用字母表示数及代数式
第十三讲用字母表示数、列代数式

第十三讲 用字母表示数、列代数式第一部分、教学目标:1、通过本章导图中的计算活动实验,使学生体验到字母表示数的优越性。
2、通过用字母表示实例中的数量演习活动,使学生加深对字母表示数的认识。
3、在列代数式的探索活动中,使学生习惯用字母表示数,并初步建立符号意识。
第二部分、教学重点、难点重点:1、理解用字母表示数的意义,会用字母表示数。
2、把语言描述的数量关系用代数式表示出来。
难点: 1、会用含有字母的式子表示数量关系,并知道字母的取值范围。
2、理解描述语句,正确列出代数式。
第三部分、教学过程例题讲解:例1、已知下列各式:ab S 21=,a ,﹣2,a +b ,a +b =b+a ,x 2≥0,2x ,其中属于代数式的共有( )A .3个B .4个C .5个D .6个【分析】根据代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式.进行分析即可.【解答】解:a ,﹣2,a+b ,2x 属于代数式,共4个, 故选:B .练1.1、在以下各式中属于代数式的是( C ) ①ab S 21= ②a+b =b+a ③a ④a 1 ⑤0 ⑥a+b ⑦ab b a + A .①②③④⑤⑥⑦ B .②③④⑤⑥ C .③④⑤⑥⑦ D .①②练1.2、给出下列式子:①b a 2213;②p ÷q ;③2(x+y );④﹣1mn .其中书写不规范的是( A )A .①②④B .②④C .①④D .②③练1.3、在式子0.5xy ﹣2,3÷a ,)21b a +(,a •5,abc 413-中,符合代数式书写要求的有( B )A .1个B .2个C .3个D .4个例2、代数式cb a 2)(+的意义是( ) A .a 与b 的平方和除c 的商B .a 与b 的平方和除以c 的商C .a 与b 的和的平方除c 的商D .a 与b 的和的平方除以c 的商【分析】(a+b )2表示a 与b 的和的平方,然后再表示除以c 的商. 【解答】解:代数式cb a 2)(+的意义是a 与b 的和的平方除以c 的商, 故选:D .练2.1、代数式ba 13-的正确解释是( C ) A .a 与b 的倒数的差的立方B .a 与b 的差的倒数的立方C .a 的立方与b 的倒数的差D .a 的立方与b 的差的倒数例3、某水果店老板以每斤x 元的单价购进草莓100斤,加价30%卖出70斤以后,每斤比进价降低a 元,将剩下30斤全部卖出,则可获得利润为 元.【分析】根据题意用利润=总售价﹣总成本可列出利润的表达式.【解答】解:由题意得,可获利润为:70x (1+30%)+30(x ﹣a )﹣100x =21x ﹣30a (元).故答案为:(21x ﹣30a ).练3.1、x 克盐溶解在a 克水中取这种盐水m 克,其中含盐 克.练3.2、一个两位数,它个位上的数与十位上的数的和等于9,设它个位上的数字为a ,则这个两位数可以表示为( D )A .(9﹣a )+aB .(9﹣a )aC .10a+(9﹣a )D .10(9﹣a )+a 例4、观察下列等式:①1=12②2+3+4=32③3+4+5+6+7=52④4+5+6+7+8+9+10=72…请根据上述规律判断下列等式正确的是( )A .1009+1010+…+3026=20172B .1009+1010+…+3027=20182C .1010+1011+…+3028=20192D .1010+1011+…+3029=20202【分析】根据题目中式子的特点可以发现开头数字是奇数,则最后的数字也是奇数,若开头数字是偶数,最后的数字就是偶数,结果是开头数字与最后数字和的一半的平分,等号坐标有多少个数字,结果就是这个数字个数的平方,由此可以判断各个选项中的式子是否正确.【解答】解:∵①1=12②2+3+4=32③3+4+5+6+7=52④4+5+6+7+8+9+10=72…∴开头是1009的式子最后的数字是奇数,故选项A 错误;开头是1010的式子最后的数字是偶数,故选项D 错误;1009+1010+…+3027=222018230271009=+)(,而1009到3027有3027﹣1008=2019个数字,故这列数应该是开头数字是1009,最后的数字是3025,故选项B 错误;1010+1011+…+3028=222019230281010=+)(,故选项D 正确; 故选:C .练 4.1、阅读下列材料:3216112⨯⨯⨯=;532612122⨯⨯⨯=+;74361321222⨯⨯⨯=++;9546143212222⨯⨯⨯=+++;…,根据材料请你计算2222250...8642+++++= .【解答】解:22+42+62+82+…+502=4×(12+22+32+42+ (252)=4××25×26×51=22100,故答案为:22100.练4.2、有一列数:,,,......,,,14321n n a a a a a a -,其中1a =5×2+1,2a =5×3+2,3a =5×4+3,4a =5×5+4,5a =5×6+5,……,当n a =2033时,n 的值为(D )A .335B .336C .337D .338例5、如图所示的图形是按一定规律排列的.则第n 个图形中O 的个数为 .【分析】仔细观察图形,找到图形变化的规律,利用规律求解.【解答】解:观察图形发现:第①个图有3×1+1=4个O ,第②个图有3×2+1=7个O ,第③个图有3×3+1=10个O ,第④个图形有3×4+1=17个O ,……,按此规律,则第n 个图形中O 的个数为3n+1个,故答案为:3n+1.练5.1、如图,从左至右第1个图由1个正六边形,6个正方形和6个等边三角形组成;第二个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成按此规律,第n 个图中正方形和等边三角形的个数之和为( A )A .(9n+3)个B .(6n+5)个C .(6n+3)个D .(9n+5)个 练5.2、如图所示,将形状、大小完全相同的“●”和线段按照一定规律摆成下列图形,第1幅图形中“●”的个数为a 1,第2幅图形中“●”的个数为a 2,第3幅图形中“●”的个数为a 3,…,以此类推,则83211...111a a a a ++++的值为(A )A .4529B .3536C .264175D .312209例6、国庆期间,王老师计划组织朋友去晋西北游览两日.经了解,现有甲、乙两家旅行社针对组团两日游的游客报价均为每人500元,且提供的服务完全相同.甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按八折收费.假设组团参加甲、乙两家旅行社两日游的人数均为x 人.(1)请列式表示甲、乙两家旅行社收取组团两日游的总费用;(2)若王老师组团参加两日游的人数共有30人,请你通过计算,在甲、乙两家旅行社中,帮助王老师选择收取总费用较少的一家.【分析】(1)根据题意可以列式表示甲、乙两家旅行社收取组团两日游的总费用;(2)将x =30代入(1)中的两个关系式,然后比较大小,即可解答本题.【解答】解:(1)由题意可得,甲旅行社收取组团两日游的总费用(单位:元)为:500x ×0.85=425x ,若人数不超过20人时,乙旅行社收取组团两日游的总费用(单位:元)为:500x×0.9=450x,若人数超过20人时,乙旅行社收取组团两日游的总费用(单位:元)为:500(x﹣20)×0.8+500×20×0.9=400x+1000;(2)∵王老师组团参加两日游的人数共有30人,∴甲旅行社收取组团两日游的总费用为:425×30=12750(元),乙旅行社收取组团两日游的总费用为400×30+1000=13000(元),∵12750<13000,∴王老师应选择甲旅行社.练6.1、窗户的形状如图所示(图中长度单位:cm),其中上部是半圆形,下部是边长相同的四个小正方形.已知下部小正方形的边长是acm.(1)计算窗户的面积(计算结果保留π).(2)计算窗户的外框的总长(计算结果保留π).(3)安装一种普通合金材料的窗户单价是175元/平方米,当a=50cm时,请你帮助计算这个窗户安装这种材料的费用(π≈3.14,窗户面积精确到0.1).【解答】(1)解:窗户的面积为:4a2+πa2 (m2).(2)解:窗户的外框的总长为:6a+×2πa=6a+πa(m)(3)解:当a=50cm,即:a=0.5m时,窗户的总面积为:4a2+πa2=4×0.52+π×0.52=1+(m2).取π≈3.14,原式=1+0.3925≈1.4(m2)安装窗户的费用为:1.4×175=245(元).练6.2、某景点的门票价格为:成人20元,学生10元,满40人可以购买团体票(打8折).设一个旅游团共有x(x>40)人,其中学生y人.(1)用代数式表示该旅游团应付的门票费;(2)如果旅游团有47个成人,12个学生,那么他们应付门票费多少元?【解答】解:(1)成人门票费为20(x﹣y)元,学生门票费为10y元,所以旅游团应付的总费用为[20(x﹣y)+10y]×80%=(16x﹣8y)元.(2)旅游团有47个成人,12个学生,即x﹣y=47,y=12,所以[20(x﹣y)+10y]×80%=(20×47+10×12)×80%=848(元).答:如果旅游团有47个成人,12个学生,那么他们应付门票费848元.第四部分、板书设计第五部分、作业布置今天是2020年月号星期天气今日所学:用字母表示数、列代数式今日作业:自我巩固第页下次上课时间:下周正常上课第三部分、课后反思。
整式--用字母表示数,代数式

2.1(1)整式--用字母表示数,代数式一.【知识要点】1.用字母表示数:字母可以表示 ,也可以简明地表示运算律、运算法则、计算公式、规律、数量关系.用基本运算符号:加、减、乘、除、乘方和开方,把数或表示数的字母连接起来的式子叫做代数式。
注意:(1).字母表示数具有任意性:一个字母可以表示 个数; 字母表示数具有局限性:如yx 中,y 被限制为 ; 字母表示数具有确定性:同一个字母在同一个问题中表示相同的量;字母表示数具有抽象性:可以反映出事物的本质或规律,如n 2可以表示_____,12 n 可以表示 ;(2).同一个字母,可以在 的问题中表示不同的量.2.我们在书写含有字母的式子的时候要注意:①数×字母、字母×字母,乘号通常省略不写,如5×n,常写作5n ;②数×字母、字母×字母,数字写在字母前面,字母按顺序书写。
如n ×m×5,写作5mn ; ③若数字因数是带分数时,要写成假分数形式;④除法运算写成分数形式,如1500÷t 通常写作1500t (t ≠0); ⑤字母与1或-1相乘时,“1”通常省略;⑥相同的字母或式子相乘写成幂的形式;⑦在字母表示数量关系时,如果所列运算为加减的代数式,且后面有单位,要用括号把整个代数式括起来;⑧圆周率π是常数;(即π是数字而不是字母)。
二.【经典例题】1.填空:(1)一个长方体长、宽、高分别为:c b a 、、,则3个这样的长方体总体积为:__________.(2)一个长方形长为112,宽为a,则面积是______;一个长方形面积为a ,长为b,则宽是_____. (3)1的x 倍是________; -1的x 倍是________.(4)一个正方形边长为x,则面积为_______;一个正方形边长为x+3,则面积为_________.(5)若某三位数的个位数字为a ,十位数字为b ,百位数字为c ,则此三位数可表示为______.2. 观察下列有规律的数:123456,,,,,3815243548请根据其规律推断第n 个数是 。
1代数式2.1.1用字母表示数

2.1代数式2.1.1用字母表示数知识点一 用字母表示奇数和偶数能被 2 整除的整数叫做偶数.若k 表示任意一个整数,则偶数都可以用2k 表示.6420±±±,,,均为偶数.不能被2整除的整数叫做奇数.若k 表示任意一个整数,则奇数都可以用2k-1表示.531±±±,,均为奇数.温馨提示:(1)0 也是偶数.按奇偶性分类,整数可分为奇数和偶数两类.(2)用字母表示数具有一般性:因为k 是任意的整数,所以2k 表示任意的偶数,2k-1表示任意的奇数.同时,用字母表示数又具有确定性:因为k 的取值一旦确定,2h 就是个确定的偶数,2k-1就是一个确定的奇数.如当k=1时,2k 表示2,2k-1表示1;当k=2时,2k 表示4,2k-1表示3.例1.设n 是任意一个整数,下列说法错误的是( )A.任意一个偶数都可用4n 表示B.有的偶数不能用4n 表示C.2n 可以表示任意一个偶数D.n 的奇数倍不一定是奇数知识点二 用字母表示运算律、法则、公式 加法交换律:a b b a +=+加法结合律:)(c b a c b a ++=++)( 乘法交换律:ba ab = 乘法结合律:)()(bc a c ab = 乘法分配率:ac ab c b a +=+)(长方形的周长公式:)(2n m c +=(m 、n 分别为长方形的长和宽); 长方形的面积公式:mn s =(m 、n 分别为长方形的长和宽);长方体的体积公式:abc V =(a.b 、c 分别为长方体的长、宽、高);圆的周长公式:r c ⋅=π2(r 为圆的半径); 圆的面积公式:2s r ⋅=π(r 为圆的半径);梯形的面积公式:S=h b a )(+21 (a 、b 、h 分别为梯形的上底、下底高)温馨提示 (1)在表示字母与字母或者数与字母相乘时,乘号“x"通常写作“.”或者省略不写,如t v ⨯写作t v ⋅另外,数字应写在字母的前面,如4⨯a 应写作a 4.(2)带分数与字母相乘时,必须把带分数化成假分数,如a ⨯321应写作a 35 (3)除法算式通常写成分数的形式,被除数作分子,除数作分母,如)(14-÷a 写作14-a (4)式子后面若有单位,且式子是和或差的形式,应把式子用括号括起来.例 2 ( 1)若长方形的长为a cm ,宽为 3 cm ,则周长为________cm ,面积为_________2cm ;若长方形的长为a cm ,宽为b cm ,则周长为__________ cm ,面积为_________ 2cm(2) 甲、乙两地相距s 千米,正常情况下,某人从甲地到乙地步行要t 小时,现要求他提前15分钟到,则此人步行的速度应为_____________ 千米/时; (3) 一圆的半径为a cm ,将圆的半径增加5cm 后,圆的周长为_________cm ..圆的面积是____________2cm知识点三用字母表示问题中的数量关系用字母表示数具有以下特点:①任意性:用字母可以表示我们已学过的和今后要学的任何一个数;②限制性:用字母表示实际问题中的某个量时,字母的取值必须使这个实际问题有意义且符合实际;③唯一性:在同一问题中,同-字母只能表示同一个量,不能用同一字母表示几个不同的量,不同的量要用不同的字母表示.例3用含字母的式子表示下列数量关系.(1)某地为了改善环境,计划用五年的时间植树绿化荒山, 如果每年植树绿化x 公顷荒山,那么这五年内植树绿化荒山___________公顷;(2)如果王红用5h 走完的路程为s km,那么她的平均速度为_________km/h;(3)每本笔记本m 元,每本练习本n 元,王刚买了5本笔记本,2本练习本,那么他其花了_______元题型一 用字母表示简单的运算关系例1用适当的式子表示:(1) 比m 除以n 的2倍的商大8的数; (2) a 与b 的平方和的相反数; (3) 8a 除以3b 的平方的商;(4) m 的平方与n 的立方的倒数的差.题型二 用字母表示几何体的表面积(体积)例2如图,把一个长 、宽分别是a b 的长方形纸板在四角各剪去一个边长为c 的正方形(a>b>2c),再做成一个无盖的长方体盒子,用字母表示无盖长方体盒子的体积和表面积题型三 数字规律题例3观察下列一组数:32,1110987654,,,∙∙∙,它们是按一定规律排列的,那么这一组数的第k 个数是_______题型四 几何图形探究题例4 如图,在一些大小相等的正方形内分别排列着一些大小完全相等的圆(1)请填写下表;(2)你能试着表示出第n 个图形中圆的个数吗?用你发现的规律计算第2019个图形中有多少个圆.易错点 对数量关系理解不清楚而产生错误在用字母表示数时,容易因审题不准确、弄不清楚数量之间的关系而造成错误例某工厂第一年生产a件产品,第二年比第一年增加2倍,则第二年的生产产品的件数为_________。
用字母表示数知识点总结

用字母表示数知识点1:代数式1、代数式:用基本运算符号把数和字母连接而成的式子。
如:n、-2 、、0.8a、、2n +500、abc、2ab+2bc +2ac (单独一个数或一个字母也是代数式)注意:列代数式时,数字与字母、字母与字母相乘,乘号通常用·表示或省略不写,并且把数字写在字母的前面,除法运算通常写成分数的形式。
2、单项式:表示数与字母的积的代数式叫单项式。
单独一个数或一个字母也是单项式。
其中的数字因数叫单项式的系数,所有的字母的指数的和叫单项式的次数。
3多项式:几个单项式的和叫做多项式,次数最高项的次数叫做这个多项式的次数。
4、单项式多项式统称为整式。
例1列代数式表示(注意规范书写)某商品售价为元,打八折后又降价20元,则现价为_____元2、橘子每千克元,买10以上可享受九折优惠,则买20千克应付_________元钱.3、.如图,图1需4根火柴,图2需____根火柴,图3需____根火柴,……图需____根火柴。
(图1)(图2)(图3)4、托运行李p千克(p为整数)的费用标准:已知托运第1个1千克需付2元,以后每增加1千克(不足1千克按1千克计)需增加费用5角.若某人托运p千克(p>1)的行李,则托运费用为;例2 填空的系数为_______,次数为_____________:的次数_____________知识点2:代数式的值用具体的数值代替代数式中的字母,按照代数式的运算关系计算,所得的结果是代数式的值。
2)求代数式的值时应注意以下问题:(1)严格按求值的步骤和格式去做.(2)一个代数式中的同一个字母,只能用同一个数值代替,若有多个字母,•代入时要注意对应关系,千万不能混淆.(3)在代入值时,原来省略的乘号要恢复,而数字和其他运算符号不变(4)字母取负数代入时要添括号(5)有乘方运算时,如果代入的数是分数或负数,要加括号例1 当x=,y=-3时,求下列代数式的值:(1)3x2-2y2+1;(2)3.计算程序图的理解和设计如果指明了运算顺序,只要将输入的数按照这个顺序计算即可得到输出的数。
字母表示数和代数式

用字母表示数。
注意书写规则1、数字与字母及字母与字母间的乘号要省略,如2、除法运算要用分数线来表示,如3、数字(包括整数、分数、小数、百分数、等)应写在字母的前面,如当字母前面的数字是1时应省略不写,当数字因数是带分数时,一定要把带分数化为假分数,再写到字母的前面,如应写成4、若结果中有多个字母,习惯上按26个字母的先后顺序书写,如一般写,不写成【典型例题1】 设某数为,用表示下列各数:(1)比某数的一半还多2的数;(2)某数减去3的差与的积;(3)某数与3的和除以某数所得的商;(4)某数的除以的商。
【基本习题限时训练】1、用式子表示“与的和除以与的差”是( )A B C D2、字母表达式的意义为( )A 与的平方差B 的平方减3的差乘以的平方C 与的差的平方D 的平方与的平方的3倍的差3、用字母表示分数的基本性质(分数的分子、分母都乘以同一个不为0的数,分数的值不变)应为( )A B C D【拓展题1】三个连续的偶数,若中间的一个数是2n,则这三个连续的偶数的和是【知识点】 1、代数式(用运算符号和括号把数和表示数的字母连接而成的式子)。
2、注意列代数式时的注意事项。
【典型例题2】下列各式中,属于代数式的是( )A B C D【基本习题限时训练】1、下列各式符合代数式书写规范的是( )A B a×3 C (3x-1)个 D 2n2、下列代数式表示的平方和的是( )A B C D3、下列说法中不正确的是( )A 乘2与的和的积表示为B 比的倒数小5的数表示为C 与的差的平方表示为D 除以的商是的数是【拓展题2】如图,正方形ABCD与正方形BEFG,点C在边BG上,已知正方形ABCD 的边长为,正方形BEFG的边长为,用表示下列面积。
(1)△CDE的面积 (2)△CDG的面积(3)△CGE的面积 (4)△DEG的面积【知识点】用字母表达问题间的数量关系,将数量关系的文字语言转化为数学语言,关键是审清题意,弄明白数量之间的关系。
初中数学速记笔记:3.代数式

(一)用字母表示数,列式表示数量关系
用字母表示数,可以简明地表达一些一般
的数量和数量关系,即把问题中与数量有
关的语句,用含有数、字母和运算符号的
式子表示出来.
(二)代数式的概念
(1)定义:用运算符号(加、减、乘、除、乘方、开方)把数或表
示数的字母连接而成的式子,叫做代数式,单独的一个数或一个字
母也是代数式.
(2)注意:代数式中不含“=”“>”“<”“≠”等符号.
(三)列代数式
1.把问题中与数量有关的语句,用含有数、字母和运算符号的式子
表示出来,这就是列代数式.
2.书写代数式的注意事项:
3.列代数式的步骤:
(1)读懂题意,弄清其中的数量关系,抓住题
目中表示运算关系的关键词,如和、差、积、
商、比、倍、分、大、小、增加了、增加到、
减少、几分之几等.
(2)分清运算顺序,注意关键性断句及括号的恰当使用.
(四)解释简单代数式表示的实际背景或几何意义
实际问题中的数量关系可以用代数式表示,另一方面,同一个代数式可以揭示多种不同的实际意义.注意在说代数式表示的实际意义时,数与字母的含义必须与实际相符.
(五)求代数式的值
提示:(1)代数式与代数式的值是两个不同的概念,代数式表述的是问题的一般规律,而代数式的值是这个规律下的特殊情形.(2)代数式中字母的取值,必须使该代数式有意义.
(3)用代数式表示实际问题的数量关系时,字母的取值要保证具有实际意义.
(4)代数式中的字母每取一个确定的数时,能相应地求出代数式的一个确定值.。
字母表示数与代数式(6种题型)-2023年新七年级数学核心知识点与常见题型(北师大版)(解析版)

字母表示数与代数式(6种题型)【知识梳理】一、字母表示数1.用字母表示数(1)意义:使用一个字母a可以表示任意一个数字。
(2)优越性:用字母还可以表示数的运算律和一些图形的面积、周长和体积。
2.字母表示数要注意的几点:数字与字母及字母与字母的乘号要省略;除法运算要用分数线来表示;数学应写在字母的前面,当字母前的数字是1的时候应省略不写(当字母前的数字是带分数时,一定要带分数化成假分数;主体为和的形式,后面有单位需加括号;注意:字母可以表示任意的数,也可以表示特定意义的公式,还可以表示符合条件的某一个数,甚至可以表示具有某些规律的数,总之字母可以简明地将数量关系表示出来.3.字母表示数常见的类型:(1)用字母表示运算律;(2)用字母表示数学公式;(3)用字母表示实际问题;(4)用字母表示性质二、代数式:用运算符合和括号把数或表示数的字母连接而成的式子叫做代数式.注:①单独一个数或一个字母也是代数式;②“=”不是运算符号,不能将等式与代数式混淆)三、代数式的值用数字代替代数式里的字母,按照代数式中的运算关系计算得出的记过叫做代数式的值.求代数式的值第一步:用数值代替代数式里的字母.第二步:按照代数式指明的运算,计算出结果.【考点剖析】 题型一:字母表示图形的周长和面积例1.黑板的长为2.5米,宽为b 米,则他的面积和周长分别是多少?【分析】本题是根据长方形的性质求解的,要熟记长方形的面积公式,周长公式。
【解答】面积22.5 2.5()b b =⨯=米 周长()()2.522 2.5()b b =+⨯=+米 【点评】数字与字母或数字与括号相乘时,通常省略乘号,但要把数字写在字母或括号前面。
【变式1】若长方形的长为,a 宽为,b 则长方形的周长是________, 面积是________. 答案:2(a+b ) ab 题型二:字母表示运算律例2.请用字母表示已学过的四则运算律,如加法结合律等。
【解答】加法交换律:a b b a +=+ 加法结合律:)()(c b a c b a ++=++ 乘法交换律:a b b a ⨯=⨯乘法结合律:)()(c b a c b a ⨯⨯=⨯⨯ 乘法分配律:bc ac c b a +=⨯+)(【点评】这里的“×”号,只是为了使表达清晰,实际做题时要注意书写规范。
用字母表示数总结

用字母表示数济宁学院附中李涛一. 用字母表示数1. 字母能够表示任意的数,也能够表示特定意义的公式,还能够表示符合条件的某一个数,乃至能够表示具有某些规律的数,总之字母能够简明的将数量关系表示出来。
2. 用字母表示数的意义:有助于揭露概念的本质特点,能使数量之间的关系加倍简明,更具有普遍意义。
使思维进程简约化,易于形成概念系统。
二. 代数式1代数式:用大体运算符号(6种)把数和字母连接而成的式子叫做代数式,如n,-1,2n+500,abc。
单独的一个数或一个字母也是代数式。
2代数式书写标准:①数与字母、字母与字母中的乘号能够省略不写或用“·”表示,并把数字放到字母前;②显现除式时,用分数线表示;③带分数与字母相乘时,带分数要化成假分数;④假设运算结果为加减的式子,当后面有单位时,要用括号把整个式子括起来。
3. 列代数式顺序,先读先写;找数量关系4. 读代数式一样按意义去读,总之没歧义即可.三. 三式四数1. 单项式:表示数与字母的乘积的代数式叫单项式(数字与字母的积)。
单独的一个数或一个字母也是代数式。
单项式的系数:单项式中的前面数字.包括前面符号单项式的次数:一个单项式中,所有字母的指数和2. 多项式:几个单项式的和(代数和)的形式叫做多项式。
多项式的项:每一个单项式叫做多项式的项,不含字母的项叫做常数项。
每一项包括前面符号.多项式的次数:多项式里次数最高项(单项式)的次数,叫做那个多项式的次数。
常数项的次数为0。
3. 整式:单项式和多项式统称为整式。
注意:分母上含有字母的不是整式。
说明:①依照分母上是否有字母,将整式和分式区别开;依照整式中有否加减运算,把单项式、多项式区分开。
②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。
划分代数式类别时,是从外形来看。
单项式一、都是数字与字母的乘积的代数式叫做单项式。
二、单项式的前面数字叫做单项式的系数。
包括符号3、单项式中所有字母的指数和叫做单项式的次数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用字母表示数及代数式
————————————————————————————————作者:————————————————————————————————日期:
§3.1列代数式
教学目标
1.理解用字母表示数的意义;
2.学会用字母表示数及简单的数量关系;
3.初步渗透“字母代数”符号化思想及“分类讨论思想”;
4.培养学生观察、分析、归纳、概括能力,以及创新能力.
教学重点与难点
重点:用字母表示数.
难点:用含字母的算式表示给定的数量关系.
教学过程
一、创设情景
1、多媒体投影准备的图片.
2、字母可以表示问题
二、探索新知
1、搭1个正方形需要4根火柴棒.
…
按如图所示方式搭图形
(1)搭2个正方形需要根火柴棒;搭3个正方形需要根火柴棒;
搭4个正方形需要根火柴棒;…
(2)搭50个正方形需要根火柴棒;…
(3)搭x个正方形需要根火柴棒;
(4)利用你的计算方法,搭2008个这样的正方形需要根火柴棒?解:(1)7;10;13;
(2)151;
(3)3x+1
(4)6025
2、
(1)请你观察月历中涂色框中的3个数有什么关系?
如果我们用字母a表示方框中的一个数,那么其余的2个数怎样用a来表示?(2)如果涂色框中是如图的4个数呢?你会用用字母把它们的关系表示出来吗?
三、例题讲解3、找规律
(1) 1,4,9,16,___25_ ,__36__, ……第100个数是__10000_, ……,第n个数是__n2__;
(2) 7,12,17,_22__,__27__, ……,第100个数是_502_,第n个数是5n+2_;
(3) 再来看下面的式子:有谁知道应该等于多少呢?那从1加到n的和呢?
四、应用巩固
1、做一做:
(1)某地为了治理河山,改造环境,计划在第十个五年计划期间植树绿化荒山,如果每年植树绿化x公
顷荒山,那么这五年内植树绿化荒山________公顷;
(2) 中国飞人刘翔在刚闭幕的奥运会上获得了110米栏的冠军,假设他用了t秒跑完全程,那么他的速度为_________米/秒;
(3)每本练习本m元,甲买了5本,乙买了2本,两人一共花了_______元,甲比乙多花了
__________元.
2、填空
(1)一打铅笔12枝,n打钢笔有______枝;
(2)三角形的三边长分别为3a,4a,5a,则其周长为______;
(3)如图,某广场四角铺了四分之一圆形的草地,若圆形的半径为r米,则共有草地______平方米.
(4)我们知道:23=2×10+3
865=8×102+6×10+5
类似地,5984=__×103+__×102 + __×10+__
若某个三位数的个位数是a,十位数是b,百位数是c,则此三位数可表示为__________.c ×102+b×10+a
五、课堂小结
100(1001)
123...100___5050_
2
⨯+
++++==
10
2
)1
4(
4
4
3
2
1
6
2
)1
3(
3
3
2
1
3
2
)1
2(
2
2
1
=
+
⨯
=
+
+
+
=
+
⨯
=
+
+
=
+
⨯
=
+
..................................
(1)
123...__
2
n n
n
⨯+
++++=
数 字母
1、用字母表示数能更简洁、更普遍地说明数量关系.
2、可以用字母表示数的运算律、数的运算公式.
3、用字母表示数的一些具体的应用.
六、作业
1、课本92P 习题3.1 1 2
2、补充
现在有3位同学,每两个人需要握一次手,则一共需要握 次手.
如果现在有4位同学,每两个人需要握一次手,则一共需要握 次手.
如果有5位同学,每两个人需要握一次手,则一共需要握 次手.
如果有n 位同学,每两个需要握一次手,则一共需要握 次手.
列代数式
教学目标
5. 使学生进一步理解用字母表示数的意义,并能解释一些简单代数式的实际意义,发展符
号感;
6. 在具体情景中让学生通过观察、分析,理解代数式的概念;
7. 通过观察、动手练习,使学生体验到数学的思想方法及应用价值.
教学重点与难点
重点:代数式的实际意义及书写注意事项.
难点:代数式概念的理解.
教学过程
一、 复习旧知
1、某种瓜子的单价为16元/千克,则n 千克需____元;
2、小刚上学步行速度为5千米/时,若小刚家到学校的路程为s 千米,则他上学需______小时;
3、钢笔每支a 元,铅笔每支b 元,买2支钢笔和3支铅笔需_________元.
二、 尝试举例,引入新知
1、 请同学们再举一些用字母表示数的例子。
2、 问题:像上述问题中出现的16n ,2a +3b ,b ,a 2,a 2+b 2,5050等等,这些式子有什么 共同特征?
引出课题:代数式
3、 概念:用运算符号把数与表示数的字母连接而成的式子,叫做代数式(algebraic
expression )。
注意:单独的一个数或一个字母也是一个代数式.
4、 判断下列代数式哪些符合要求?
3x +1,a ×b -1,y -x ,xy ⋅4,a ⋅b ÷c 2,2×πR ,54a 2b ,a -c b ,(a +b )2,65a ×b ,122xy 2,xy ×112
5、书写代数式时的注意点:
(1)代数式中出现的乘号通常写成“·”或省略不写,如:2·a , xy , 6c 2;
(2)数字与字母相乘时,数字通常写在字母的前面(带分数要写成假分数),如2c ,xy 34
,,
32a
-a ;
(3)除法运算通常写成分数的形式,如:
123-a ,a y x +-15; (4)带分数与字母相乘要写成假分数.
三、 尝试应用(一)
例 1、填空:
(1)圆的半径为rcm ,它的面积为_πr 2_cm 2;
(2)长方形的长为acm ,宽为bcm ,则它的周长为_2(a+b )_cm ;
(3)小强在小学六年中攒了a 元零花钱,上中学后买文具用了b 元,剩下_(a -b )_元;
(4)某机关原有工作人员 m 人,现精简机构,减少20%的工作人员,则有_
15
m _人被精简.
四、 尝试练习
1、a 千克含盐为10%的盐水含盐_______千克;
2、某同学军训期间打靶成绩为10环,8环,8环,7环,a 环,则他的平均成绩为___环;
3、甲以a 千米/时,乙以b 千米/时(a >b )的速度沿同一方向前进,甲在乙后面8千米处开始追乙,则甲要追上乙需________小时;
4、一枚古币的正面是一个半径为r 厘米的圆,中间是一个边长为a 厘米的正方形孔,则这枚古币的正面面积为__________________.
五、 尝试应用(二)
例2、结合你的生活经验对下列代数式作出具体解释:
(1)b a -; (2)ab ; (3)b a 23+; (4)22b a +
解:
(1)今年小明b 岁、小明爸爸a 岁,小明比他爸爸小(a –b )岁;
(2)长方形的长为a 厘米,宽为b 厘米,长方形的面积是ab 平方厘米.
3、练一练
说出下列代数式的意义:
(1))(2b a +; (2) x 5 ;(3)60s ; (4)b
a +5; 六、 尝试应用(三)
例3、用语言叙述下列代数式:
(1)n m -2
(2)))((7y x y x -+
(3)b
a b a -+ (4)2232y x -
七、 课堂小结
本节课主要学习了:
1、代数式的概念;
2、文字语言和代数语言的相互转化;
3、代数式的书写注意事项.
八、 作业
1、课本P 93习题3.1 3, 4, 5
2、补充:说出下列代数式的意义:
(1)n m -2 (2)))((7y x y x -+
(3)
b
a b a -+ (4)2232y x -。