GPS定位误差分析及处理
定位误差的分析与计算

定位误差的分析与计算一、定位误差的概念和原因定位误差是指定位系统测量结果与真实位置之间的差异或偏差。
在现代生活中,定位系统广泛应用于导航系统、无人驾驶、无人飞行器等领域,而定位误差对于系统的准确性和可靠性至关重要。
1.信号传播误差:这是由于信号在传播过程中受到大气中的影响,如电离层、大气湿度等所产生的误差。
这种误差对于GPS系统尤为明显,导致多径效应、钟差误差等。
2.接收机误差:接收机的硬件和软件系统可能存在不同程度的误差。
硬件方面,接收机的时钟精度、天线阻抗匹配等问题都可能导致定位误差。
软件方面,接收机的算法、数据处理等也可能引入误差。
3.观测误差:观测误差是指由于测量设备的精度或不完善性所导致的误差。
例如,测量设备的精度限制了对信号强度、TOA(Time of Arrival)等参数的准确测量。
4.环境因素:环境因素也是定位误差产生的原因之一、比如,建筑物、树木、走廊等物体会对信号传播产生阻碍和衍射,从而影响接收机的测量结果。
5.多径效应:多径效应是指信号传播过程中,信号除了直射到达接收机外,还经历了反射,导致信号的多个传播路径同时到达接收机。
多径效应会产生明显的信号干扰和测量误差。
二、定位误差的计算方法1.位置误差计算:位置误差是指实际测量位置与真实位置之间的距离差异。
一种常见的计算方法是通过比较GPS测量点与参考点之间的差异来计算位置误差。
通过收集多个测量点的数据,可以使用最小二乘法进行曲线拟合,从而计算出测量点与真实位置之间的距离差异。
2.时间误差计算:时间误差是指实际测量时间与真实时间之间的差异。
在GPS系统中,时间误差主要由于卫星钟的钟差所引起。
通过GPS接收机接收到的卫星信号的时间戳和GPS接收机内部的时间戳之间的差异,可以计算出时间误差。
4.误差修正算法:为了减小定位误差,可以使用一些误差修正算法来对测量结果进行修正。
一种常见的方法是差分GPS技术,通过使用两个或多个接收机接收同一卫星信号,对测量结果进行差分处理,从而减小定位误差。
GPS定位的误差分析

GPS定位的误差分析4.1误差的分类在GPS测量中,影响观测量精度的主要误差来源分为三类:与GPS卫星有尖的误差、与信号传播有矢的误差、与接收设备有尖的误差。
如果根据误差的性质,上述误差尚可分为系统误差与偶然误差。
系统误差主要包括卫星的轨道误差、卫星钟差、接收机种差以及大气折射误差等。
为了减弱和修正系统误差对观测量的影响,一般根据系统误差产生的原因采取不同的措施,其中包括:引入相应的未知参数,在数据处理中连同其他未知参数一并解算、建立系统误差模型,对观测量加以修正、将不同的观测站对相同的卫星的同步观测值求差,以减弱或者消除系统误差的影响、简单的忽略某些系统误差的影响。
偶然误差主要包括信号的多路径效应引起的误差和观测量等。
4.2与卫星有尖的误差与GPS卫星有尖的误差,主要包括卫星轨道误差和卫星钟的误差。
4.2.1卫星钟差由于卫星的位置是时间的函数,所以GPS的观测量均以精密测时为依据。
而与卫星位置相应的的时间信息是通过卫星信号的编码信息传送给用户的。
在GPS测量中,无论是码相位观测或者载波相位观测,均要求卫星钟与接收机保持严格的同步。
实际上,尽管GPS卫星均设有高精度的原子钟,但是它们与理想的GPS时之间仍然存在着难以避免的偏差或者漂移。
这些偏差总量均在1ms 以内,由此引起的等效距离误差约可达300km °4.2.2轨道偏差卫星的轨道误差是当前利用GPS定位的重要误差来源之一。
GPS卫星距离地面观测站的最大距离约25000km,如果基线测量的允许误差为lcm,则当基线长度不同时,允许的轨道误差大致如表5・2所示,可见,在相对定位中随着基线长度的增加,卫星轨道误差将成为影响定位精度的主要因素。
4.3卫星信号的传播误差与卫星信号传播有矢的误差主要包括大气折射误差和多路径效应。
4.3.1电离层折射的影响GPS卫星信号和其他电磁波信号一样,当通过电离层时将受到这一介质弥散特性的影响,使信号的传播路径产生变化。
GPS测量误差分析及控制

( 哈尔滨市勘察测绘 研究院 , 黑龙江 哈尔滨 1各种主要误 差来源、 P 特点及影响 , 出减小或消除误 差的解决方法。 提
文 献 标 识 码 : B 文 章编 号 : 7 5 6 (0 8 0 0 l 0 1 2~ 87 2 0 )3— 10— 2 6
关 键 词 : P ; 差 ; 度 G S误 精 中图 分 类 号 :2 8 4 P 2 .
Er o a y i n n r lo r r An l ss a d Co t o fGPS S r e i g u v yn
Z HANG W e —s al n hl
施。
定 的卫 星并不能 完全消 除星 历误差 。
但是 , 于位 置相距 较 近 的用户 , 因为 星历 误 差 而 对 会
具 有几 乎相 同的误 差范 围 , 因此 , 采用 差分 观 测的 方法 基 本 上可 以消除 星历误差 。 2 卫 星钟差 : 指预 报 的 卫 星钟 差 。众 所 周 知 , P ) 是 GS 基 于单 程测 距 , 主要 取 决 于预 报 的卫 星 钟 。卫 星 钟 差 它 对 C A码用 户和 P码 用 户 是 相 同 的 , 且 此 影 响 同方 向 / 并 无 关 。这在采 用 差 分改 正 技 术 时 很有 用 , 部 差 分 站 同 全 用户 观测值都 含有 相 等 的钟差 。卫 星 钟差 的 主要 误差 源
是 S 但从 2 0 A, 0 0年 5月 1日起 美 国取 消 了该 项 限 制 措 施。
l 误 差 来 源 及影 响
G S测 量误差 产生 的主要 来 源可 分 为三 大部 分 : P P GS
12 G S . P 信号 的传输误差
1 电离 层误 差 : 由于 电离 层效 应 引 起 的观 测 值 的 ) 是 误差 。它 与沿卫 星和用 户接 收 机视 线 方 向上 的电子 密度 有关 , 垂直 方 向上 延迟值 在 夜 间平 均可 达 3m 左右 , 在 白 天 可达 1 在低 仰角情 况下分 别可 达 9m 和 4 在 反 5m, 5m, 常 时期这个 值还会 加 大 。为 了削 弱 电离 层 延迟所 引起 的 定 位精度 损失 , 长 基准 测 量 中用 双 频 接 收 机 采 集 G S 在 P 数 据 , 观测成 果 进行 实 时 电离 层 延迟 改正 , 以获得很 对 可
卫星导航系统的误差分析和矫正技术

卫星导航系统的误差分析和矫正技术卫星导航技术可以说是信息时代中最重要的技术之一,它极大的影响了人类社会的许多方面。
GPS(Global Positioning System)卫星导航系统是全球范围内最为广泛使用的卫星导航系统之一,它被广泛应用于汽车导航、航海、军事、航空和石油勘探等领域。
然而,GPS系统并非完美无缺,其误差来自多方面,因此误差分析和矫正技术是至关重要的。
一、GPS误差来源GPS包括空间段和用户段两大部分,误差来源也分为空间段和用户段两类。
1.空间段误差(1)卫星轨道误差由于GPS卫星在轨道上含有不等大小的偏差,轨道参数不是完全精确的,因此卫星讯径的误差会对用户位置解算结果产生一定的影响。
(2)卫星钟差误差卫星钟的精度对GPS定位的影响也非常大。
卫星内部发生的微小摄动、温度变化和衰变等因素都会影响卫星钟的精度,导致GPS的误差。
2.用户段误差(1)电离层误差地球上的电离层是由于太阳辐射所激发的电离化气体层,这层大气对卫星信号传递的影响极大,对GPS定位精度影响较大。
(2)大气延迟误差细分为快速和慢速大气延迟误差,主要因为大气介质对GPS信号具有不同的传输特性,这种误差主要由各自设置的卫星轨道、时间信息实现矫正。
(3)信号多径误差信号多径效应指的是GPS接收器从多条径线接收同一信号所产生的误差,这种误差通常会与反射面有关,因此高楼、山谷等区域的多路径效应将会更加严重。
二、GPS误差分析误差分析是确定卫星导航系统精度和性能限制的重要方法。
通常,误差分析主要有以下三个步骤:1.卫星轨道的误差分析通过收集GPS卫星的实际运行数据和模拟数据等数据来分析和评估卫星轨道的误差。
2.用户端误差分析比较常用的方法是通过实测精度与原理误差之间的比较来评估GPS测量系统的性能。
3.误差来源分析系统接收的信号来自多个来源,用于定位的测量数据包括多种误差。
因此,为了正确识别GPS测量系统的误差来源,需要使用数据处理和优化技术分析卫星导航信号产生的误差源,例如,BP神经网络、定位方程、贝叶斯网络等。
GPS测量中的多路径误差分析与抑制方法

GPS测量中的多路径误差分析与抑制方法GPS(Global Positioning System)是一种通过卫星导航定位的技术,它在现代社会中发挥着重要的作用。
然而,在实际的测量应用中,我们常常会遇到多路径误差的问题。
本文将对GPS测量中的多路径误差进行分析,并介绍一些抑制方法。
一、多路径误差的成因分析多路径误差是指卫星信号在传播过程中,经过反射、折射等导致信号在接收机处反复干涉造成的误差。
主要的成因包括:1. 建筑物和地形:由于建筑物和地形在信号的传播过程中会发生反射或阻挡,导致信号存在多条路径到达接收机,产生多路径误差。
2. 植被和水体:植被和水体也会导致信号的反射,特别是在绿色植被茂盛或水面平坦的地区,多路径误差更加严重。
3. 天气条件:天气条件的变化,特别是雨、雪、雾等天气情况下,会导致信号的散射和延迟,增加多路径误差。
二、多路径误差对GPS测量的影响多路径误差对GPS测量会产生一些负面影响,主要包括以下几个方面:1. 定位误差增大:多路径信号的干扰会使接收机接收到的信号发生偏差,导致定位误差的增大。
2. 高精度测量受限:在需要进行高精度测量的应用中,多路径误差会严重影响测量结果的准确性和精度。
3. 时钟同步误差:GPS接收机的内部时钟由于多路径干扰的影响,可能导致时钟同步误差的增大。
三、多路径误差的抑制方法为了减小或抑制多路径误差的影响,我们可以采取以下一些方法:1. 天线设计优化:通过改变天线的设计和安装方式,减少信号的进入和反射,降低多路径误差的发生。
2. 多天线接收:利用多天线接收系统,可以通过接收到多个信号进行抗干扰和抑制多路径误差。
3. 算法优化:通过改进算法,对接收到的信号进行处理和滤波,提高定位的准确性。
4. 参考站技术:通过设置一个或多个参考站,对GPS信号进行监测和修正,减小多路径误差对定位的影响。
5. 外部传感器的使用:通过与其他传感器(如惯性导航仪)的融合,提高测量的准确性和精度,减少多路径误差的影响。
GPS定位误差的产生原因分析与减小方法

GPS定位误差的产生原因分析与减小方法引言:在现代社会,全球定位系统(Global Positioning System,GPS)已经成为了人们生活中不可或缺的一部分。
无论是导航、交通监控还是地理信息系统等领域都离不开GPS定位技术。
然而,随着GPS定位的广泛应用,人们也逐渐发现定位误差问题的存在。
本文将从GPS定位误差产生的原因入手,探讨解决这一问题的方法。
一、GPS定位误差的原因分析:1. GPS系统误差:GPS系统本身存在着一些系统误差,例如卫星钟差、伪距观测误差、大气延迟等。
这些误差会直接影响到GPS定位的准确性。
2. 空间几何因素:GPS定位需要至少4颗卫星进行定位计算,卫星的位置和空间几何分布对定位精度有着重要影响。
当卫星分布不均匀或存在遮挡物时,会导致定位误差增大。
3. 电离层和大气影响:电离层和大气中的湿度、温度等因素都会对GPS信号产生影响,导致信号传播延迟或折射,从而引起定位误差。
4. 载波相位等伪距测量误差:GPS定位是通过测量卫星发射的信号和接收器接收的信号之间的时间差来计算位置的。
然而,由于载波相位的波长较短,测量精度更高,但受到多普勒效应的影响,会产生伪距测量误差。
二、减小GPS定位误差的方法:1. 多路径效应抑制:多路径效应是指GPS信号在传播过程中发生反射、散射等现象,致使接收器接收到多个信号,在信号合成过程中引入误差。
为了减小多路径效应,可以利用天线设计和信号处理技术,选择适合的接收天线和增加抗多路径干扰的算法。
2. 差分定位:差分定位是通过引入一个参考站与基准站的距离进行辅助定位,利用参考站的精确位置和信号传播速度信息来对GPS定位结果进行修正。
差分定位可以大幅度减小系统误差和信号传播误差的影响,提高定位精度。
3. 增加卫星数量和分布:通过增加卫星数量和改善卫星的空间分布,可以提高GPS定位的可见卫星数目和几何配置,从而减小定位误差。
可以使用卫星信噪比、可视卫星数等指标来优选卫星,并避开存在遮挡物的区域。
卫星导航系统的误差分析及其纠正方法

卫星导航系统的误差分析及其纠正方法卫星导航系统是现代化的导航方式之一,已成为人们旅行、航空、海洋、地质勘探等领域中必不可少的工具之一。
但是,由于各种外在因素的影响,卫星导航系统的精度不可避免地会受到误差的干扰,从而影响到实际使用效果。
因此,本文将针对卫星导航系统的误差分析及其纠正方法进行探讨。
误差来源卫星导航系统的误差来源主要有以下几种:1.天气因素:天气条件的变化,如雷暴、降雨等,会对信号传输造成干扰,导致误差出现。
2.电离层:电离层会对信号产生折射、延迟等影响,从而影响卫星导航系统的精度。
3.卫星轨道误差:卫星轨道的非理想性和不稳定性会使得卫星发射的信号的时间和位置出现误差。
4.接收机性能问题:接收机的性能问题也会影响卫星导航系统的精度。
接收机信噪比的大小,接收机灵敏度等问题都可能产生误差。
误差分析为了消除误差对卫星导航系统的影响,需要对误差进行分析。
对于卫星导航系统而言,误差分析主要分为两个方面:一是对误差进行分析,二是根据误差分析结果采取相应的纠正措施。
误差分析的第一步就是对误差进行排查。
根据误差来源的不同,采用不同的方法进行分析。
对于电离层误差,可以利用多路径组合技术进行处理。
对于卫星轨道误差,可以利用多源数据融合方法进行处理。
对于接收机性能问题,可以采用时差差分技术或载波相位差分技术进行处理。
误差纠正误差纠正方法可以大致分为两类。
一类是通过信息处理技术对误差进行纠正,例如利用多路径组合技术降低电离层误差、利用多源数据融合方法降低卫星轨道误差等。
另一类是通过通信技术对误差进行纠正,例如利用差分定位技术对接收机性能问题进行纠正。
差分定位技术是最为常见的一种误差纠正技术。
它可以通过在同一时刻同时接收多个卫星信号,然后将它们之间的差异作为误差的补偿,从而提高卫星导航系统的定位精度。
差分定位技术的准确性取决于差分基线的长度和稳定性。
如果差分基线长度较短,误差的补偿也相对较小。
但如果差分基线长度过长,则信号会受到多路径影响,从而导致误差更大。
GPS测量中坐标纠正与误差分析

GPS测量中坐标纠正与误差分析GPS(Global Positioning System,全球定位系统)已经成为现代测量领域中不可或缺的工具。
通过接收卫星发射的信号,GPS可以准确测量出地球上某一点的经纬度坐标。
然而,在实际应用中,由于多种因素的影响,GPS测量的坐标可能存在一定的误差。
因此,对GPS测量中的坐标进行纠正与误差分析,对于提高测量精度和可靠性至关重要。
首先,我们需要了解GPS测量中可能存在的误差来源。
一般来说,GPS测量误差主要包括:卫星钟差、电离层延迟、大气延迟、多径效应、接收机钟差、观测数据产生与处理中的误差等。
卫星钟差指的是卫星发射信号的时间与卫星自身的时间存在一定的偏差,导致测量结果不准确。
电离层延迟是由于卫星信号在经过大气电离层时受到电离层的影响,造成信号传播速度变化,从而引起测量误差。
大气延迟是由于信号经过大气层时受到大气密度变化的影响,导致测量结果出现偏移。
多径效应指的是卫星信号在传播过程中,除了直接到达接收机外,还存在与地面或建筑物反射后到达接收机的信号,这些多路径信号会导致测量结果产生误差。
接收机钟差是指接收机内部时钟与GPS系统时间存在一定的差异,也会影响到测量结果的精度。
针对以上误差来源,我们可以采取一系列纠正措施来提高GPS测量的准确性。
首先,卫星钟差可以通过测量多颗卫星的信号并进行差分处理来纠正。
差分GPS技术能够消除卫星钟差对测量结果的影响,提高测量的准确性。
其次,电离层延迟和大气延迟可以通过接收机和卫星信号之间的差分处理来消除。
接收机将两颗卫星的信号之间的差异作为电离层和大气延迟的参考,从而进行纠正。
此外,采用多路径抑制技术可以降低多径效应对测量结果的影响。
这种技术包括选择合适的接收机和天线,减少信号的反射和干扰。
最后,接收机钟差可以通过接收机内部的校正机制进行补偿。
除了进行误差纠正,我们还需要进行误差分析,了解测量结果的可信程度和误差范围。
误差分析是通过对测量数据进行统计分析,得出误差的概率分布和置信区间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GPS定位误差分析及处理
摘要:本文将对影响GPS定位的主要误差源进行分析和讨论,研究它们的性质、大小及对定位所产生的影响,并介绍消除和削弱这些误差影响的方法和措施。
关键词:GPS误差源处理措施
GPS即全球定位系统(Global Positioning System)。
简单地说,这是一个由覆盖全球的24颗卫星组成的卫星系统。
GPS定位测量中出现的各种误差按其产生源可分为3大部分:GPS信号的自身误差即与卫星有关的误差;GPS信号的传播误差;GPS接收机的误差。
一、GPS信号的自身误差和SA,AS影响
1.1轨道误差即卫星星历误差。
有关部门提供一定精度的卫星轨道,以广播星历形式发播给用户使用,从而已知观测瞬间所观测卫星的位置,因而卫星轨道误差与星历误差是一个含义。
卫星星历误差又等效为伪距误差即由卫星星历所给出的卫星位置与卫星的实际位置之差。
星历误差的大小主要取决于卫星定轨站的数量及其地理分布,观测值的数量及精度,定轨时所用的数学力学模型和定轨软件的完善程度以及与星历的外推时间间隔等,由于卫星轨道受地球和日、月引力场、太阳光压、潮汐等摄动力及大气阻力的影响,而其中有的是随机影响,而不能精密确定,使卫星轨道产生误差。
1.2美国的SA技术与AS影响。
SA技术是选择可用性(Selective? ?Availability)的简称,它是由两种技术使用户的定位精度降低,即δ(dither)技术和ε(epsilon)技术。
δ技术是人为地施加周期为几分钟的呈随机特征的高频抖动信号,使GPS卫星频率10.23MHz加以改变,最后导致定位产生干扰误差,ε技术是降低卫星星历精度,呈无规则的随机变化,使得卫星的真实位置增加了人为的误差。
控制网的静态GPS测量是利用载波相位测量,一般是由一个点设为已知点与一个待定点位同步观测GPS卫星,取得载波相位观测值,从而得出待定点位的坐标或两点间的坐标值,称为基线测量,短基线测量可以消除SA影响。
动态测量解决SA影响的途径是实时差分定位(称Real-time? DGPS),即在已知坐标点上布设基准点,通过基准站取得误差校正值,通过数据链实时传给导航定位的移动站,从而消除SA影响及两站的各种共同的误差,提高了移动站的导航定位精度。
AS技术(Anti-Spoofing)叫反电子欺骗技术,其目的是为了在和平时期保护其P码,不让非授权用户使用;战时防止敌方对精密导航定位作用的P码进行电子干扰。
AS技术使得用C/A码工作的用户无法再和P码相位测量联合解算进行双频电离层精密测距修正,实际降低了用户定位精度。
二、GPS信号的传输误差
2.1太阳光压对GPS卫星产生摄动加速度。
太阳光压对卫星产生的摄动影响卫星的轨道,它是精密定轨的最主要误差源。
太阳光压对卫星产生的摄动加速度
受太阳与地球间距离的变化(地球轨道偏心距)而引起太阳辐射压力的变化,也与太阳光强度、卫星受到的照射面程和照射面积与太阳的几何关系及照射面的反射和吸收特性有关,由于卫星表面材料的老化、卫星姿态控制的误差等也使太阳光压发生变化。
已有的太阳光压改正模型有:标准光压模型、多项式光压模型和ROCK4光压摄动模型,这几种光压模型精度基本上相当,可以满足1m定轨的要求。
最近有人提出,用附加随机过程参数的方法或者对较长的轨道用一阶三角多项式逼近非模型化的长期项影响,可得到更理想的结果,甚至可以满足0.1~0.2m 精度的定轨要求。
2.2电离层的信号传播延迟。
电离层引起码信号传播延迟,它与沿卫星和用户接收机视线方向上的电子密度和接收机信号频率有关。
为了削弱电离层延迟所引起的定位精度损失,在长基准测量中用双频接收机采集GPS数据,对观测成果进行实时电离层延迟改正,可以获得很好的效果。
对于单频接收机的用户,虽然可以用数学模型进行改正,但其残差仍然很大。
也可以用提高卫星高度截止角减少其影响。
在赤道和地极附近存在着严重的电离层赤道扰动和地极扰动。
因而,利用双频GPS接收机观测,只适用于没有电离层扰动的中纬度地区来进行电离层改正。
目前为了进行电离层延迟改正,有以下几种方法:根据全球各电离层观测站长期以来积累的大量观测资料来拟合电离层模型,建立经验改正公式;利用电离层的色散效应建立双频改正模型;利用若干个GPS基准站上得双频观测值来建立相应区域的电离层延迟改正模型。
2.3对流层的信号传播延迟。
对流层延迟是电磁波信号通过高度在50km以下的未被电离的中性大气层时其传播速度不同于真空中光速所引起的信号延迟。
中性大气层里的大气分干大气和湿大气。
其中干大气分量约占80%~90%,可以用一定的模型大部分改正掉。
湿大气分量数值虽不大,但它随纬度和高度的变化呈现出很大的变化,而且随时间变化得非常快。
由于空气中的水汽和干气相当难以预测,所以测量中往往测量的是干、湿分量混合体,故难以得到它的准确值。
到目前为止已开发出来了许多计算湿对流层延迟的实用模型,但对流层延迟仍为主要误差源。
2.4多路径误差。
多路径误差是指在GPS测量中,被测站附近的反射物所反射的卫星信号(反射波)如果进入接收机天线,就将和直接来自卫星的信号(直接波)产生干涉,从而使观测值偏离真值所产生的误差。
多路径误差的大小,取决于反射波的强弱和用户天线抗衡反射波的能力。
用户天线附设仰径板,当仰径板半径为40cm,天线高于1m至2m,可抑制多路径影响。
三、GPS接收机的误差
3.1接收机的钟误差。
与卫星钟一样,接收机也有钟误差。
而且由于接收机大多采用的是石英钟因而其钟误差较卫星钟更为显著。
该项钟误差主要取决于钟的质量,与使用时的环境也有一定的关系。
它对测码伪据观测值和载波相位观测值是相同的。
3.2接收机的位置误差。
在进行授时和定轨时,接收机的位置是已知的,其误差
将使授时和定轨的结果产生系统误差。
该项误差对测码伪据观测值和载波相位观测值的影响是相同的。
在进行GPS基线解算时,需已知其中一个端点在WGS-84坐标系中得近似坐标,近似坐标的误差过大也会对解算结果产生影响。
3.3接收机的测量噪声。
这是指用接收机进行GPS测量时,由于仪器设备及外界环境影响而引起的随机测量误差,其值取决于仪器性能及作业环境的优劣。
一般而言,测量噪声的值远小于上述各种偏差值。
四、消除和消弱上述误差影响的方法和措施
上述各项误差对测距的影响可达数十米,有时甚至可超过百米,比观测噪声大几个数量级。
因此,必须设法加以消除,否则将会对定位精度造成极大的损害。
消除或消弱这些误差所造成的影响的主要方法有:
4.1建立误差改正模型。
这些误差改正模型既可以是通过对误差的特性以及产生的原因进行研究分析、推导而建立起来的理论公式,也可以是通过对大量观测数据的分析、拟合而建立起来的经验公式,有时则是同时采用两种方法建立的综合模型。
4.2求差法。
仔细分析误差对观测值或平差结果的影响,安排适当的观测纲要和数据处理方法(如同步观测、相对定位等),利用误差在观测值之间的相关性或在定位结果之间的相关性,通过求差来消除或大幅度地消弱其对GPS定位精度的影响。
4.3选择好的硬件。
对于一些既不能采用求差的方法也不能采用建立模型的办法来消除或是消弱的误差,最简单有效的办法就是选择好的接收机天线,增强接收机的抗干扰性;仔细选择测站,使接收机天线远离反射物和干扰源。
4.4GPS定位网的设计。
由GPS测量的误差源可以看出,GPS网的设计已不再遵循测角、边角同测和测边网等的传统要求。
它不需要点间通视,只是为了需要在开阔的地方应当适当布设几对相互通视的点,也不需要考虑布设什么样的图形,也就更不需要考虑图形强度,不需要设置在制高点上(哪里需要就可以设置在哪里)。
所以GPS网的设计是非常灵活的。
4.5确定适当的观测时间当观测站周围的环境相对较弱(周围有高大建筑物、大面积平静水体、有高压线等),通过接收机接收到的卫星数量来确定,当接收到的卫星数量少于6颗时,GPS接收机信号容易发生失锁时,适当延长观测时间来避免测量误差的出现,提高定位精度。
结束语
GPS测量定位技术相比常规测量来说,其作业效率大大提高。
目前选择高精度抗干扰性强的GPS接收机,通过全面的质量保证措施,在实际应用过程中严格按照GPS测量规范进行操作,避免和消除那些可以避免的误差,提高GPS定位精度,
能得到更加稳定可靠的高精度定位成果。
参考文献:
[1] GB/T18314-2001·全球定位系统(GPS)测量规范[S].
[2]黑龙江水利科技第34卷GPS-RTK的优点及应注意的问题朱宏军,王伟,郑洪达
[3]周忠谟,易杰军·GPS卫星测量原理及其应用[M].北京:测绘出版社, 1992·
[4]GPS测量与数据处理、李征航,黄劲松编著。
-武汉:武汉大学出版社,2005.3
[5]孙永利.浅析RTK技术在实际应用中的优劣。