BD = ;又若∠CAB=60°,则∠CAD = .9.如图,△ABC 中,EF 垂直平分AB ,GH 垂直平分AC ,设EF 与GH 相交于O ,则点O 与边BC 的关系如何请用一句话表示: .C BAB A AH10.如图:等腰梯形ABCD 中,AD∥BC ,AB=6,AD=5,BC=8,且AB∥DE ,则△DEC 的周长是____________.11.请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.12.等腰梯形的腰长为2,上、下底之和为10且有一底角为60°,则它的两底长分别为____________.13.等腰三角形的周长是25 cm,一腰上的中线将周长分为3∶2两部分,则此三角形的底边长为 ___.14.如图,三角形1与_____成轴对称图形,整个图形中共有_____条对称轴.15.如图,将长方形ABCD 沿对角线BD 折叠,使点C 恰好落在如图C 1的位置,若∠DBC=30o ,则∠ABC 1=________.16.如图是小明制作的风筝,为了平衡制成了轴对称图形,已知OC 是对称轴,∠A=35o ,∠BCO=30o ,那么∠AOB=____ ___. 二、解答题(共68分)17.(5分)已知点M )5,3(b a -,N )32,9(b a +关于x 轴对称,求ab 的值.18.(5分)已知AB=AC ,BD=DC ,AE 平分∠FAC ,问:AE 与AD 是否垂直为什么19.(5分)如图,已知:△ABC 中,BC <AC ,AB 边上的垂直平分线DE 交AB 于D ,交AC 于E ,AC=9 cm ,△BCE 的周长为15 cm ,求BC 的长.20.(5分)如图所示,已知△ABC 和直线MN .求作:△A′B′C′,使△A′B′C′和△ABC 关于直线MN 对称.(不要求写作法,只保留作图痕迹)22.(5分)如图,在ABC 中,AB=AC ,A=92,延长AB 到D ,使BD=BC ,连结DC .求D 的度数,ACD 的度数.第14题图 第15题图 第16题图 ABCAB C EFA CBPQ23.(5分)有一本书折了其中一页的一角,如图:测得AD=30cm,BE=20cm ,∠BEG=60°,求折痕EF 的长.24.(8分)如图所示,在△ABC 中,CD 是AB 上的中线,且DA=DB=DC .(1)已知∠A=︒30,求∠ACB 的度数; (2)已知∠A=︒40,求∠ACB 的度数;(3)已知∠A=︒x ,求∠ACB 的度数; (4)请你根据解题结果归纳出一个结论.25.(6分)如图所示,在等边三角形ABC 中,∠B 、∠C 的平分线交于点O ,OB 和OC 的垂直平分线交BC 于E 、F ,试用你所学的知识说明BE=EF=FC 的道理.26.(7分)已知AB=AC ,D 是AB 上一点,DE⊥BC 于E ,ED 的延长线交CA 的延长线于F ,试说明△ADF 是等腰三角形的理由.27.(7分)等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP=∠ACQ ,BP=CQ ,问△APQ 是什么形状的三角形试说明你的结论.28.(5分)如图①是一张画有小方格的等腰直角三角形纸片,将图①按箭头方向折叠成图②,再将图②按箭头方向折叠成图③.(1)请把上述两次折叠的折痕用实线画在图④中.(2)在折叠后的图形③中,沿直线l 剪掉标有A 的部分,把剩余部分展开,将所得到的图形在图⑤中用阴影表示出来. 一、选择题1.下列命题中:①两个全等三角形合在一起是一个轴对称图形;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高就是这边的垂直平分线;④一条线段可以看着是以它的垂直平分线为对称轴的轴对称图形. 正确的说法有( )个 A .1个B .2个C .3个D .4个AD B CABOEFC AF BCD EOA2.下列图形中:①平行四边形;②有一个角是30°的直角三角形;③长方形;④等腰三角形. 其中是轴对称图形有( )个 A .1个B .2个C .3个D .4个3.已知∠AOB =30°,点P 在∠AOB 的内部,P 1与P 关于OA 对称,P 2与P 关于OB 对称,则△P 1OP 2是( )A .含30°角的直角三角形;B .顶角是30的等腰三角形;C .等边三角形D .等腰直角三角形.4.如图:等边三角形ABC 中,BD =CE ,AD 与BE 相交于点P ,则∠APE 的度数是( ) A .45° B .55° C .60°D .75°5. 等腰梯形两底长为4cm 和10cm ,面积为21cm 2,则 这个梯形较小的底角是( )度. A .45°B .30°C .60°D .90°6.已知点P 在线段AB 的中垂线上,点Q 在线段AB 的中垂线外,则( ) A .PA+PB >QA+QB B .PA+PB <QA+QB D .PA+PB =QA+QBD .不能确定7.已知△ABC 与△A 1B 1C 1关于直线MN 对称,且BC 与B 1C 1交与直线MN 上一点O ,则( )A .点O 是BC 的中点B .点O 是B 1C 1的中点 C .线段OA 与OA 1关于直线D .以上都不对8.如图:已知∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD=)A .4B .3C .2D .19.∠AOB 的平分线上一点P 到OA 的距离为5,Q 是OB 上任一点,则 ( ) A .PQ >5 B .PQ≥5 C .PQ <5 D .PQ≤5P AECBD10.等腰三角形的周长为15cm ,其中一边长为3cm .则该等腰三角形的底长为( ) A .3cm 或5cm B .3cm 或7cmC .3cmD .5cm二.填空题11.线段轴是对称图形,它有_______条对称轴. 12.等腰△ABC 中,若∠A=30°,则∠B=________.13.在Rt △ABC 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若CD=4,则点D 到AB 的距离是__________.14.等腰△ABC 中,AB=AC=10,∠A=30°,则腰AB 上的高等于___________. 15.如图:等腰梯形ABCD 中,AD ∥BC ,AB=6,AD=5,BC=8,且AB ∥DE ,则△DEC 的周长是____________.16.等腰梯形的腰长为2,上、下底之和为10且有一底角为60°,则它的两底长分别 为____________.17.若D 为△ABC 的边BC 上一点,且AD=BD ,AB=AC=CD , 则∠BAC=____________.18.△ABC 中,AB 、AC 的垂直平分线分别交BC 于点E 、F ,若∠BAC=115°,则∠EAF=___________. 三.解答题19.如图:已知∠AOB 和C 、D 两点,求作一点P ,使PC=PD ,且P 到∠AOB 两边的距离相等.20.如图:AD 为△ABC 的高,∠B=2∠C ,用轴对称图形说明:CD=AB+BD .22.如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D ,① 若△BCD 的周长为8,求BC 的长;② 若BC=4,求△BCD 的周长.1.2,3 2.④,不是轴对称图形3.75度或30度4.3 5.4 6.(1)(3)(6)是轴对称图形,(2)(4)(5)不是轴对称图形 7.5 8.12 9.点O到BC两端的距离相等 10.15 11.正反写的4和6 12.4,6 13.353cm或5cm 14.2、4,2 15.30度 16.130度17.9 18.垂直 19.BC=6cm 20.略 21.略 22.22度,66度 23.20cm 24.(1)90度;(2)90度;(3)90度;(4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90度 25.略 26.略 27.是等边三角形 28.略1.A 2.B 3.C 4.C 5.A6.D7.C8.C9.B10.C11.2 12.30°、75°、120°13.414.515.1516.4、617.72°18.50°19.提示:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P;20.提示:在CD上取一点E使DE=BD,连结AE;21.EF=20㎝;22.①BC=3,②9;23.提示:△APQ为等边三角形,先证△ABP≌△ACQ得AP=AQ,再证∠PAQ=60°即可.。