2005-2011年北京高考数学(理科)汇编之选择填空题

合集下载

2011年高考数学北京卷(理科)含答案

2011年高考数学北京卷(理科)含答案

2011年高考数学——北京卷(理科)一.选择题1.已知集合 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 .若 EMBED Equation.DSMT4 ,则 EMBED Equation.DSMT4 的取值范围是 ( )A . EMBED Equation.DSMT4B . EMBED Equation.DSMT4C . EMBED Equation.DSMT4 D . EMBED Equation.DSMT42.复数 EMBED Equation.DSMT4( )A . EMBED Equation.DSMT4B . EMBED Equation.DSMT4C . EMBED Equation.DSMT4 D . EMBED Equation.DSMT43.在极坐标系中,圆的圆心的极坐标是 ( ) A . EMBED Equation.DSMT4 B . EMBED Equation.DSMT4C . EMBED Equation.DSMT4 D . EMBED Equation.DSMT44.执行如图所示的程序框图,输出的 EMBED Equation.DSMT4 值为( ) A . EMBED Equation.DSMT4 B . EMBEDEquation.DSMT4 C . EMBED Equation.DSMT4D . EMBED Equation.DSMT45.如图, EMBED Equation.DSMT4 , EMBED Equation.DSMT4, EMBED Equation.DSMT4 分别与圆 EMBED Equation.DSMT4切于点 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 , EMBED Equation.DSMT4 ,延长 EMBED Equation.DSMT4与圆 EMBED Equation.DSMT4 交于另一点 EMBEDEquation.DSMT4 .给出下列三个结论: ① EMBED Equation.DSMT4 ;② EMBED Equation.DSMT4 ;③ EMBED Equation.DSMT4 . 其中正确结论的序号是 ( )A .①②B .②③C .①③D .①②③6.根据统计,一名工人组装第 EMBED Equation.DSMT4 件某产品所用的时间(单位:11s s s -=+0,2i s ==4i <1i i =+s 输出开始结束第4题 CF O EG分钟)为 EMBED Equation.DSMT4( EMBED Equation.DSMT4 , EMBEDEquation.DSMT4 为常数),已知工人组装第4件产品用时30分钟,组装第 EMBED Equation.DSMT4 件产品用时15分钟, 那么 EMBED Equation.DSMT4 和 EMBED Equation.DSMT4 的值分别是( )A .75, 25B .75, 16C .60, 25D .60,167.某四面体的三视图如图所示,该四面体四个面的面积中最大的是( )A .8B . EMBED Equation.DSMT4C .10D . EMBED Equation.DSMT48.设 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 , EMBED Equation.DSMT4 , EMBED Equation.DSMT4 ( EMBED Equation.DSMT4 ).记 EMBED Equation.DSMT4为平行四边形 EMBED Equation.DSMT4 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数 EMBED Equation.DSMT4 的值域为 ( )A . EMBED Equation.DSMT4B . EMBED Equation.DSMT4C . EMBED Equation.DSMT4 D . EMBED Equation.DSMT4二.填空题9.在 EMBED Equation.DSMT4 中,若 EMBED Equation.DSMT4 , EMBED Equation.DSMT4, EMBED Equation.DSMT4 ,则 EMBED Equation.DSMT4_________; EMBED Equation.DSMT4 ________.10.已知向量 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 , EMBED Equation.DSMT4 .若 EMBED Equation.DSMT4 与 EMBED Equation.DSMT4 共线,则 EMBED Equation.DSMT4 ______.11.在等比数列 EMBED Equation.DSMT4 中,若 EMBED Equation.DSMT4 , EMBED Equation.DSMT4,则公比 EMBED Equation.DSMT4 ; EMBED Equation.DSMT4. 12.用数字2,3组成四位数,且数字2,3 至少都出现一次,这样的四位数共有 个(用数字作答).13.已知函数 EMBED Equation.DSMT4若关于 EMBED Equation.DSMT4 的方程 EMBED Equation.DSMT4 有两个不同的实根,则实数 EMBED Equation.DSMT4 的取值范围是 .14.曲线 EMBED Equation.DSMT4 是平面内与两个定点 EMBED Equation.DSMT4 和 EMBED Equation.DSMT4的距离的积等于常数 EMBED Equation.DSMT4 ( EMBED Equation.DSMT4 )的点的轨迹,给出下列三个结论:①曲线 EMBED Equation.DSMT4 过坐标原点;②曲线 EMBED Equation.DSMT4 关于坐标原点对称;③若点 EMBED Equation.DSMT4 在曲线 EMBED Equation.DSMT4 上,则 EMBED Equation.DSMT4 的面积不大于 EMBED Equation.DSMT4. 其中,所有正确结论的序号是 .三.解答题15.(13分)已知函数 EMBED Equation.DSMT4.(1)求 EMBED Equation.DSMT4 的最小正周期;(2)求 EMBED Equation.DSMT4 在区间 EMBED Equation.DSMT4上的最大值和最小值.16.(14分)如图,在四棱锥 EMBED Equation.DSMT4 中, EMBED Equation.DSMT4 平面 EMBED Equation.DSMT4 ,底面EMBED Equation.DSMT4 是菱形, EMBED Equation.DSMT4 , EMBED Equation.DSMT4.(1)求证 EMBED Equation.DSMT4 平面EMBED Equation.DSMT4 ;(2)若 EMBED Equation.DSMT4 ,求 EMBEDEquation.DSMT4 与 EMBED Equation.DSMT4 所成角的余弦值;(3)当平面 EMBED Equation.DSMT4 与平面 EMBED Equation.DSMT4 垂直时,求 EMBEDEquation.DSMT4 的长.17.(13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以 EMBED Equation.DSMT4 表示.999X 008甲组乙组 C A B DP(1)如果 EMBED Equation.DSMT4 ,求乙组同学植树棵数的平均数和方差;(2)如果 EMBED Equation.DSMT4 ,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数 EMBED Equation.DSMT4 的分布列和数学期望.18.(13分)已知函数 EMBED Equation.DSMT4 .(1)求 EMBED Equation.DSMT4 的单调区间;(2)若对于任意的 EMBED Equation.DSMT4 ,都有 EMBED Equation.DSMT4,求 EMBED Equation.DSMT4 的取值范围.19.(14分)已知椭圆 EMBED Equation.DSMT4,过点 EMBED Equation.DSMT4作圆 EMBED Equation.DSMT4的切线 EMBED Equation.DSMT4 交椭圆 EMBED Equation.DSMT4 于 EMBED Equation.DSMT4 , EMBED Equation.DSMT4 两点.(1)求椭圆 EMBED Equation.DSMT4 的焦点坐标和离心率;(2)将 EMBED Equation.DSMT4 表示为 EMBED Equation.DSMT4 的函数,并求 EMBED Equation.DSMT4 的最大值.20.(13分)若数列 EMBED Equation.DSMT4 : EMBED Equation.DSMT4 ( EMBED Equation.DSMT4 )满足 EMBED Equation.DSMT4( EMBED Equation.DSMT4 ),则称 EMBED Equation.DSMT4为 EMBED Equation.DSMT4 数列.记 EMBED Equation.DSMT4. (1)写出一个满足 EMBED Equation.DSMT4 ,且 EMBED Equation.DSMT4 的 EMBED Equation.DSMT4 数列 EMBED Equation.DSMT4; (2)若 EMBED Equation.DSMT4, EMBED Equation.DSMT4 .证明: EMBED Equation.DSMT4 数列 EMBED Equation.DSMT4是递增数列的充要条件是 EMBED Equation.DSMT4; (3)对任意给定的整数 EMBED Equation.DSMT4 ( EMBED Equation.DSMT4),是否存在首项为0的 EMBED Equation.DSMT4 数列 EMBED Equation.DSMT4 ,使得 EMBED Equation.DSMT4?若果存在,写出一个满足条件的 EMBED Equation.DSMT4 数列 EMBED Equation.DSMT4;如果不存在,说明理由.HYPERLINK "/showpic.html" \l"blogid=4dd457800100to0p&url=/orignal/4dd45780t76eca 3d71bb8" \t "_blank" INCLUDEPICTURE"/middle/4dd45780t76eca3d71bb8&690" \*MERGEFORMATINETHYPERLINK "/showpic.html" \l"blogid=4dd457800100to0p&url=/orignal/4dd45780ta53e66861fc5" \t "_blank" INCLUDEPICTURE"/middle/4dd45780ta53e66861fc5&690" \*MERGEFORMATINETHYPERLINK "/showpic.html" \l"blogid=4dd457800100to0p&url=/orignal/4dd45780t76eca 3e4c1a6" \t "_blank" INCLUDEPICTURE"/middle/4dd45780t76eca3e4c1a6&690" \*MERGEFORMATINETHYPERLINK "/showpic.html" \l"blogid=4dd457800100to0p&url=/orignal/4dd45780ta53e672feab7" \t "_blank" INCLUDEPICTURE"/middle/4dd45780ta53e672feab7&690" \*MERGEFORMATINETHYPERLINK "/showpic.html" \l"blogid=4dd457800100to0p&url=/orignal/4dd45780t76ec a3f73edb" \t "_blank" INCLUDEPICTURE"/middle/4dd45780t76eca3f73edb&690" \*MERGEFORMATINETHYPERLINK "/showpic.html" \l"blogid=4dd457800100to0p&url=/orignal/4dd45780ta53e 67c8b2da" \t "_blank" INCLUDEPICTURE"/middle/4dd45780ta53e67c8b2da&690" \* MERGEFORMATINETHYPERLINK "/showpic.html" \l"blogid=4dd457800100to0p&url=/orignal/4dd45780t76ec a400870c" \t "_blank" INCLUDEPICTURE"/middle/4dd45780t76eca400870c&690" \* MERGEFORMATINETHYPERLINK "/showpic.html" \l"blogid=4dd457800100to0p&url=/orignal/4dd45780t76ec a3c042eb" \t "_blank" INCLUDEPICTURE"/middle/4dd45780t76eca3c042eb&690" \* MERGEFORMATINETHYPERLINK "/showpic.html" \l"blogid=4dd457800100to0p&url=/orignal/4dd45780t76ec a3cc5f9e" \t "_blank" INCLUDEPICTURE"/middle/4dd45780t76eca3cc5f9e&690" \* MERGEFORMATINETHYPERLINK "/showpic.html" \l"blogid=4dd457800100to0p&url=/orignal/4dd45780ta53e6 60df7c8" \t "_blank" INCLUDEPICTURE"/middle/4dd45780ta53e660df7c8&690" \* MERGEFORMATINETHYPERLINK "/showpic.html" \l"blogid=4dd457800100to0p&url=/orignal/4dd45780ta53e 64a5792a" \t "_blank" INCLUDEPICTURE"/middle/4dd45780ta53e64a5792a&690" \* MERGEFORMATINET。

2005-2011年北京高考数学(理科)汇编之填空题

2005-2011年北京高考数学(理科)汇编之填空题

2005-2011年高考数学(理科)汇编之填空题二.填空题:本大题共6小题,每小题5分,共30分。

把答案填在题中横线上。

9.11在ABC ∆中。

若b=5,4B π∠=,tanA=2,则sinA=____________;a=_______________。

9.10 在复平面内,复数21ii-对应的点的坐标为 。

9.9.(不做)1lim1x x x xx →-=-___________。

9.8.已知2()2a i i -=,其中i 是虚数单位,那么实数a = .9.7.22(1)i =+ .9.6.(不做)22132lim 1x x x x →-++-的值等于__________________.9.5.若2121,43,2z z i z i a z 且-=+=为纯虚数,则实数a 的值为 . 10.11 已知向量a =(3,1),b =(0,-1),c =(k ,3)。

若a -2b 与c 共线,则k=___________________。

10.10 在△ABC 中,若b = 1, c =3,23C π∠=,则a = 。

10.9.若实数,x y 满足2045x y x y +-≥⎧⎪≤⎨⎪≤⎩则s y x =-的最小值为__________。

10.8.已知向量a 与b 的夹角为120,且4==a b ,那么(2)+b a b 的值为 .10.7.若数列{}n a 的前n 项和210(123)n S n n n =-=,,,,则此数列的通项公式为;数列{}n na 中数值最小的项是第项.10.6. 在72()x x-的展开式中,2x 的系数中__________________(用数字作答). 10.5.已知ααtan ,22tan则=的值为 ,)4tan(πα+的值为 .11.11在等比数列{a n }中,a 1=12,a 4=-4,则公比q=______________;12...n a a a +++=____________。

2011年高考北京数学试题(理科)及参考答案详解

2011年高考北京数学试题(理科)及参考答案详解

2011年高考数学——北京理科卷详解高考前,我们分别在1月底和4月底帮学生作过预测。

2011年高考与2010年相比:(1)新增知识点将增加出题量。

新增知识不会综合。

(2) 三角函数题变化不大,以函数为主。

(3)立体题考查基本图形中的变化,建系是工具 。

(4)概率大题 突出对数据的认识,图、表、直方图、茎叶图。

如果使用排列组合题目将简单。

(5)导数大题,眼下的题让人猜的透透的,将会有变化。

(6)解析大题,“解析几何首先是几何”“代数是手段”“解析几何的本质是把问题代数化。

(7)数列压轴。

沿用等差等比数列的研究方法研究新定义数列。

一.选择题1.已知集合2{|1}P x x =≤,{}M a =.若P M P = ,则a 的取值范围是( ) A .(,1]-∞- B .[1,)+∞ C .[1,1]- D .(,1][1,)-∞-+∞ 1、答案:C解:数轴法可知1a 1≤≤-2.复数212i i-=+ ( ) A .i B .i - C .4355i -- D . 4355i -+2、答案:A 。

解:i 41)2i 1)(2i (2i 12i z =+--=+-=3.在极坐标系中,圆的圆心的极坐标是 ( ) A .(1,)2πB .(1,)2π- C .(1,0)D .(1,)π 3、答案:B解:θρρsin 22-=,2y y x 22-=+,1)1y (x 22=++, 圆心)1,0(-。

改写为极坐标(1,2π-)4.执行如图所示的程序框图,输出的s 值为 ( ) A .3- B .12- C .13D .24、答案:D 。

解:0<4,i=1,31s =;…,,43<i=4,2s =11s s s -=+0,2i s ==4i <1i i =+s输出开始结束第4题5.如图,AD ,AE ,BC 分别与圆O 切于点D ,E ,F ,延长AF 与圆O 交于另一点G .给出下列三个结论:①AD AE AB BC CA +=++; ②AF AG AD AE ⋅=⋅; ③AFB ADG △△∽.其中正确结论的序号是 ( )A .①②B .②③C .①③D .①②③5、答案:A.解:综合运用切线长定理,圆幂定理。

2011年北京市高考理科数学试题及标准答案

2011年北京市高考理科数学试题及标准答案

2011年普通高等学校招生全国统一考试数 学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合2{|1}P x x =≤,{}M a =.若PM P =,则a 的取值范围是(A)(,1]-∞-(B)[1,)+∞(C )[1,1]-(D)(,1][1,)-∞-+∞ (2)复数212i i-=+ (A )i (B)i - (C)4355i -- (D)4355i -+ (3)在极坐标系中,圆2sin ρθ=-的圆心的极坐标是(A )(1,)2π (B )(1,)2π- (C )(1,0) (D)(1,)π(4)执行如图所示的程序框图,输出的s 值为(A)3-(B)12- (C)13(D)2(5)如图,,,AD AE BC 分别与圆O 切于点,,D E F ,延长AF 与圆O 交于另一点G 。

给出下列三个结论:① AD AE AB BC CA +=++;② AF AG AD AE ⋅=⋅;③ AFB ADG ∆∆其中,正确结论的序号是(A)① ② (B )② ③(C )① ③ (D )① ② ③(6)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为()x A f x x A <=≥(,A c 为常数)。

已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟, 那么c 和A 的值分别是(A )75,25 (B )75,16 (C )60,25 (D)60,16 (7)某四面体的三视图如图所示,该四面体四个面的面积中 最大的是(A ) 8(B)(C) 10(D)(8)设(0,0)A ,(4,0)B ,(4,4)C t +,(,4)D t (t R ∈),记()N t 为平行四边形内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数()N t 的 值域为(A ){9,10,11} (B){9,10,12} (C){9,11,12} (D ){10,11,12}A G俯视图。

2011北京高考数学真题(理科)及答案

2011北京高考数学真题(理科)及答案

2011北京高考数学真题(理科)一.选择题1.已知集合2{|1}P x x =≤,{}M a =.若PM P =,则a 的取值范围是 ( )A .(,1]-∞-B .[1,)+∞C .[1,1]-D .(,1][1,)-∞-+∞2.复数212i i-=+ ( ) A .i B .i - C .4355i -- D . 4355i -+3.在极坐标系中,圆的圆心的极坐标是 ( )A .(1,)2π B .(1,)2π- C .(1,0) D .(1,)π4.执行如图所示的程序框图,输出的s 值为 ( )A .3-B .12- C .13 D .25.如图,AD ,AE ,BC 分别与圆O 切于点D ,E ,F ,延长AF 与圆O 交于另一点G .给出下列三个结论: ①AD AE AB BC CA +=++; ②AF AG AD AE ⋅=⋅; ③AFB ADG △△∽.其中正确结论的序号是 ( )A .①②B .②③C .①③D .①②③6.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为,,(),cx A xf x cx A x⎧<⎪⎪=⎨⎪≥⎪⎩(A ,c 为常数),已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75, 25B .75, 16C .60, 25D .60,16 7.某四面体的三视图如图所示,该四面体四个面的面积中最大的是( ) A .8 B .62 C .10 D .8211s s s -=+0,2i s ==4i <1i i =+s输出开始结束第4题CB F AODEG第5题俯视图侧(左)视图正(主)视图3448.设(0,0)A ,(4,0)B ,(4,4)C t +,(,4)D t (t R ∈).记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数()N t 的值域为 ( ) A .{9,10,11} B .{9,10,12} C .{9,11,12} D .{10,11,12}二.填空题9.在ABC △中,若5b =,4B π∠=,tan 2A =,则sin A =_________;a =________.10.已知向量(3,1)a =,(0,1)b =-,(,3)c k =.若2a b -与c 共线,则k =______. 11.在等比数列{}n a 中,若112a =,44a =-,则公比q = ;12||||||n a a a +++= .12.用数字2,3组成四位数,且数字2,3 至少都出现一次,这样的四位数共有 个(用数字作答).13.已知函数32, 2,()(1), 2.x f x x x x ⎧≥⎪=⎨⎪-<⎩若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是 .14.曲线C 是平面内与两个定点1(1,0)F -和2(1,0)F 的距离的积等于常数2a (1a >)的点的轨迹,给出下列三个结论:①曲线C 过坐标原点;②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则12F PF △的面积不大于212a .其中,所有正确结论的序号是 .三.解答题15.(13分)已知函数()4cos sin()16f x x x π=+-.(1)求()f x 的最小正周期; (2)求()f x 在区间[,]64ππ-上的最大值和最小值.16.(14分)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,2AB =,60BAD ∠=.(1)求证BD ⊥平面PAC ;(2)若PA AB =,求PB 与AC 所成角的余弦值; (3)当平面PBC 与平面PDC 垂直时,求PA 的长.17.(13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果8X =,求乙组同学植树棵数的平均数和方差;(2)如果9X =,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y 的分布列和数学期望.999X 008111甲组 乙组 C A B D P18.(13分)已知函数2()()x kf x x k e =-. (1)求()f x 的单调区间;(2)若对于任意的(0,)x ∈+∞,都有1()f x e≤,求k 的取值范围.19.(14分)已知椭圆22:14x G y +=,过点(,0)m 作圆221x y +=的切线l 交椭圆G 于A ,B 两点. (1)求椭圆G 的焦点坐标和离心率;(2)将||AB 表示为m 的函数,并求||AB 的最大值.20.(13分)若数列n A :12,,,n a a a (2n ≥)满足1||1k k a a +-=(1,2,,1k n =-),则称n A 为E 数列.记12()n n S A a a a =+++.(1)写出一个满足150a a ==,且5()0S A >的E 数列5A ;(2)若112a =,2000n =.证明:E 数列n A 是递增数列的充要条件是2011n a =;(3)对任意给定的整数n (2n ≥),是否存在首项为0的E 数列n A ,使得()0n S A =?若果存在,写出一个满足条件的E 数列n A ;如果不存在,说明理由.参考答案及试题解析。

2011年高考真题——理科数学(北京卷)Word版含答案

2011年高考真题——理科数学(北京卷)Word版含答案

绝密★使用完毕前2011年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时间长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是 (A )(-∞, -1] (B )[1, +∞) (C )[-1,1] (D )(-∞,-1] ∪[1,+∞)(2)复数212i i-=+ (A )i (B )-i (C )4355i -- (D )4355i -+(3)在极坐标系中,圆ρ=-2sin θ的圆心的极坐标系是(A) (1,)2π (B) (1,)2π- (C) (1,0)(D)(1,π)(4)执行如图所示的程序框图,输出的s 值为 (A )-3 (B )-12(C )13(D )2(5)如图,AD ,AE ,BC 分别与圆O 切于点D ,E ,F ,延长AF 与圆O 交于另一点G 。

给出下列三个结论:○1AD+AE=AB+BC+CA ;○2AF·AG=AD·AE③△AFB ~△ADG其中正确结论的序号是(A)①②(B)②③(C)①③(D)①②③(6)根据统计,一名工作组装第4件某产品所用的时间(单位:分钟)为(A,C为常数)。

已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么C和A的值分别是(A)75,25 (B)75,16 (C)60,25 (D)60,16(7)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是(A) 8 (B) 62 (C)10 (D) 82(8)设()0,0A ,()4,0B ,()4,4C t +,()(),4D t t R ∈.记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数()N t 的值域为(A ){}9,10,11 (B ){}9,10,12 (C ){}9,11,12 (D ){}10,11,12第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2011年北京卷(理科数学)

2011年北京卷(理科数学)

2011年普通高等学校招生全国统一考试理科数学(北京卷)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}P x x 2=≤1,{}M a =,若P M P =U ,则a 的取值范围是 A.(,1]-∞- B.[1,)+∞C.[1,1]-D.(,1][1,)-∞-+∞U 2.复数212i i-=+ A.i B.i - C.4355i -- D.4355i -+3.在极坐标系中,圆2sin ρθ=-的圆心的极坐标系是A .(1,)2πB .(1,)2π- C .(1,0) D .(1,)π4.执行如图所示的程序框图,输出的s 值为A .3-B .1- C .1D .25.如图,AD ,AE ,BC 分别与圆O 切于点D ,E ,F ,延长AF 与圆O 交于另一点G .给出下列三个结论: ①AD AE AB BC CA +=++; ②AF AG AD AE ⋅=⋅ ③AFB ADG ∆∆: 其中正确结论的序号是A .①②B .②③C .①③D .①②③6.根据统计,一名工作组装第x 件某产品所用的时间(单位:分钟)为⎪⎪⎩⎪⎪⎨⎧≥<=Ax Ac Ax x c x f )((A ,C 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是A .75,25B .75,16C .60,25D .60,16 7.某四面体的三视图如图所示,该四面体四个面的面积中,最大的是 A .8 B..10 D.8.设(0,0)A ,(4,0)B ,(4,4)C t +,(,4)D t (t R ∈).记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数()N t 的值域为A .{9,10,11}B .{9,10,12}C .{9,11,12}D .{10,11,12} 二、填空题:共6小题,每小题5分,共30分. 9.在ABC ∆中,若5b =,4B π∠=,tan 2A =,则sin A = ;a = .10.已知向量a =r ,(0,1)b =-r,(c k =r.若2a b -r r 与c r 共线,则k = .11.在等比数列{}n a 中,112a =,44a =-,则公比q = ;12n a a a +++=L _ . 12.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有 个.(用数字作答)13.已知函数322()(1)2x f x xx x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有两个不同的实正(主)视图侧(左)视图俯视图根,则数k 的取值范围是 .14.曲线C 是平面内与两个定点1(1,0)F -和2(1,0)F 的距离的积等于常数2a (1a >)的点的轨迹.给出下列三个结论: ①曲线C 过坐标原点; ②曲线C 关于坐标原点对称;③若点P 在曲线C 上,则12F PF ∆的面积大于212a .其中,所有正确结论的序号 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知函数()4cos sin()16f x x x π=+-.(Ⅰ)求()f x 的最小正周期: (Ⅱ)求()f x 在区间[,]64ππ-上的最大值和最小值. 16.(本小题满分14分) 如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是菱形,2AB =,60BAD ∠=o . (Ⅰ)求证:BD ⊥平面;PAC(Ⅱ)若PA AB =,求PB 与AC 所成角的余弦值; (Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.17.(本小题满分13分) 以下茎叶图记录了甲、乙两组各四名同学的植树棵树,乙组记录中有一个数据模糊,无法确认,在图中以X 表示.APDCB(Ⅰ)如果8X =,求乙组同学植树棵数的平均数和方差;(Ⅱ)如果9X =,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y 的分布列和数学期望.(注:方差2222121[()()()]n s x x x x x x n =-+-++-L ,其中x 为1x ,2x ,…n x 的平均数)18.(本小题满分13分) 已知函数2()()x kf x x k e =-. (Ⅰ)求()f x 的单调区间;(Ⅱ)若对于任意的(0,)x ∈+∞,都有1()f x e≤,求k 的取值范围.19.(本小题满分14分)已知椭圆G :2214x y +=,过点(,0)m 作圆221x y +=的切线l 交椭圆G 于A ,B 两点.(Ⅰ)求椭圆G 的焦点坐标和离心率;(Ⅱ)将AB 表示为m 的函数,并求AB 的最大值. 20.(本小题满分13分)若数列n A :1a ,2a ,L ,n a (2n ≥),满足111n a a +-=,(1,2,,1k n =-L ),则称数列n A 为E 数列,记12()n n S A a a a =+++L . (Ⅰ)写出一个满足10s a a ==,且5()0S A >的E 数列n A ;(Ⅱ)若112a =,2000n =,证明:E 数列n A 是递增数列的充要条件是2011n a =; (Ⅲ)对任意给定的整数n (2n ≥),是否存在首项为0的E 数列n A ,使得5()0S A =?如果存在,写出一个满足条件的E 数列n A ;如果不存在,说明理由.甲组 乙组0 119 9 18 9X。

2005-2011年北京高考数学(文)试题汇编-选择、填空

2005-2011年北京高考数学(文)试题汇编-选择、填空

2005-2011北京高考数学(文)试题汇编―――选择、填空一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选择出符合题目要求的一项. 1.1. 已知全集U=R ,集合{}21P x x =∣≤,那么U P =ð(A)(,1-∞-) (B)(1,+∞) (C)(-1,1) (D)()()11-∞,-,+∞1.0.集合2{03},{9}P x Z x M x Z x =∈≤<=∈≤,则P M I = (A) {1,2} (B) {0,1,2} (C){1,2,3} (D){0,1,2,3} 1.9.设集合21{|2},{1}2A x xB x x =-<<=≤,则A B = ( )A .{12}x x -≤<B .1{|1}2x x -<≤ C .{|2}x x < D .{|12}x x ≤<1.8.若集合A ={x |-2≤x ≤3}≤3,B ={x |x <-1或x >4},则集合A ∩B 等于(A ){x |x ≤3或x >4} (B ){x |-1<x ≤3} (C ){x |3≤x<4} (D) {x |-2≤x<-1}1.7.已知cos tan 0θθ< ,那么角θ是( ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角1.6.设集合A ={}312<+x x ,B ={}23<<x x -,则A ⋂B 等于(A) {}13<<x x -(B) {}21<<x x (C) 3->x x(D) 1<x x1.5.设集合M ={x | x >1,P ={x | x 2>1},则下列关系中正确的是(A )M =P (B )P Ü M (C )M ÜP ( D )M P R = 2.1. 复数212i i-=+ (A)i (B )i - (C)4355i -- (D)4355i -+2.0.在复平面内,复数6+5i, -2+3i 对应的点分别为A,B.若C 为线段AB 的中点,则点C 对应的复数是 (A )4+8i (B)8+2i (C )2+4i (D)4+i2.9.已知向量(1,0),(0,1),(),a b c ka b k R d a b ===+∈=-,如果//c d ,那么 A .1k =且c 与d 同向 B .1k =且c 与d 反向 C .1k =-且c 与d 同向 D .1k =-且c 与d 反向 2.8.若a =log 3π, b =log 76,c =log 20.8,则(A )a>b >c (B )b>a >c (C )c>a >b (D )b>c >a No 2.7.函数()3(02)xf x x =<≤的反函数的定义域为( ) A.(0)+∞,B.(19],C.(01),D.[9)+∞,2.6.函数y =1+cos x 的图象 (A )关于x 轴对称 (B )关于y 轴对称 (C )关于原点对称(D )关于直线x =2π对称2.5.为了得到函数321x y -=-的图象,只需把函数2xy =上所有点(A )向右平移3个单位长度,再向下平移1个单位长度(B )向左平移3个单位长度,再向下平移1个单位长度 (C )向右平移3个单位长度,再向上平移1个单位长度 (D )向左平移3个单位长度,再向上平移1个单位长度 3.1. 如果1122log log 0x y <<,那么( )(A )1y x << (B)1x y << (C)1x y << (D)1y x <<3.0.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是 (A )45(B)35(C )25(D)153.9.若4(12)2(,a b a b +=+为有理数),则a b += ( ) A .33B . 29C .23D .19No 3.8.“双曲线的方程为116922=-yx”是“双曲线的准线方程为x =59±”的(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件 (D )即不充分也不必要条件3.7.函数()sin 2cos 2f x x x =-的最小正周期是( ) A.π2B.π C.2π D.4π3.6.若a 与b-c 都是非零向量,则“a ·b=a ·c ”是“a ⊥(b-c)”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D) 既不充分也不必要条件 3.5.“m =21”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的(A )充分必要条件 (B )充分而不必要条件 (C )必要而不充分条件(D )既不充分也不必要条件4.1. 若p 是真命题,q 是假命题,则(A )p q ∧是真命题 (B)p q ∨是假命题 (C)p ⌝是真命题 (D)q ⌝是真命题 4.0.若a,b 是非零向量,且a b ⊥,a b ≠,则函数()()()f x xa b xb a =+⋅-是 (A )一次函数且是奇函数 (B )一次函数但不是奇函数 (C )二次函数且是偶函数 (D )二次函数但不是偶函数 4.9.为了得到函数3lg10x y +=的图像,只需把函数lg y x =的图像上所有的点 ( ) A .向左平移3个单位长度,再向上平移1个单位长度 B .向右平移3个单位长度,再向上平移1个单位长度 C .向左平移3个单位长度,再向下平移1个单位长度 D .向右平移3个单位长度,再向下平移1个单位长度 4.8.已知△ABC 中,a =2,b =3,B =60°,那么角A 等于 (A )135° (B)90°(C)45° (D)30°4.7.椭圆22221(0)x y a b ab+=>>的焦点为1F ,2F ,两条准线与x 轴的交点分别为M N ,,若12MN F F 2≤,则该椭圆离心率的取值范围是( )A.102⎛⎤⎥⎝⎦,B.202⎛⎤ ⎥ ⎝⎦,C.112⎡⎫⎪⎢⎣⎭,D.212⎡⎫⎪⎢⎪⎣⎭, 4.6.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数的共有 (A )36个 (B )24个 (C )18个 (D )6个4.5.若||1,||2,a b c a b ===+,且c a ⊥ ,则向量a 与b 的夹角为 (A )30° (B )60° (C )120° (D )150° 5.1. 某四棱锥的三视图如图所示,该四棱锥的表面积是(A)32 (B)16+162 (C)48 (D)16322+5.0.一个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如右图所示,则该集合体的俯视图为:5.9.用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为 ( )A .8B .24C .48D .120 5.8.函数f (x )=(x -1)2+1(x <1)的反函数为( ) (A )f --1(x )=1+1-x (x>1) (B )f --1(x )=1-1-x (x>1) (C )f --1(x )=1+1-x (x ≥1)(D )f --1(x )=1-1-x (x ≥1)5.7.某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( )A.()2142610C A 个B.242610A A 个C.()2142610C 个D.242610A 个5.6.已知(3)4,1()log ,1a a x a x f x x x --⎧=⎨≥⎩<,是(-∞,+∞)上的增函数,那么a 的取值范围是( )(A )(1,+∞)(B )(-∞,3) (C))3,53[ (D)(1,3)5.5.从原点向圆 x 2+y 2-12y +27=0作两条切线,则这两条切线的夹角的大小为(A )6π (B )3π (C )2π(D )32π6.1. 执行如图所示的程序框图,若输入A 的值为2,则输出的P 值为(A)2 (B)3 (C)4(D)56.0.给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,期中在区间(0,1)上单调递减的函数序号是( ) (A )①② (B )②③ (C )③④ (D )①④ 6.9.“6πα=”是“1cos 22α=”的( )A . 充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件x -y +1≥0,6.8.若实数x ,y 满足 x +y ≥0, 则z =x +2y 的最小值是( )x ≤0, (A)0(B)21 (C) 1 (D)26.7.若不等式组502x y y a x -+0⎧⎪⎨⎪⎩≥,≥,≤≤表示的平面区域是一个三角形,则a 的取值范围是( )A.5a < B.7a ≥ C.57a <≤ D.5a <或7a ≥ 6.6.如果-1,a,b,c ,-9成等比数列,那么( )(A )b =3,ac =9 (B)b =-3,ac =9 (C)b =3,ac =-9(D)b =-3,ac =-96.5.对任意的锐角α,β,下列不等关系中正确的是(A )sin(α+β)>sin α+sin β (B )sin(α+β)>cos α+cos β(C )cos(α+β)<sinα+sinβ (D )cos(α+β)<cosα+cosβ7.1. 某车间分批生产某种产品,每批的生产准备费用为800元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005-2011年高考数学(理科)汇编之选择题一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选择出符合题目要求的一项.1.11 已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是 A .(-∞, -1] B .[1, +∞) C .[-1,1] D .(-∞,-1] ∪[1,+∞) 1.10 集合}9|{},30|{2≤∈=<≤∈=x R x M x Z x P ,则P M I = (A) {1,2} (B) {0,1,2} (C){x|0≤x<3} (D) {x|0≤x ≤3} 1.9.在复平面内,复数(12)z i i =+对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限1.8.已知全集U =R ,集合{}|23A x x =-≤≤,{}|14B x x x =<->或,那么集合()UAB ð等于( )A .{}|24x x -<≤ B .{}|34x x x 或≤≥ C .{}|21x x -<-≤D .{}|13x x -≤≤1.7.已知cos tan 0θθ<,那么角θ是( )A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第一或第四象限角 1.6.在复平面内,复数1ii+ 对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限1.5.设合集U=R ,集合}1|{},1|{2>=>=x x P x x M ,则下列关系中正确的是( ) A .M=PB .P MC . PD .2.11 复数212i i-=+A .iB .-iC .4355i -- D .4355i -+ 2.10 在等比数列{}n a 中,11a =,公比1q ≠.若12345m a a a a a a =,则m= (A )9 (B )10 (C )11 (D )122.9.已知向量,a b 不共线,(),c ka b k R d a b =+∈=-如果//c d ,那么 A .1k =且c 与d 同向 B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向2.8.若0.52a =,πlog 3b =,22πlog sin5c =,则( ) A .a b c >>B .b a c >>C .c a b >>D .b c a >>2.7.函数()3(02)xf x x =<≤的反函数的定义域为( )A.(0)+∞,B.(19],C.(01),D.[9)+∞,2.6.若 a 与 b -c 都是非零向量,则“a ·b=a ·c ”是“a ⊥(b -c )”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 2.5.“21=m ”是“直线03)2()2(013)2(=-++-=+++y m x m my x m 与直线相互垂直”的 ( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件3.11 在极坐标系中,圆ρ=-2sinθ的圆心的极坐标系是 ( ) A .(1,)2πB .(1,)2π-C . (1,0)D .(1,π)3.10 一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为 ( )3.9.为了得到函数3lg10x y +=的图像,只需把函数lg y x =的图像上所有的点( ) A .向左平移3个单位长度,再向上平移1个单位长度 B .向右平移3个单位长度,再向上平移1个单位长度 C .向左平移3个单位长度,再向下平移1个单位长度 D .向右平移3个单位长度,再向下平移1个单位长度3.8.(不做)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.7.平面α∥平面β的一个充分条件是( ) A.存在一条直线a a ααβ,∥,∥B.存在一条直线a a a αβ⊂,,∥C.存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥ D.存在两条异面直线αββα//,//,,,,b a b a b a ∈∈3.6.在1,2,3,4,5 这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有( )(A )36 个 (B )24 个 (C )18 个 (D )6 个3.5.| a |=1,| b |=2,c = a + b ,且c ⊥a ,则向量a 与b 的夹角为( ) A .30° B .60° C .120° D .150° 4.11 执行如图所示的程序框图,输出的s 值为 A .-3 B .-12 C .13D .24.10 8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为(A )8289A A (B )8289A C (C ) 8287A A (D )8287A C4.9.若正四棱柱1111ABCD A B C D -的底面边长为1,1AB 与底面ABCD 成60°角,则11AC 到底面ABCD 的距离为 A .33B .1C .2D .3 4.8.若点P 到直线1x =-的距离比它到点(20),的距离小1,则点P 的轨迹为( ) A .圆B .椭圆C .双曲线D .抛物线4.7.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( )A.AO OD = B.2AO OD =C.3AO OD =D.2AO OD =4.6.平面α的斜线 AB 交α于点 B ,过定点 A 的动直线l 与 AB 垂直,且交α于点 C ,则动 点 C 的轨迹是 (A )一条直线 (B )一个圆(C )一个椭圆 (D )双曲线的一支4.5.从原点向圆0271222=+-+y y x 作两条切线,则该圆夹在两条切线间的劣弧长为( ) A .π B .2π C .4π D .6π5.11 如图,AD ,AE ,BC 分别与圆O 切于点D ,E ,F , 延长AF 与圆O 交于另一点G 。

给出下列三个结论: ①AD+AE=AB+BC+CA ; ②AF·AG=AD·AE ③△AFB ~△ADG 其中正确结论的序号是 A .①② B .②③ C .①③ D .①②③5.10 极坐标方程(ρ-1)(θπ-)=(ρ≥0)表示的图形是(A )两个圆 (B )两条直线(C )一个圆和一条射线 (D )一条直线和一条射线 5.9.“2()6k k Z παπ=+∈”是“1cos 22α=”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件5.8.若实数x y ,满足1000x y x y x ⎧-+⎪+⎨⎪⎩,,,≥≥≤则23x yz +=的最小值是( )A .0B .1C .3D .95.7.记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A.1440种 B.960种 C.720种 D.480种5.6.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨≥⎩ 是(,)-∞+∞上的减函数,那么 a 的取值范围是 ( )(A )(0,1) (B )(0,13) (C )17⎡⎢⎣,⎪⎭⎫31 (D )⎪⎭⎫⎢⎣⎡1,715.5.对任意的锐角βα,,下列不等关系中正确的是( )A .βαβαsin sin )sin(+>+B .βαβαcos cos )sin(+>+C .βαβαsin sin )cos(+<+D .βαβαcos cos )cos(+<+6.11 根据统计,一名工作组装第x 件某产品所用的时间(单位:分钟)为⎪⎪⎩⎪⎪⎨⎧≥<=Ax Ac A x x c x f ,,,)((A ,C 为常数)。

已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是A .75,25B .75,16C .60,25D .60,166.10 b a ,为非零向量。

“b a ⊥”是“函数()()()f x xa b xb a =+-为一次函数”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6.9.若5(12)2(,a b a b +++为有理数),则a b +=A .45B .55C .70D .806.8.已知数列{}n a 对任意的*p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于( )A .165-B .33-C .30-D .21-6.7.若不等式组220x y x y y x y a -0⎧⎪+⎪⎨⎪⎪+⎩≥,≤,≥,≤表示的平面区域是一个三角形,则a 的取值范围是( )A.43a ≥ B.01a <≤ C.413a ≤≤ D.01a <≤或43a ≥6.6.在下列四个函数中,满足性质:“对于区间(1,2)上的任意1x ,2x (12x x ≠ ).2121()()f x f x x x -<-恒成立”的只有(A )1()f x x=(B )()f x x = (C )x x f 2)(= (D )2()f x x = 6.5.在正四面体P —ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下面四个结论中不成立...的是( )A .BC//平面PDFB .DF ⊥PAEC .平面PDF ⊥平面ABCD .平面PAE ⊥平面ABC7.11 某四面体的三视图如图所示,该四面体四个面的面积中,最大的是A .8B .62C .10D .827.10 设不等式组 ⎪⎩⎪⎨⎧≤+-≥+-≥-+0935,033,011y x y x y x 表示的平面区域为D ,若指数函数y=xa 的图像上存在区域D 上的点,则a 的取值范围是(A )(1,3] (B )[2,3] (C ) (1,2] (D )[ 3, +∞] 7.9.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为 A .324 B .328 C .360 D .6487.8.过直线y x =上的一点作圆22(5)(1)2x y -+-=的两条切线12l l ,,当直线12l l ,关于y x =对称时,它们之间的夹角为( ) A .30B .45C .60D .907.7.如果正数a b c d ,,,满足4a b cd +==,那么( ) A.ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B.ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C.ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D.ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 7.6.设4710310()22222()n f n n N +=+++++∈,则()f n 等于(A )2(81)7n- (B )12(81)7n +- (C )32(81)7n +- (D )42(81)7n +- 7.5.北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作,若每天早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为 ( )A .484121214CC CB .484121214A A CC .33484121214A C C C D .33484121214A C C C 8.11 设()0,0A ,()4,0B ,()4,4C t +,()(),4D t t R ∈.记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数()N t 的值域为 A .{}9,10,11 B .{}9,10,12C .{}9,11,12D .{}10,11,128.10 如图,正方体ABCD-1111A B C D 的棱长为2,动点E 、F 在棱11A B 上,动点P ,Q 分别在棱AD ,CD 上,若EF=1,1A E=x ,DQ=y ,D P=z(x,y,z大于零),则四面体PE FQ的体积 (A)与x,y,z都有关 (B)与x有关,与y,z无关 (C)与y有关,与x,z无关 (D)与z有关,与x,y无关8.9.点P 在直线:1l y x =-上,若存在过P 的直线交抛物线2y x =于,A B 两点,且|||PA AB =,则称点P 为“点”,那么下列结论中正确的是A .直线l 上的所有点都是“点”B .直线l 上仅有有限个点是“点”C .直线l 上的所有点都不是“点”D .直线l 上有无穷多个点(点不是所有的点)是“点”8.8.如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设B P x =,MN y =,则函数()y f x =的图象大致是( )8.7.对于函数①()lg(21)f x x =-+,②2()(2)f x x =-,③()cos(2)f x x =+,判断如下三个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在()-∞2,上是减函数,在(2)+∞,上是增函数; 命题丙:(2)()f x f x +-在()-∞+∞,上是增函数. 能使命题甲、乙、丙均为真的所有函数的序号是( )A.①③ B.①② C.③ D.②8.6.下图为某三岔路口交通环岛的简化模型,在某高峰时段,单位时间进出路口,,A B C 的机动车辆数如图所示,图中123,,x x x 分别表示该时段单位时间通过路段,,AB BC CA 的机动车辆数(假设:单位时间内,在上述路段中,同一路段上驶入与驶出的车辆数相等),则20,30;35,30;55,50(A )123x x x >> (B )132x x x >> (C )231x x x >> (D )321x x x >>8.5.函数xxx f cos 2cos 1)(-=( )A .在]2,23(),23,[,],2(),2,0[πππππππ在上递增上递减 B .在]2,23(),,2[,]23,(),2,0[πππππππ在上递增上递减 C .在]23,(),2,0[,]2,23(],,2(πππππππ在上递增上递减D .在],2(),2,0[,]2,23(),23,[πππππππ在上递增上递减ABC D MNP A 1B 1C 1D 1 y xA .Oy xB .Oy xC .Oyx D .O参考答案1.11 C 1.10 B 1.9:B 1.8:D 1.7:C 1.6:D 1.5:C2.11 A 2.10 C 2.9:D 2.8:A 2.7:B 2.6:C 2.5:B3.11 B 3.10 C 3.9:C 3.8:B 3.7:D 3.6:B 3.5:C4.11 D 4.10 A 4.9:D 4.8:D 4.7:A 4.6:A 4.5:B5.11 A 5.10 C 5.9:A 5.8:B 5.7:B 5.6:C 5.5:D6.11 D 6.10 B 6.9:C 6.8:C 6.7:D 6.6:A 6.5:C7.11 C 7.10 A 7.9:B 7.8:C 7.7:A 7.6:D 7.5:A8.11 C 8.10 D 8.9:A 8.8:B 8.7:D 8.6:C 8.5:A2005-2011年高考数学(理科)汇编之填空题二.填空题:本大题共6小题,每小题5分,共30分。

相关文档
最新文档