紫外分光光度计测蛋白质含量

合集下载

紫外分光光度法测定蛋白质含量

紫外分光光度法测定蛋白质含量

紫外分光光度法测定蛋白质含量化学2班李永亮41007061【实验目的】(1)学习紫外分光光度法测定蛋白质含量的原理;(2)掌握紫外分光光度法测定蛋白质含量的实验技术;(3)掌握TU-1901紫外-可见分光光度计的使用方法并了解此仪器的主要构造。

【实验原理】本实验采用紫外分光光度法测定蛋白质含量。

蛋白质中酪氨酸和色氨酸残基的苯环含有共轭双键,因此,蛋白质具有吸收紫外光的性质,其最大吸收峰位于280 nm附近(不同的蛋白质吸收波长略有差别)。

在最大吸收波长处,吸光度与蛋白质溶液的浓度的关系服从朗伯-比耳定律。

该测定法具有简单、灵敏、快速高、选择性,且稳定性好,干扰易消除,不消耗样品,低浓度的盐类不干扰测定等优点。

利用紫外吸收法测定蛋白质含量准确度较差,其主要原因有两个:其一对于测定那些与标准蛋白质中赖氨酸和色氨酸含量差异较大的蛋白质,有一定误差,故该法适于测定与标准蛋白质氨基酸组成相似的蛋白质;其二若样品中含有嘌呤、嘧啶等吸收紫外光的物质,会出现较大干扰。

【实验仪器与试剂】仪器:TU-1901紫外-可见分光光度计,比色管,吸量管,胶头滴管试剂:标准蛋白质溶液(3.00mg/mL),0.9% NaCl溶液,待测蛋白质溶液【实验步骤】一、准备工作1、启动计算机,打开主机电源开关,启动工作站并初始化仪器。

2、在工作界面上选择测量项目(光谱扫描,光度测量),本实验选择光度测量,设置测量条件(测量波长等)。

3、将空白放入测量池中,点击开始扫描空白,点击基线校零。

4、标准曲线的绘制二、测量工作1、吸收曲线的绘制用吸量管吸取2mL3.00mg/mL 标准蛋白质溶液于10mL 比色管中,用0.9% NaCl 溶液稀释至刻度,摇匀。

用1cm 石英比色皿,以0.9% NaCl 溶液为参比,在190 nm ~400nm 区间,每隔2nm 测量一次吸光度,记录数据。

2、标准曲线的制作用吸量管分别吸取1.0、1.5、2.0、2.5、3.0 mL 3.00 mg/mL 标准蛋白质溶液于5只10 mL 比色管中,用0.9% NaCl 溶液稀释至刻度,摇匀。

常用紫外分光光度法测定蛋白质含量

常用紫外分光光度法测定蛋白质含量

6种方法测定蛋白质含量一、微量凯氏(kjeldahl)定氮法样品与浓硫酸共热。

含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。

经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。

若以甘氨酸为例,其反应式如下:nh2ch2cooh+3h2so42co2+3so2+4h2o+nh3(1)2nh3+h2so4(nh4)2so4(2)(nh4)2so4+2naoh2h2o+na2so4+2nh3(3)反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。

为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。

收集氨可用硼酸溶液,滴定则用强酸。

实验和计算方法这里从略。

计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白氮即得。

如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以625即得。

二、双缩脲法(biuret法)(一)实验原理双缩脲(nh3conhconh3)是两个分子脲经1800c左右加热,放出一个分子氨后得到的产物。

在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。

凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。

紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。

测定范围为1-10mg蛋白质。

干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。

此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。

主要的缺点是灵敏度差。

因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。

(二)试剂与器材1.试剂:(1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。

试验三紫外分光光度法测定蛋白质

试验三紫外分光光度法测定蛋白质

实验三 紫外分光光度法测定蛋白质一、原理由于蛋白质中酪氨酸和色氨酸残基的苯环含有共轭双键,因此蛋白质具有吸收紫外光的性质,吸收高峰在280nm 。

在此波长范围内,蛋白质溶液的光吸收值与其含量呈正比关系,可用作定量测定。

利用紫外吸收法测定蛋白质含量准确度较差,这是由于:(1)对于测定那些与标准蛋白质中酪氨酸和色氨酸含量差异较大的蛋白质,有一定的误差。

故该法适于测定与标准蛋白质氨基酸组成相似的蛋白质。

(2)若样品中含有嘌呤、嘧啶等吸收紫外光的物质,会出现较大干扰。

核酸强烈吸收波长为280nm 的紫外光,它对260nm 紫外光的吸收更强。

但是蛋白质恰恰相反,在280nm 的紫外吸收值大于260nm 的紫外吸收值。

利用这些性质,通过计算可以适当校正核酸对于测定蛋白质含量的干扰作用。

但是,因为不同的蛋白质和核酸的紫外吸收是不同的,虽然经过校正,测定结果还存在着一定的误差。

在测定工作中,可利用在280nm 及260nm 下的吸收差求出蛋白质的浓度。

蛋白质浓度(mg/ml)=1.45A280nm —0.74A260nm ,式中:A280nm 是蛋白质溶液在280nm 下测得的光吸收值;A260nm 是蛋白质溶液在260nm 下测得的光吸收值。

Warburg 和Christian 用结晶的酵母烯醇化酶和纯的酵母核酸作为标准,对有核酸存在时所造成的误差作了评价,并作出了一个校正表(如下)。

紫外吸收法测定蛋白质含量的校正因子F0.6565.500.8461.1160.001.750.6320.6070.5850.5650.5450.5080.4780.4220.3770.3220.2786.006.507.007.508.009.0010.0012.0014.0017.0020.000.8220.8040.7840.7670.7530.7300.7050.6710.6440.6150.5951.0811.0541.0230.9940.9700.9440.8990.8520.8140.7760.7430.6820.250.500.781.001.251.502.002.503.003.504.005.001.631.521.401.361.301.251.161.091.030.9790.9390.874校正因子核酸%A 280nm /A 260nm校正因子核酸%A 280nm /A 260nm注:一般纯蛋白质的A280nm/A260nm 值为约1.8,而纯核酸的A280nm/A260nm 值为约0.5。

紫外分光光度法测定蛋白质含量_百度文库(精)

紫外分光光度法测定蛋白质含量_百度文库(精)

教材1 紫外分光光度法测定蛋白质含量一、实验目的学习紫外分光光度法测定蛋白质含量的原理;掌握紫外分光光度法测定蛋白质含量的实验技术;掌握TU-1901紫外-可见分光光度计的使用方法并了解此仪器的主要构造。

二、实验原理紫外-可见吸收光谱法又称紫外-可见分光光度法, 它是研究分子吸收190nm ~750nm 波长范围内的吸收光谱,是以溶液中物质分子对光的选择性吸收为基础而建立起来的一类分析方法。

紫外-可见吸收光谱的产生是由于分子的外层价电子跃迁的结果,其吸收光谱为分子光谱,是带光谱。

进行定性:利用紫外-可见吸收光谱法进行定性分析一般采用光谱比较法。

即将未知纯化合物的吸收光谱特征,如吸收峰的数目、位置、相对强度以及吸收峰的形状与已知纯化合物的吸收光谱进行比较。

定量分析: 紫外-可见吸收光谱法进行定量分析的依据是朗伯-比尔定律:A=lgI0/I=εbc ,当入射光波长λ及光程b 一定时,在一定浓度范围内,有色物质的吸光度A 与该物质的浓度c 成正比,即物质在一定波长处的吸光度与它的浓度成线形关系。

因此,通过测定溶液对一定波长入射光的吸光度,就可求出溶液中物质浓度和含量。

由于最大吸收波长λmax 处的摩尔吸收系数最大,通常都是测量λmax 的吸光度,以获得最大灵敏度。

光度分析时,分别将空白溶液和待测溶液装入厚度为b 的两个吸收池中,让一束一定波长的平行单色光非别照射空白和待测溶液,以通过空白溶液的透光强度为I 0,通过待测溶液的透光强度为I ,根据上式,由仪器直接给出I 0与I 之比的对数值即吸光度。

紫外-可见分光光度计:紫外-可见吸收光谱法所采用的仪器称为分光光度计,它的主要部件有五个部分组成,即由光源发出的复合光经过单色器分光后即可获得任一所需波长的平行单色光, 该单色光通过样品池静样品溶液吸收后,通过光照到光电管或光电倍增管等检测器上产生光电流,产生的光电流由信号显示器直接读出吸光度A 。

可见光区采用钨灯光源、玻璃吸收池; 紫外光区采用氘灯光源、石英吸收池。

紫外分光光度计测蛋白质含量

紫外分光光度计测蛋白质含量

紫外分光光度法测定蛋白质含量1 仪器与试剂TU-1901紫外-可见分光光度计,比色管,吸量管标准蛋白质溶液:5.00 mg.mL-1溶液0.9% NaCl溶液,待测蛋白质溶液2 实验方法与原理本实验采用紫外分光光度法测定蛋白质含量。

紫外-可见吸收光谱法又称紫外-可见分光光度法,它是研究分子吸收190nm~750nm波长范围内的吸收光谱,是以溶液中物质分子对光的选择性吸收为基础而建立起来的一类分析方法。

紫外-可见吸收光谱的产生是由于分子的外层价电子跃迁的结果,其吸收光谱为分子光谱,是带光谱。

蛋白质中酪氨酸和色氨酸残基的苯环含有共轭双键,因此,蛋白质具有吸收紫外光的性质,其最大吸收峰位于280nm附近(不同的蛋白质吸收波长略有差别)。

在最大吸收波长处,吸光度与蛋白质溶液的浓度的关系服从朗伯-比耳定律。

该测定法具有简单灵敏快速高选择性,且稳定性好,干扰易消除不消耗样品,低浓度的盐类不干扰测定等优点。

3 实验步骤3.1 准备工作3.3.1启动计算机,打开主机电源开关,启动工作站并初始化仪器。

3.3.2 在工作界面上选择测量项目(光谱扫描,光度测量),本实验选择光度测量,设置测量条件(测量波长等)。

3.3.3 将空白放入测量池中,点击START扫描空白,点击ZERO校零。

3.3.4 标准曲线的XXX。

3.2 测量工作3.2.1吸收曲线的绘制用吸量管吸取2mL5.00mg/mL标准蛋白质溶液于10mL比色管中,用0.9% NaCl 溶液稀释至刻度,摇匀。

用1cm石英比色皿,以0.9% NaCl溶液为参比,在190 nm~400nm区间,q全波段扫描。

3.2.2标准曲线的XXX用吸量管分别吸取0.5、1.0 、1.5、 2.0 、2.5mL 5.00 mg.mL-1标准蛋白质溶液于5只10 mL 比色管中,用0.9% NaCl溶液稀释至刻度,摇匀。

用1 cm 石英比色皿,以0.9%NaCl溶液为参比,在280 nm处分别测定各标准溶液的吸光记录所得读数。

紫外吸收法测定蛋白质含量

紫外吸收法测定蛋白质含量

紫外吸收法测定蛋白质含量
(一)目的
学会用紫外吸收法测定蛋白质含量的方法。

(二)仪器
751型分光光度计
(三)原理
大多数蛋白质由于有酷氨酸和色氨酸的存在,在紫外光280nm有吸收高峰,可以进行蛋白质含量的测定。

但是核酸在280nm也有吸收,干扰测定,不过核酸的最大吸收峰在260nm,warburg——等测定了酵母烯醇酶和酵母核酸在280nm和260nm时A的比值,然后通过计算消除核酸存在的影响,可以求得有核酸存在时蛋白质的浓度。

该方法是以酵母烯酶蛋白和酵母核酸为标准建立计算公式,而不同蛋白质的氨基酸组成也不同,因而光吸收也不尽相同,这就会带来误差。

(四)方法步骤
1.取待测样品溶液置于光径1cm的石英比色杯中,于751型分光光度计波长280nm和
260nm,分别读取A
280和A
260
,用蒸馏水(缓冲溶液或盐溶液,视样品溶液而定)为比色空白
对照。

2.根据下列公式计算样品中的蛋白质含量。

蛋白质含量(mg/ml)=1.55A
280—0.76A
260
(五)实验报告
计算所测材料蛋白质的含量。

(六)思考题
1、这里介绍了几种测定蛋白质含量的方法,它们所根据的原理是什么?
2、试比较测定蛋白质含量的几种方法的优缺点。

实验4+紫外吸收法测定蛋白质含量


• 本法操作简便迅速,且不消耗样品(可以回收),低
浓度的盐类不干扰测定,在蛋白质和酶的生化制备 及其它研究中应用广泛,多用于纯化之蛋白质的微 量测定,尤其是适合于柱层析分离中蛋白质洗脱情 况的检测。 • 核酸在280nm波长下也有一定吸收能力,可能发生 干扰。混有核酸时必须分别测定280nm和260nm两
误差。
• (4) 比色皿内盛液应为其容量的2/3~3/4,过少会 影响实验结果,过多易在测量过程中外溢,污染 仪器。 • (5) 拿放比色皿时,应持其“毛面”,杜绝接触 光路通过的“光面”。如比色皿外表面有液体, 应用滤纸吸干,以保证光路通过时不受影响。 • (6) 若待测液浓度过大,应适当稀释,一般应使 吸光度读数处于0.1~0.8范围内为宜。
实验七 紫外吸收法测定蛋白质含量
一、 实验目的:
• 学习紫外分光光度法测定蛋 白质含量的原理; • 熟练掌握紫外分光光度计测 定原理及使用方法。
二、 实验原理:
• 由于蛋白质中存在着酪氨酸、色氨酸及苯 丙氨酸残基,它们的结构中具有共轭双键, 对紫外光有吸收作用,其吸收高峰在 280nm波长处,且在此波长内吸收峰的光 密度值OD280nm与其浓度(范围是 0.1~1.0mg/ml)成正比关系,280nm的吸 光度故可作为蛋白质定量测定的依据。
?由于蛋白质中存在着酪氨酸色氨酸及苯丙氨酸残基它们的结构中具有共轭双键对紫外光有吸收作用其吸收高峰在对紫外光有吸收作用其吸收高峰在280nm波长处且在此波长内吸收峰的光密度值波长处且在此波长内吸收峰的光密度值od280nm与其浓度范围是0110mgml成正比关系280nm的吸光度故可作为蛋白质定量测定的依据
四、操作步骤
• 1.标准曲线制作
• 按表1分别向每支试管内加入各种试剂,混 匀。以光程为1cm的石英比色杯,在 280nm波长处测定各管溶液的光密度值 OD280nm。 • 以蛋白质浓度为横坐标,光密度值为纵坐 标,绘出标准曲线。

实验3 紫外分光光度法测定蛋白质含量


本法适用于微量蛋白质浓度测定, 本法适用于微量蛋白质浓度测定,对盐类混杂的情 况比较合适,为简便起见,对混合蛋白质溶液, 况比较合适,为简便起见,对混合蛋白质溶液,可用 A280×0.75来表示蛋白质大概浓度 来表示蛋白质大概浓度。 A280×0.75来表示蛋白质大概浓度。 注意事项】 【注意事项】 由于各种蛋白质的酪氨酸和苯丙氨酸含量不同, 由于各种蛋白质的酪氨酸和苯丙氨酸含量不同, 显色深浅随不同蛋白质改变, 显色深浅随不同蛋白质改变,因而本法只适用于蛋白 质相对浓度的测定,核酸对结果也有影响, 质相对浓度的测定,核酸对结果也有影响,尽管进行 了公式校正,但是不同样品干扰成分差异较大, 了公式校正,但是不同样品干扰成分差异较大,致使 280nm紫外吸收法检测的准确性较差 紫外吸收法检测的准确性较差。 280nm紫外吸收法检测的准确性较差。 思考题】 【思考题】 紫外分光光度法测定蛋白质浓度的原理是什么? 1. 紫外分光光度法测定蛋白质浓度的原理是什么? 影响紫外分光光度法测定准确性的因素有那些? 2. 影响紫外分光光度法测定准确性的因素有那些?
【实验步骤】 实验步骤】 1、标准曲线法 标准曲线的制作: 只试管按表2 加入试剂, (1)标准曲线的制作:取8只试管按表2-5加入试剂,摇 选择光程1cm 石英比色皿, 280nm波长测定A280, 波长测定A280 匀。选择光程1cm 石英比色皿,在280nm波长测定A280, A280值为纵坐标 蛋白质浓度为横坐标,绘制标准曲线。 值为纵坐标, 以A280值为纵坐标,蛋白质浓度为横坐标,绘制标准曲线。
6 2.5 1.5 0.62 5
7 3.0 定: 样品测定: 配制待测蛋白质溶液1ml 加入蒸馏水3ml 1ml, 3ml, 配制待测蛋白质溶液1ml,加入蒸馏水3ml,摇 匀,测定A280,从标准曲线中查出蛋白质浓度。 测定A280,从标准曲线中查出蛋白质浓度。 A280 2. 直接测定法 在紫外分光光度计上, 在紫外分光光度计上,将待测蛋白质溶液加入 比色皿,以生理盐水为对照,测定280nm 280nm和 比色皿,以生理盐水为对照,测定280nm和260nm 波长吸光度。按一下公式计算蛋白质浓度: 波长吸光度。按一下公式计算蛋白质浓度: 蛋白质浓度(mg/mL)=1.45A280蛋白质浓度(mg/mL)=1.45A280-0.74A260 (C为蛋白质浓度,mg/ml,A280和A260分别为 (C为蛋白质浓度,mg/ml,A280和A260分别为 为蛋白质浓度 蛋白质溶液在280nm 260nm处测得的吸光度值 280nm和 处测得的吸光度值) 蛋白质溶液在280nm和260nm处测得的吸光度值)。

紫外可见分光光度计测定蛋白质的实验方法

紫外分光光度法测定蛋白质含量一、实验目的1.学习紫外分光光度法测定蛋白质含量的原理。

2.掌握紫外分光光度法测定蛋白质含量的实验技术。

3.掌握TU-1901紫外-可见分光光度计的使用方法并了解此仪器的主要构造。

二、实验原理1.紫外-可见分光光度法,是以溶液中物质的分子或离子对紫外和可见光谱区辐射能的选择性吸收为基础而建立起来的一类分析方法。

紫外光:10-400 nm 可见光:400-780 nm(可被人们的眼睛所感觉)特点:带光谱、分子光谱应用:定性分析-最大吸收波长; 定量分析-朗伯-比尔定律(标准曲线法和标准加入法) a.定性分析原理:吸收曲线:吸收峰的数目、位置、相对强度以及吸收峰的形状.b.定量分析原理:根据朗伯-比耳定律:A=εbc,当入射光波长λ及光程b一定时,在一定浓度范围内,有色物质的吸光度A与该物质的浓度c成正比。

定量分析常用的方法是标准曲线法即只要绘出以吸光度A为纵坐标,浓度c为横坐标的标准曲线,测出试液的吸光度,就可以由标准曲线查得对应的浓度值,即未知样的含量。

c.仪器组成部件:各种类型的紫外-可见分光光度计,如下图所示,从总体上来说是由五个部分组成,即光源、单色器、吸收池、检测器和信号显示记录装置。

2.本实验采用紫外分光光度法测定蛋白质含量的实验原理:(1)蛋白质可作定量分析的原因:蛋白质中酪氨酸和色氨酸残基的苯环含有共轭双键,所以蛋白质溶液在275--280nm具有一个吸收紫外吸收高峰。

在一定浓度范围内,蛋白质溶液在最大吸收波长处的吸光度与其浓度成正比,服从朗伯-比耳定律,因此可作定量分析。

该法测定蛋白质的浓度范围为0.1—1.0mg/mL。

(2)此种方法测量的准确度差一点的原因:由于不同蛋白质中酪氨酸和色氨酸的含量不同,所处的微环境也不同,所以不同蛋白质溶液在280nm的光吸收职也不同。

据初步统计,浓度为1.0 mg/mL 的1800种蛋白质及蛋白质亚基在280nm的吸光度在0.3—3.0之间,平均值为1.25+/-0.51。

生物化学实验2.紫外法测定血清蛋白质含量

蛋白质浓度(mg/mL) =(1.45×A280 – 0.74×A260)×500 =(1.55×A280 – 0.76×A260)×500
三、试剂和仪器
(一)试剂 1、0.9%Nacl溶液 2、小牛血清
(二)仪器
754型紫外分光光度计、刻度吸量管、微量移
液器
四、实验步骤
1、稀释血清
准确吸取0.1mL血清,置于50mL容量瓶中, 用0.9%Nacl溶液稀释至标准刻度(即500倍)。
利用吸光度值计算出蛋白质浓度。
蛋白质浓度(mg/mL) =(1.45×A280 – 0.74×A260)×500 =(1.55×A280 – 0.76×A260)×500
2、测定吸光度
检查→开机→预热(30min)→ 设置波长→放入比色皿
→校正仪器(开门调0关门调100)→测定→收整
在紫外分光光度计上,将稀释的血清 置于比色皿中,以0.9%Nacl溶液作为空白 对照,分别在260nm和280nm波长下,读取 A280和A260,带入公式计算蛋白质浓度。
五、结果与分析
紫外分光光度法测定蛋白质含量
研究对象
血清总蛋白 •正常值:60~80g/L •血浆总蛋白上升
常见于脱水导致的血浆浓缩,例如急性失水、休克、 肾上腺皮质功能不全等 •血浆总蛋白下降 血浆水分增加,如水钠潴留 长期消耗性疾病,如肺结核、肿瘤等 肝功能损伤、肾功能损伤等
一、实验目的
1、掌握紫外分光光度法测定血光度计的使用方法。
二、实验原理
含有共轭双键的色氨酸、酪氨 酸对紫外光有较强的光吸收。其 吸 收 峰 在 280nm 左 右 , 以 色 氨 酸 吸收最强。
大多数蛋白质含有这两种氨基 酸残基,且含量比较接近,因此 可利用此性质采用紫外分光光度 法测定蛋白质的含量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

紫外分光光度法测定蛋白质含量
1 仪器与试剂
TU-1901紫外-可见分光光度计,比色管,吸量管
标准蛋白质溶液:5.00 mg.mL-1溶液
0.9% NaCl溶液,待测蛋白质溶液
2 实验方法与原理
本实验采用紫外分光光度法测定蛋白质含量。

紫外-可见吸收光谱法又称紫外-可见分光光度法,它是研究分子吸收190nm~750nm波长范围内的吸收光谱,是以溶液中物质分子对光的选择性吸收为基础而建立起来的一类分析方法。

紫外-可见吸收光谱的产生是由于分子的外层价电子跃迁的结果,其吸收光谱为分子光谱,是带光谱。

蛋白质中酪氨酸和色氨酸残基的苯环含有共轭双键,因此,蛋白质具有吸收紫外光的性质,其最大吸收峰位于280nm附近(不同的蛋白质吸收波长略有差别)。

在最大吸收波长处,吸光度与蛋白质溶液的浓度的关系服从朗伯-比耳定律。

该测定法具有简单灵敏快速高选择性,且稳定性好,干扰易消除不消耗样品,低浓度的盐类不干扰测定等优点。

3 实验步骤
3.1 准备工作
3.3.1启动计算机,打开主机电源开关,启动工作站并初始化仪器。

3.3.2 在工作界面上选择测量项目(光谱扫描,光度测量),本实验选择光度测量,设置测量条件(测量波长等)。

3.3.3 将空白放入测量池中,点击START扫描空白,点击ZERO校零。

3.3.4 标准曲线的制作。

3.2 测量工作
3.2.1吸收曲线的绘制
用吸量管吸取2mL5.00mg/mL标准蛋白质溶液于10mL比色管中,用0.9% NaCl溶液稀释至刻度,摇匀。

用1cm石英比色皿,以0.9% NaCl溶液为参比,在190 nm~400nm区间,q全波段扫描。

3.2.2标准曲线的制作
用吸量管分别吸取0.5、1.0 、1.5、 2.0 、2.5mL 5.00 mg.mL-1标准蛋白质溶液于5只10 mL 比色管中,用0.9% NaCl溶液稀释至刻度,摇匀。

用1 cm 石英比色皿,以0.9%NaCl溶液为参比,在280 nm处分别测定各标准溶液的吸光记录所得读数。

度A
278
3.2.3样品测定
取适量浓度的待测蛋白质溶液3mL,按上述方法测定278 nm处的吸光度。

平行测定三份。

4 实验结果记录
4.1 吸收曲线
根据全波段扫描结果,已知蛋白质的最大吸收峰位于280nm左右。

(λmax=278nm)
4.2 标准曲线的制作
以蛋白质标准溶液浓度为横坐标,吸光度为纵坐标绘制标准曲线。

绘制的蛋白质标准曲线如下图所示。

4.3 测定结果
根据两次平行测定的结果,得出未知蛋白溶液吸光度、根据标准曲线算出的蛋白溶液含量如下表所示。

所测溶液平均浓度:C=0.519(mg/mL)
5 实验讨论
本次实验采用的蛋白溶液为牛血清蛋白。

蛋白质中酪氨酸和色氨酸残基的苯环含有共轭双键,所以蛋白质溶液在275~280 nm 处具有一个吸收紫外吸收高峰。

在一定浓度范围内,蛋白质溶液在最大吸收波长处的吸光度与其浓度成正比,符合朗伯-比耳定律,因此可作定量分析。

由于不同蛋白质中酪氨酸和色氨酸的含量不同,所处的微环境也不同,所以不同蛋白质溶液在 280 nm 的光吸收值不同。

据初步统计,浓度为 1.0 mg/mL 的 1800 种蛋白质及蛋白质亚基在280 nm的吸光度在 0.3~3.0 之间,平均值为1.25±0.51。

[1]
上图为文献[1]中以0.9%NaCl溶液为参比液,将浓度为0.3mg/mL的蛋白质溶液,进行波长扫描测量,得到吸收曲线。

从吸收曲线可得 0.3 mg/mL 标准蛋白质溶液的最大吸收波长为279 nm,此波长下的吸光度为 0.167。

根据文献显示,仪器误差、不适当的校准曲线、测量中不符合朗伯—比尔定律的光学、化学因素、显色反应条件、共存离子干扰以及仪器测试条件等都是影响分光光度计准确性的因素。

[2]
最让我印象深的便是仪器误差,主要体现在样品池的使用上。

一般来说,为得到最准确的定量结果,应使用同一样品池测量标准样品和待测样品,虽然这样比较麻烦,根据文献[2]我们知道,最好的样口池应有平整、严格平行的光学表面,否则会使光束偏离,引起表观吸光度误差;另外,样品池在样品架上的方位应始终不变,这样不致于使测量空白和样品时的光学效应不一致而产生误差。

因此我认为,今后在使用分光光度计的时候,若要平行测定样品,应该使用同一样品池来装样品,不要像以往一样,因为麻烦、图快,就使用几个不同的样品池来测定,另外,师姐一再强调样品池在装不同样品之前一定要用去离子水、样液润洗几遍,保证不会有上一样品的残留,并且将光面上的残留物擦干,不能留有指纹,否则都会影响测定的准确性。

另外,在绘制标准曲线的时候也有一定的讲究,根据文献我们知道[3],理论上仅用一个已知浓度的标准物质测量其吸光度便可进行定量分析校正,测得的吸光度值除以浓度便得斜率。

但是有很多仪器和样品因素会偏离朗伯-比耳定律。

若校准工作曲线不准确,会造成定量分析结果较大的误差。

因此要得到一条标准工作曲线,应测量至少三个已知浓度标准样品溶液的吸光度,标准样品的浓度范围应包括待测样浓度。

然后用线性回归方法找到所测数据和校正曲线的最佳拟合,以决定哪种类型的工作曲线可给出最佳的拟合。

我认为在平时的实验当中,我们
的待测样浓度经常没有在标准样品的浓度范围内,若样品浓度不在此范围内,可能会导致线性关系不佳,造成实验误差,而本次实验的标准曲线很好,待测样品浓度落在标准样品范围内。

参考文献
[1]曹红翠.紫外分光光度法测定蛋白质的含量.广东化工[J]2007(08)
[2]申燕玲.分光光度计误差来源分析.计量与测试技术[J].1999(03)
[3]薛芳,孙玉岭,卫锋. 用紫外可见分光光度计检测样品中误差问题探讨.现代仪器
[J].1999(03)。

相关文档
最新文档