量子力学 第三章3.7算符的对易关系 两力学量同时有确定值的条件 不确定关系
算符对易关系_第三章

13
●
测不准关系的严格推导
ˆ ˆ ˆ ˆ ˆ 设 F 和 G 的对易关系为 [F, G] ik
ˆ ˆˆ ˆˆ FG GF ik
ˆ ˆ ˆ ˆ F F F , G G G ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ FG GF (F F )(G G ) (G G )(F F ) ˆ ˆˆ ˆ ˆˆ ˆ ˆ (FG FG FG FG) (GF GF GF GF)
12
3.7 算符对易关系 两力学量同时可测的条件
测不准关系(续12 )
4.测不准关系 引言 由前面讨论表明,两对易力学量算符则同 时有确定值;不对易两力学量算符,一般 来说,不存在共同本征函数,不同时具有 确定值。 两个不对易算符所对应的力学量在某一状 态中究竟不确定到什么程度?即不确定度 是多少? 测量值 Fn 与平均值 < F > 的偏差的 大小。
ˆ ˆ ˆ ˆ 若 [ F , G] 0 , 则 F 与 G 对易
ˆ ˆ ˆ ˆ 若 [ F , G] 0 ,则 F 与 G 不对易
1
3.7 算符对易关系 两力学量同时可测的条件
测不准关系(续1)
(1)力学量算符的基本对易关系 ˆ ˆ x, y 0 [x , x ] 0 , 1, 2, 3 ˆ ˆ y, z 0 x1 x, x2 y, x3 z ˆ 0 ˆ z, x
测不准关系(续6)
2.力学量同时有确定值的条件(对易的物理意义)
ˆ ˆ 若算符F 和 G 具有共同的本征函数完全 定 理 ˆ ˆ 系,则 F 和 G 必对易。 ˆ ˆ prove: 设 n 是 F 和 G 的共同本征函数完全系,则
§3.7 算符的对易关系 两力学量同时有确定值的条件 测不准.

A B C A B C
(16)
(c)算符之积,
AB A B
(17)
算符 AB 对 的运算结果,等于 B 先对 运算,然后再 用 A 对 B 运算。一般说来算符之积不满足交换率:
AB BA (18) 典型例子: x, px x px px x i
ˆ F ˆ ˆ , G ˆ ,G 注: F
ˆ G ˆ ˆ k I F
2
(42) 可以作为公式使用
2
上式 I 0 为二次多项式,系数必须满足 2 2 2 k ˆ ˆ G F (39) 4 (44)称为测不准关系,是量子力学最重要的关系。
(27)
将上式非0式合写,成为: ˆ ˆ ˆ l l i l 另外,定义:角动量平方算符
l 2 lx2 l y2 lz2
(28)
(29)
l 2 , l 0, x, y, z (30) 而 l 2 和 l x , l y , l z 的球坐标表达式以在3.2节中讲过。
(36)
1.两个算符对易的条件即两个算符所表示的力学量同 时有确定值的条件。 ˆ 有一组共同本征函数 n ,而 ˆ和G 如果两个算符 F ˆ 对易。 ˆ 和 G 且 n 组成完全系,则算符 F
证明:
Fn nn , Gn nn , 而 ann
n n
n 由于 为任一波函数,所以
描写客观测量的都是线性算符,这是态迭加原理的反 映。 单位算符 I :满足
I
(13)
(b)算符之和,满足
A B A B
3.7算符的对易关系两力学量同时有确定值的条件

1/26
Quantum mechanics
§3.7 算符的对易关系 两力学量同时有确定值的条件 测不准关系
§3.7 算符的对易关系 两力学量同时有确定值的条件 测不准关系
Commutation relation of operators Conditions of two mechanical quantities simultaneously with determine value Uncertainty relation 一、算符间的对易关系 (Commutation relation of operators)
ˆ ,L ˆ ]i L ˆ [ L x y z ˆ ˆ ]i L ˆ [ Ly , L z x ˆ ˆ ]i L ˆ [ L , L z x y
ˆ ˆ ˆ [ L , L ] i L , 123 1 εαβγ—列维--斯维塔(j (j=1,2,…) 分别将gj代入前式可得对应于每个gj的一组解
第三章 量子力学中的力学量
11/26
Quantum mechanics
§3.7 算符的对易关系 两力学量同时有确定值的条件 测不准关系
所以相应的波函数
n j ai jni ( j 1, 2,
ˆ y (i p ˆz ) i p ˆz p ˆy p ˆ z (i p ˆy) i p ˆy p ˆz 0 00 p
ˆ ,p ˆ ,p ˆ 2 ] 0,[ L ˆ 2] 0 [L y z
第三章 量子力学中的力学量
6/26
Quantum mechanics
§3.7 算符的对易关系 两力学量同时有确定值的条件 测不准关系
算符对易关系 两力学量同时可测的条件 测不准关系

对易 关系
1
3.7 算符对易关系 两力学量同时可测的条件 测不准关系(续2)
Chap.3 The Dynamical variable in Quantum Mechanism
xˆ, yˆ 0
yˆ, zˆ 0
zˆ, xˆ 0
但是坐标算符与其非共轭动量 对易,各动量之间相互对易。
2.力学量同时有确定值的条件
Chap.3 The Dynamical variable in Quantum Mechanism
定理
若算符Fˆ 和 Gˆ 具有共同的本征函数完全 系,则 Fˆ 和 Gˆ 必对易。
prove: 设 n 是 Fˆ 和 Gˆ 的共同本征函数完全系,则
Fˆn nn , Gˆn nn
ห้องสมุดไป่ตู้
[ pˆ y , Lˆy ] 0
y[ pˆz , Lˆy ] [ y, Lˆy ]pˆz z[ pˆ y, Lˆy ] [zˆ, Lˆy ]pˆ y
[ y, Lˆy ] 0 y[ pˆ z , zpˆ x xpˆ z ] [zˆ, zpˆ x xpˆ z ] pˆ y 等于零
y[ pˆ z , zpˆ x ] y[ pˆ z , xpˆ z ] [z, zpˆ x ] pˆ y [z, xpˆ z ] pˆ y
x
ihU
f x
ihf
U x
ihU
f x
ihf
U x
ih
U x
f
U
x
,
Pˆx
ih
U x
特别地,当U x x 代入上对易式,即证得 x, Pˆx ih
同理可证: y, Pˆy ih z, Pˆz ih
3
3.7 算符对易关系 两力学量同时可测的条件 测不准关系(续3)
算符的对易关系 共同本征态函数 测不准关系

因此,
xpx
(n1) 22
不确定关系是量子力学中的基本关系,它反 映了微观粒子波粒二象性。
2021/8/17
23
例2:一维谐振子的不确定关系
【解】 振子的平均能量是 x 0 ,(见4.22式)
p 0 , (见4.32式)
2021/8/17 又(: 见4.23x式2 n)(n1 2)M
22
px2
n
(n1)M
2
,
(见4.33式)
x x2 x2 x2 (n1)
n
n
2M
p xp x 2np x2 p xp x 2n(n 1 2 )M
16
2. 不确定关系的严格证明 在量子力学中力学量的不确定关系 FG ?
证明: 第1步:设两任意厄米算符 Fˆ , Gˆ的对易关系为
F ˆ,G ˆ iK ˆ——
或厄米算符
F ˆG ˆG ˆF ˆiK ˆ ——Kˆ
为实数
构造态函数
对任意态函数 ,再构造出一个新的任意态 (Fˆ iGˆ) 函数(其中 是实参数),
G (G ˆG)2
所以
:
FG 1 2
K
这就是常见的不确定关系的一般表达式。
例1:坐标和动量的不确定关系
取 Fˆx,G ˆpˆx
xˆ,p ˆxi对比对易关系 F ˆ,G ˆ iK ˆ
2021/8/17
21
得 Kˆ 由公式 FG1 K
2
xpx 2 ,这正是大家所熟悉的不确定关系。具 体的 xpx ? 需要具体来求。
2021/8/17
17
第2步 ——计算态函数内积
I()(F ˆiG ˆ,F ˆiG ˆ)0(被积函数不小于零)
展开为 :
第三章量子力学中的力学量5

(一)两算符对易的物理含义 前面我们已经提到了一些常见算符的对易关系,这些对易关系 前面我们已经提到了一些常见算符的对易关系,这些对易关系 到底有什么物理意义 物理意义? 到底有什么物理意义?这个问题将在这节课得到阐明 下面给出了一些常见力学量算符之间的对易关系。 下面给出了一些常见力学量算符之间的对易关系。这些对易关 系需要牢记并能够证明。 系需要牢记并能够证明。
px , p y , pz
ˆ ˆ ˆ H , L2 , Lz
两两对易
r 具有完备的共同本征函数系: 具有完备的共同本征函数系: ψ nlm (r ) = Rnl (r )Ylm (θ , ϕ )
同时具有确定值
En , l (l + 1)h 2 , mh
例 3:
ˆ L2 ˆ ˆ = z ,L 定轴转子: 定轴转子: H z 2I
由上面的结论可以看出,算符之间的对易关系可分为两种: 由上面的结论可以看出,算符之间的对易关系可分为两种:相 互对易和不对易。下面我们将看到算符间的对易关系关系直接 互对易和不对易。下面我们将看到算符间的对易关系关系直接 关系到算符表示的力学量是否有可能同时具有确定值。 有可能同时具有确定值 关系到算符表示的力学量是否有可能同时具有确定值。 ˆ ˆ 前面我们已经知道如果某波函数 ψ 是算符 F 和算符 G的共同本 征函数, 同时具有确定的观测值。 征函数,那么力学量 F 和 G 同时具有确定的观测值。确定值就 是它们的本征值 λ 和 µ ,即: ˆ ˆψ Fψ = λψ G = µψ 以上说法的逆也是正确的:如果在状态 ψ 中,力学量 F 有确 以上说法的逆也是正确的: 说法的逆也是正确的 ˆ 的本征函数, 定值, 定值,那么 ψ 必为算符 F 的本征函数,如果同时力学量 G 也 ˆ 的本征函数。 有确定值, 是它们的共 有确定值,那么ψ 也是算符 G 的本征函数。即 ψ 是它们的共 同本征函数。 同本征函数。 结论 两个算符具有共同本征函数和两个算符对应的力学量能够同时 取确定值是等价的。但是需要注意的是, 取确定值是等价的。但是需要注意的是,这并不意味着在任何 状态下两个力学量都能取确定值。 状态下两个力学量都能取确定值。
算符对易关系_第三章教材
测不准关系(续6)
2.力学量同时有确定值的条件(对易的物理意义)
ˆ 具有共同的本征函数完全 ˆ 和G 若算符F 定 理 ˆ 必对易。 ˆ 和G 系,则 F ˆ 和G ˆ 的共同本征函数完全系,则 prove: 设 n 是 F
ˆ ˆ , G F n n n n n n
11
Ex.5
可能同时有确定值。
3.7 算符对易关系 两力学量同时可测的条件
测不准关系(续11)
3. 力学量完全集合 (1)定义:为完全确定状态所需要的一组两两对易的 力学量算符的最小(数目)集合称为力学量完全集。 Ex.1 三维空间中自由粒子,完全确 ˆ ˆ ˆ p , p , p x y z. 定其状态需要三个两两对易的 力学量: ˆ ,L ˆ2 , L ˆ . Ex.2 氢原子,完全确定其状态也需 H z 要三个两两对易的力学量: 一维谐振子,只需要一个力学 ˆ Ex.3 H 量就可完全确定其状态: (2)力学量完全集中力学量的数目一般与体系自由度 数相同。 (3)由力学量完全集所确定的本征函数系,构成该体 系态空间的一组完备的本征函数,即体系的任何状态 均可用它展开。
ˆ ˆ G ˆF ˆG ˆ ik F 2 ˆ ) d ˆ iG 考虑积分: I ( ) (F ˆ )* ][F ˆ ]d ˆ )* i (G ˆ iG [(F
* ˆ ) (G )* F ˆ ˆ )d i [(F ˆ )* (G ˆ ]d (F ) (F 2
(2 ) 为简单起见,先考虑非简并情况。由( 1 )、( 2 ) ˆ 都是 F ˆ 属于本征值 的本征函数,它 式知,n 和 G n n 们最多相差一个常数因子 n ,即
ˆ ˆ G ˆ ˆ ˆ GF FG n n n n
考研量子力学量子力学大纲
《量子力学》课程教学大纲课程英文名称:Quantum Mechanics课程简介:本课程为专业基础课。
通过该课程的学习,学生可以掌握量子力学的基本理论与基本方法,能提高本科生分析和解决实际物理问题的能力,为本科生后续的专业课程学习和今后的实际工作奠定一定的理论基础,并掌握初步的解决问题方法。
让学生掌握描述量子力学的一些基本量子思想和量子理论方法。
这些内容将为今后本科生在固体物理学、磁性物理学、凝聚态物理等理论方面的进一步学习奠定一定的理论基础,并可以使本科生初步掌握分析问题和解决问题的方法。
一、课程教学内容及教学基本要求第一章绪论本章重点:1)介绍量子力学的产生背景时要说明提出问题和解决问题的条件:社会的需求、科学技术的水平、人们的前期努力和成就等等,用历史唯物主义的观点看待问题。
介绍杰出的人物的工作和贡献时同样应注意突出重点,兼顾全面的原则,从科学史的角度考察,借以获得更多的教益。
2)要着重注意介绍德布罗意假设、波粒二象性的概念,借以初步认识微观客体运动的特殊性和唯物主义思想的指导作用;介绍相应的实验验证和实践应用,认识理论和实践的关系。
3)使学员能从较宽广的角度认识量子力学的地位和作用,增强学习自觉性。
同时初步了解学科的特点,对下一步的学习有相应的准备。
难点:康普顿散射的推导及理解,微观粒子的波粒二象性。
第一节经典物理学的困难(之一:黑体辐射问题和Plank量子论)本节要求:理解:黑体辐射问题中经典理论所遇到的困难和Plank量子论。
掌握:Plank 量子论(重点:考核概率50%)。
1 黑体辐射问题中经典理论所遇到的困难(维恩公式、瑞利-金斯公式)。
2 Plank的电磁辐射能量量子化的思想,并推导Plank的黑体辐射公式,理解并掌握Plank 的能量量子化的假设。
第二节经典物理学的困难(之二:光电效应与爱因斯坦的光量子论;之三:A.Einstein光量子论在Compton效应的解释)本节要求:掌握:光电效应概念(脱出功A的概念、光电流等);爱因斯坦的光量子论解释光电效应;Compton效应概念;A.Einstein光量子论在Compton效应的解释(重点:考核概率100%);理解:在微观单个碰撞事件中能量动量守恒定律仍然成立)。
算符对易关系第三章
ˆ z , z] p ˆ x yz[ p ˆz , p ˆ x ] [ z, x] p ˆz p ˆ y x[ z, p ˆz ]p ˆy y[ p
ˆ x i xp ˆy i yp
ˆ y yp ˆx ) i ( xp ˆ iL z
等于零
6
3.7 算符对易关系 两力学量同时可测的条件
(2 ) 为简单起见,先考虑非简并情况。由( 1 )、( 2 ) ˆ 都是 F ˆ 属于本征值 的本征函数,它 式知,n 和 G n n 们最多相差一个常数因子 n ,即
ˆ ˆ G ˆ ˆ ˆ GF FG n n n n
ˆ 的本征方程的解。因此, n 也是 G 可见, n 是 ˆ 的本征函数完全系 G
ˆx, p ˆy] 0 [p ˆy, p ˆz] 0 [p ˆz, p ˆx] 0 [p
, 1, 2, 3 ˆ ˆ p , p 0
ˆ1 p ˆ x, p ˆ 2 p ˆ y, p ˆ 3 p ˆz ) (p
ˆ x , p i ( , 1, 2, 3)
测不准关系(续6)
2.力学量同时有确定值的条件(对易的物理意义)
ˆ 具有共同的本征函数完全 ˆ 和G 若算符F 定 理 ˆ 必对易。 ˆ 和G 系,则 F ˆ 和G ˆ 的共同本征函数完全系,则 prove: 设 n 是 F
ˆ ˆ , G F n n n n n n
★ 若两个力学量算符彼此不对易,则一般说来这两 个算符表示的两个力学量不能同时具有确定性,或 者说不能同时测定。
9
3.7 算符对易关系 两力学量同时可测的条件
测不准关系(续9)
3.7 算符对易关系
ˆ iB ˆ iB ˆ , A ˆ I ( ) A
ˆ , A ˆ A ˆ , iB ˆ iB ˆ iB ˆ , A ˆ , iB ˆ A
ˆ , A ˆ i A ˆ , B ˆ B ˆ i B ˆ , A ˆ , B ˆ 2 A
ˆ 2 i , A ˆ, B ˆ , B ˆ 2 2 , A
2
ˆ ˆ i , ik ˆ , B , A
2 2
ˆ ˆ 2 , k ˆ 2 2 , A ,B
所以
2 ( k ) ˆ ) 2 (B ˆ )2 (A 4
2
ˆ ˆ,B ˆ] [A ˆ,B ˆ ] ik [A
(二)坐标和动量的测不准关系
(1)测不准关系
ˆ ˆ,B ˆ] [A ˆ,B ˆ ] ik [A
2 ( k ) ˆ ) 2 (B ˆ )2 (A 4
n
ˆ G ˆF ˆG ˆ ) cn ( F n
ˆ ) ˆ G cn ( F n n n
n
n
cn ( n n n n )n 0
n
因为 (x) 是 所以 任意函数
ˆ G ˆF ˆG ˆ 0 F
两力学量同时有确定值的条件
• 体系处于任意状态 (x)时,力学量 F 一般 没有确定值。
j (1,2,3) ( x, y, z)
2 2 2
[ L j , p ] 0 , [ L, p ] 0 , [ L , p ] 0
[ L,U (r )] 0 , [ L ,U (r )] 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= 0
3. 算符对易关系的运算法则:
ˆ ˆ ˆ ˆ <1>[ A, B] = [B, A ] ; ˆ ˆ <2>[A, A] =0; ˆ c <3>[ A, c] =0 ( 为复常数) ; ˆ ˆ ˆ ˆ ˆ ˆ ˆ <4>[ A, B C] =[A, B] +[A, C] ;
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ = L y L y Lx L y Lx L y + L y Lx L y Lx L y L y
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ + L z L z L x L z L x L z + L z L x L z L x Lz Lz
ˆ ˆ ˆ ˆ ˆ ˆ 例: [Lx , L y ]Y00 L x L y L y L x Y00 0
ˆ ˆ 但 [L x , L y ] 0
ˆ i (sin ctg cos ) Lx
ˆ i (cos ctg sin ) Ly
(矢量式),
即角动量算符的定义式。
ˆ2 ,L ] [L2 , L ] [L2 ,L ] 0 ; ˆ ˆ ˆ ˆ [L ˆ x b. 利用 L L iL可以证明: y z
ˆ ˆ ˆ ˆ ˆ ˆ [ L2 , L x ] = L2 L x L x L2
ˆ 3 ˆ ˆ 2 ˆ ˆ 2 ˆ 3 ˆ 2ˆ ˆ 2ˆ = L x + L y L x + Lz Lx L x L x L y Lx Lz
ˆ ˆ ˆ ˆ ˆ ˆ i ˆ ˆ = iL y L z iL z L y +iL z L y + L y L z
=0
ˆ ˆ ˆ ˆ ˆ ˆ 同理可证:[L2 , L y ] = [L2 , L z ] =0,即:[L2 , Li ] =0 ,i x, y, z
二、两个力学量同时具有确定值的条件 1.定理
ˆ ˆ 解释:前面已证:[ L2 , L z ]=0
2 ˆ2 ˆ r2 ˆ p L es 而 H 2 2r 2 r
e2s 2 1 2 1 1 2 [ 2 (r ) 2 (sin ) 2 2 ] 2 2 r r r r sin r sin r
ˆ =iL x
ˆ ˆ ˆˆ ˆˆ ˆ ˆˆ ˆ ˆˆ ˆ [ L z , p y ] =[ xp y yp x , p y ] =[ xp y , p y ] [ yp x , p y ]
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ = x[p y , p y ] +[ x , p y ]p y y[p x , p y ] [ y, p y ]p x
2 ˆ ˆ 2 es 和 ˆ 2 ˆ 相 pr L2 ˆ ②氢原子的哈密顿算符 H L , Lz 2 2 2r r
互对易,则它们有完全的共同的本征函数系{
在态 中,ˆ , L2 , L 同时具有确定值,依次 H ˆ ˆz nm
nm
},
为:E n , ( 1) 2 , m 。
ˆˆˆ ˆˆˆ 等式左边= ABC BCA ,等式成立。
说明:利用算符对易关系的运算法则可以大大简化算 符对易关系的证明,例如:
ˆ ˆ ˆˆ ˆˆ ˆˆ ˆˆ [ L y , L z ] =[ zp x xp z , xp y yp x ]
ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ =[ zp x , xp y yp x ] [ xp z , xp y yp x ]
i(x)
而 ( x ) 是任意的,
所以:
ˆ x,px i
该式称为 x 和 p x 的对易关系,等式右边不等于0,即 x ˆ
和 p x 不对易。 ˆ
ˆ ˆ 同样可得: [y, p y ] i
ˆ ˆ z, pz i
ˆ ˆ [x,py ] x,pz 0
ˆ ˆ 定理1:如果两个算符 F 和 G有一组共同本征函数 ,
n
ˆ ˆ 而且 n组成完全系,则算符 F 和 G 对易。
ˆ ˆ 证明:设有两力学量 F 和 G 有一组共同的本征函数 n ,
ˆ F n n n
展为级数:
ˆ G n n n
而 n 组成完全系,即对于任意的波函数 都可按{ n}
ˆ ˆ ˆ 将 x, p x xp x p x x 作用在任意波函数 ( x ) 上,即:
ˆ ˆ xpx px x (x) x(i) x (x) i x (x (x)) x (x) x (x) (x) i x i x i
ˆ ˆ ˆˆ = iyp x + ip y x
ˆ =iL z
即: 同理可证:
ˆ ˆ ˆ [L x , L y ] iL z
满足轮换对称性
ˆ ˆ ˆ [L y , Lz ] iL x
ˆ ˆ ˆ [Lz , Lx ] iL y
说明:a. 可合并写为:
L L iL
研究算符之间的关系以及它们代表的物理量之间的关系
一、算符的对易关系:
对于任意的波函数,
ˆ ˆ 0F, G对易 ˆ ˆ ˆˆ ˆˆ G, F GF FG ˆ ˆ 0F, G不对易
ˆ ˆ ˆ 1. 坐标算符 x 和动量算符 p x 的对易关系 x, p x ?
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ <5>[ A, BC] = B[A, C] +[A, B]C ;
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ <6>[ AB, C] = A[B, C] +[A, C]B 。
ˆˆˆ ˆˆˆ ˆˆˆ ˆˆˆ ˆˆˆ ˆˆˆ 证明<5>:等式右边= BAC BCA ABC BAC= ABC BCA
ˆˆ ˆˆ ˆˆ ˆˆ ˆ ˆˆ ˆˆ =[ zp x , xp y ] [zp x , yp x ] [ xp z , xp y ] +[ p z , yp x ] xˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ = z[p x , x ]p y + y[x, p x ]p z
ˆˆ ˆˆ = i ( yp z zp y )
a n n 。
n
ˆˆ ˆˆ ˆˆ ˆˆ 则: (FG GF) = (FG GF) a n n
ˆˆ ˆˆ = a n (FG GF) n
n
n
ˆˆ ˆ ˆ ˆˆ ˆˆ ˆˆ 而 (FG GF) n = FG n GF n = F n n G n n
ˆ ˆ ˆ I 即:如果一组算符(F, G, H, ˆ……)有共同本征函数,
而且这些共同本征函数组成完全系,则这组算符中的任 何一个和其余的算符对易。这个定理的逆定理也成立。
2. 不同力学量取确定值的条件:
ˆ ˆ ˆ I 若 F, G, H, ˆ ……等可对易,由以上定理知,这些函数有
完全的共同的本征函数系{ n},按本征函数与本征值 的意义可知,当体系处于它们的本征态 n 时,力学量 F 有确定值 n ,ˆ 有确定值 n ,…(按3.6节讲的基本假 G ˆ I F ˆ ˆ 设)。于是会存在这样的态,在这些态中,H, ˆ , , G,… 代表的力学量可同时取确定值。
= n n n n n n =0
ˆˆ ˆˆ 于是: (FG GF) 0
而 是任意的波函数
ˆˆ ˆˆ 所以: FG GF =0
ˆ ˆ 即:[ F, G ]=0,定理得证。
ˆ ˆ 说明:若 F 和 G 有一组共同本征函数 n ,并不一定
ˆ ˆ 能够得到 [F, G] =0的结论,除非 n 组成完全系。
ˆ = ip x
ˆ ˆ ˆ 2 , L ] = [ L 2 , L ] +[L y 2 , L x ] +[ L 2 , L ] ˆ ˆ ˆ ˆ [L ˆ x x x z x
ˆ ˆ ˆ ˆ ˆ ˆ ] =L y [L y , L x ] +[L y , L x L y
ˆ ˆ ˆ ˆ [ˆ ˆ +L z [L z , L x ] + L z , L x ] L z
ˆ x i 和 p j 的对易关系是量子力学算符的
基本对易关系,由它们可以推出其他的一些算符 (有经典对应的)对易关系。
2. 角动量算符的对易关系:
ˆ ˆ ˆ ˆ ˆ ˆ [Lx , L y ] L x L y L y L x
ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ ˆˆ = ( yp z zp y ) (zp x xp z ) (zp x xp z ) ( yp z zp y )
ˆ ˆ ˆ ˆ y,pz y,px 0
ˆ ˆ ˆ ˆ [z,py ] z,px 0
ˆ ˆ ˆ ˆ [p x , p y ] p x , p z p y , p z 0 ˆ ˆ
以上可总结为基本对易关系:
x i , p j i ij xi , x j 0 pi , p j 0
ˆ 即 G n 也是
②
ˆ F 属于 n 的本征函数。
而 n 非简并,
ˆ 则 G n 与 n 最多只能差一常数因子,记为 n ,即:
ˆ G n n n
ˆ 这样 n也是 G的本征函数,本征值为 n 。