用字母表示数-知识点
用字母表示数知识点

用字母表示数知识点
1.字母表示数是指用字母来代表数值的方法,比如用字母"π"表示圆
周率。
2.字母表示数常用于代数表达式中,用于表示未知数或变量的值,比
如用字母"x"表示一个未知数。
3.字母也常用于表示数的单位,比如用字母"m"表示米,用字母"s"表
示秒。
4.在数学中,常用字母表示特定的数集,比如用字母"R"表示实数集,用字母"Z"表示整数集。
5.字母还可以用于表示数的序列或集合中的元素,比如用字母"a"表
示一个序列中的第一个数。
6.字母可以用于表示数的其中一种属性或性质,比如用字母"n"表示
一个数的奇偶性。
7.在统计学中,常用字母表示随机变量的取值,比如用字母"X"表示
一个随机变量的取值。
8.字母还可以用于表示数的阶乘,比如用字母"n!"表示一个数的阶乘。
9.在复数中,常用字母"i"表示虚数单位,表示平方根-1
这些是一些常见的用字母表示数的知识点。
小升初用字母表示数数学知识点

2021年小升初用字母表示数数学知识点用字母表示数数学知识点用字母表示数用字母表示数数学知识点:1、用字母表示数的意义和作用*用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。
2、用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式(1)常见的数量关系路程用s表示,速度v用表示,时间用t表示,三者之间的关系:s=vtv=s/tt=s/v总价用a表示,单价用b表示,数量用c表示,三者之间的关系:a=bcb=a/cc=a/b(2)运算定律和性质加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc减法的性质:a-(b+c)=a-b-c(3)用字母表示几何形体的公式长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。
c=2(a+b)s=ab正方形的边长a用表示,周长用c表示,面积用s表示。
c=4as=a2平行四边形的底a用表示,高用h表示,面积用s表示。
s=ah三角形的底用a表示,高用h表示,面积用s表示。
s=ah/2梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。
s=(a+b)h/2s=mh圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。
c=d=2rs=r2扇形的半径用r表示,n表示圆心角的度数,面积用s表示。
s=nr2/360长方体的长用a表示,宽用b表示,高用h表示,外表积用s表示,体积用v表示。
v=shs=2(ab+ah+bh)v=abh正方体的棱长用a表示,底面周长c用表示,底面积用s表示,体积用v表示.s=6a2v=a3圆柱的高用h表示,底面周长用c表示,底面积用s表示,体积用v表示.s侧=chs表=s侧+2s底v=sh圆锥的高用h表示,底面积用s表示,体积用v表示.v=sh/33、用字母表示数的写法数字和字母、字母和字母相乘时,乘号可以记作.,或者省略不写,数字要写在字母的前面。
用字母表示数知识点

用字母表示数知识点
书写含有字母的式子注意事项:
1、在含有字母的式子里,数字和字母中间的乘号可以记作小圆点,也可省略不写,这里数字要写在字母前面。
如:χ×2=2·χ或2χ2×χ=2·χ或2χ
2、任何字母与1相乘, 1都可以省略不写。
如: 1×b=b b×1=b.
3、字母和字母相乘,中间的乘号可以记作小圆点,也可以省略不写。
如a×b=a·b或a×b=ab。
4、当两个相同的字母相乘,可以省略乘号,写成这个字母的平方。
如m×m=㎡,读作m的平方。
数量关系及其计算公式:
1、路程(s) 、速度( v)、时间(t)之间的关系
速度×时间=路程速度=路程÷时间时间=路程÷速度s=vt v=s÷t t=s÷v
2、总价( c)、单价(a)、时间(x)之间的关系
单价×时间=总价单价=总价÷时间时间=总价÷单价c=ax a=c÷x x=c÷a
3、正方形的周长(C)与面积(S)公式
正方形的周长=边长×4 C=4a 正方形的面积=边长×边长S=a2 4、长方形的周长(C)与面积(S)公式
长方形的周长=(长+宽)×2 长方形的面积=长×宽
C=2(a+b) S=a b。
小升初备考:用字母表示数数学知识点

小升初备考:用字母表示数数学知识点用字母表示数数学知识点用字母表示数1、用字母表示数的意义和作用用字母表示数数学知识点:*用字母表示数,能够把数量关系简明的表达出来,同时也能够表示运算的结果。
2、用字母表示常见的数量关系、运算定律和性质、几何形体的运算公式(1)常见的数量关系路程用s表示,速度v用表示,时刻用t表示,三者之间的关系:s=vtv=s/tt=s/v总价用a表示,单价用b表示,数量用c表示,三者之间的关系:a=bcb=a/cc=a/b(2)运算定律和性质加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc减法的性质:a-(b+c)=a-b-c(3)用字母表示几何形体的公式长方形的长用a表示,宽用b表示,周长用c表示,面积用s表示。
c=2(a+b)s=ab正方形的边长a用表示,周长用c表示,面积用s表示。
c=4as=a2平行四边形的底a用表示,高用h表示,面积用s表示。
s=ah三角形的底用a表示,高用h表示,面积用s表示。
s=ah/2梯形的上底用a表示,下底b用表示,高用h表示,中位线用m表示,面积用s表示。
s=(a+b)h/2s=mh圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。
c=d=2rs=r2扇形的半径用r表示,n表示圆心角的度数,面积用s表示。
s=nr2/360长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。
v=shs=2(ab+ah+bh)v=abh正方体的棱长用a表示,底面周长c用表示,底面积用s表示,体积用v表示.s=6a2v=a3圆柱的高用h表示,底面周长用c表示,底面积用s表示,体积用v表示.s侧=chs表=s侧+2s底v=sh圆锥的高用h表示,底面积用s表示,体积用v表示.v=sh/33、用字母表示数的写法数字和字母、字母和字母相乘时,乘号能够记作.,或者省略不写,数字要写在字母的前面。
小学六年级数学用字母表示数知识点

小学六年级数学用字母表示数知识点小学六年级数学用字母表示数知识点数学技术将是一种应用最广泛、最直接、最及时、最富创造力和重要的实用技术。
接下来,让我们一起来学习六年级数学用字母表示数知识点。
小学六年级数学用字母表示数知识点1 用字母表示数的意义和作用* 用字母表示数,可以把数量关系简明的表达出来,同时也可以表示运算的结果。
2用字母表示常见的数量关系、运算定律和性质、几何形体的计算公式(1)常见的数量关系路程用s表示,速度v用表示,时间用t表示,三者之间的关系:s=vtv=s/tt=s/v总价用a表示,单价用b表示,数量用c表示,三者之间的关系:a=bcb=a/cc=a/b(2)运算定律和性质圆的半径用r表示,直径用d表示,周长用c表示,面积用s表示。
c=∏d=2∏rs=∏ r?扇形的半径用r表示,n表示圆心角的度数,面积用s表示。
s=∏ nr?/360长方体的长用a表示,宽用b表示,高用h表示,表面积用s表示,体积用v表示。
v=shs=2(ab+ah+bh)v=abh正方体的棱长用a表示,底面周长c用表示,底面积用s表示,体积用v表示.s=6a?v=a?圆柱的高用h表示,底面周长用c表示,底面积用s表示,体积用v表示.s侧=chs表=s侧+2s底v=sh圆锥的高用h表示,底面积用s表示,体积用v表示.v=sh/33 用字母表示数的写法数字和字母、字母和字母相乘时,乘号可以记作“.”,或者省略不写,数字要写在字母的前面。
当“1”与任何字母相乘时,“1”省略不写。
在一个问题中,同一个字母表示同一个量,不同的量用不同的字母表示。
用含有字母的式子表示问题的答案时,除数一般写成分母,如果式子中有加号或者减号,要先用括号把含字母的式子括起来,再在括号后面写上单位的名称。
4将数值代入式子求值* 把具体的数代入式子求值时,要注意书写格式:先写出字母等于几,然后写出原式,再把数代入式子求值。
字母表示的是数,后面不写单位名称。
用字母表示数知识点

用字母表示数知识点
用字母表示数是数学中的一个基础知识点。
它包括以下几个方面:
1.字母表示未知数。
在数学中,我们常常用字母来表示未知数。
这个未知数可以是任何一个数字,我们通常用x,y,z等字母来表示。
例如:2x+3=7,其中x就是一个未知数。
2.字母表示常数。
不仅可以用字母表示未知数,也可以用字母表示已知的常数。
例如,我们可以用a,b,c等字母表示任意的已知数值。
例如:3a+2b=8,其中a,b就是已知的常数。
3.字母表示变量。
除了用字母表示未知数和常数,我们还可以用字母来表示变量。
变量通常是指数学中的一种量,它的值随着某个条件的变化而变化。
例如:y=2x+1,其中y和x都是变量。
4.字母表示函数。
字母还可以用来表示函数。
函数是一个数学概念,它描述的是一种输入和输出之间的关系。
通常我们用f(x)的形式表示一个函数,其中x是输入,f(x)是输出。
例如:f(x)=2x+1,其中f(x)就是一个函数。
总之,用字母来表示数是数学中的一个基础知识点,广泛应用于代数、微积分、离散数学等数学学科中。
用字母表示数 运算律 平均数知识点汇总

专题复习一用字母表示数运算律平均数一、用字母表示数1.用字母表示数:在数学中经常用字母表示数。
如通常用字母表示时间。
2.求代数式的值:求含有字母数值的时候,注意计算结果单位。
3.用字母表示数量关系式:(1)s表示路程,v表示速度,t表示时间,试用字母写出三者之间的关系 s= v= t =(2)S表示长方形的面积,a表示长,b表示宽,试用字母表示出三者之间的关系:,,。
如果C表示长方形的周长,那么C= 。
(3)S表示正方形的面积,a表示边长,那么S= 。
如果C表示正方形的周长,那么C= 。
4.用字母表示公示:在含有字母的式子里,数字和字母、字母和字母中间的乘号可以记作“”,也可以。
在省略乘号时,通常把写在前面。
例如a×4可以写成或。
二、运算律1.加法:交换律,结合律。
2.乘法:交换律,结合律,分配律。
3.减法:a-b-c= ,a-(b-c)= 。
4.除法:a÷b÷c= , a÷c+b÷c = ,a÷c-b÷c= 。
5.运算律口诀:简算需先细心看,辨清特点认真算。
纯加纯乘最自由,。
括号前边是减号,。
括号前边是加号,。
同级混合可换位,。
乘法分配不漏乘,。
挑出相同做标记,。
整百左右简便算,。
三、平均数1.认识平均数:一组数据的除以这组数据的,所得的商叫做平均数。
可以用或者求平均数。
2. =平均数 =总数3.分段统计表:能清楚的看出一组数据的。
4.复式分段统计表:便于对几组数据进行全面的比较,并由此做出判断和预测。
专题二小数的四则混合运算一、小数的意义1.小数的意义:用来表示十分之几,百分之几,千分之几等等的数,叫做小数。
小数的计数单位是十分之一、、 ......记作:、、 ......2.小数的大小比较:先比较小数的,大的那个小数就大;如果相同,在比较,上大的那个数就大,以此类推。
3.小数的性质:在小数的末尾或者,小数的大小。
利用小数的性质可以对小数进行化简和改写。
字母表示数知识点汇总

字母表示数知识点汇总1、代数式的概念:用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式.。
单独的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、<、≠”等符号。
等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
2、代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt ;②数字与字母相乘时,数字应写在字母前面,如4a ;③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如a ⨯312应写作a 37; ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作44-a ;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如)(22b a -平方米3、代数式的系数:代数式中的数字中的数字因数叫做代数式的系.....数.。
如3x,4y 的系数分别为3,4。
注意:①单个字母的系数是1,如a 的系数是1;②只含字母因数的代数式的系数是1或-1,如-ab 的系数是-1。
a3b 的系数是14、代数式的项:代数式表示7262--x x 6x 2、-2x 、-7的和,6x 2、-2x 、-7是它的项,其中把不含字母的项叫做常数项注意:在交待某一项时,应与前面的符号一起交待。
5、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.1字母表示数?
用字母表示数的意义?
用字母可以表示我们已经学过的和今后要学到的任何一个数,用字母表示数可以简明地表达数学运算律,用字母表示数可以简明地表达公式,用字母表示数可以简明地表达问题中的数量关系,还可以用字母表示未知数。
一、等量关系式?
s=vt?
二、运算律?
加法的交换律:a+b=b+a?
加法的结合律:(a+b)+c=?a+(b+c?)?乘法的交换律:?a×b=b×a?
?乘法的结合律:(a×b)×c=?a×(b×c?)???乘法的分配律:(a+b)×c=?a×c?+?b ×c?
三、公式?
1、长方形的周长=(长+宽)×2?? C=(a+b)×2?
2、正方形的周长=边长×4? ?C=?4a??
3、长方形的面积=长×宽?? S=ab?
4、正方形的面积=边长×边长? S=a·a=?a?2?
三角形的面积=底×高÷2 S=ah÷2???
6、平行四边形的面积=底×高?S=ah?
7、梯形的面积=(上底+下底)×高÷2? S=(a+b)h÷2??
?8、直径=半径×2????半径=直径÷2? d=2r???????????r=?d÷2?
圆的周长=圆周率×直径=圆周率×半径×2??? c=πd?=2πr?????
10、圆的面积=圆周率×半径×半径?
????????????S=πr?2?
长方体的表面积=(长×宽+长×高+宽×高)×2?
长方体的体积?=长×宽×高?V?=abh?
正方体的表面积=棱长×棱长×6??S?=6a2?
14、正方体的体积=棱长×棱长×棱长??V=a·a·a=?a3??
15、圆柱的侧面积=底面圆的周长×高
S=ch?
16、圆柱的表面积=上下底面面积+侧面积?
S=2πr2?+2πrh=2π(d÷2)2?+2π(d÷2)h=2π(C÷2÷π)2?+Ch?
17、圆柱的体积=底面积×高?
V=Sh?
V=πr2h=π(d÷2)2?h=π(C÷2÷π)2?h
18、圆锥的体积=底面积×高÷3?
V=Sh÷3=πr2?h÷3=π(d÷2)2?h÷3=π(C÷2÷π)?2?h÷3???
??
四、注意?
1、a?2表示两个a相乘,而2a表示两个a相加。
?
2、字母和字母中间的乘号可以省略不写,数字和字母相乘,要把数字写在字母的前面。
?
3、应用字母公式求面积?S=?(a+b)h÷2?=?(3.5+5.5)×4÷2?=?9×4÷2?=?18?(结果不必写单位
名称)
?4、当x的值是多少时,?x2和2x正好相等?
9.2 代数式
代数式的概念
用运算符号把数和表示数的字母连接而成的式子,叫做代数式,单独的一个数或一个字母,也是代数式。
代数式中除含有数,字母和运算符号外,还可以有括号,但不能含“=”、“≠”、“>”、“<”、“≥”、“≤”符号。
2、代数式书写格式的规定??
在代数式中出现的乘号,通常简写作“·”或省略不写;数字与字母相乘时,数字应写在字母前,带分数与字母相乘时,应先把带分数化成假分数,然后与字母相乘,但数字与数字相乘时,一般仍用“×”号。
(2)在代数式中出现了除法运算时,一般按照分数的写法来写,被除数作分子,除数作分母,“÷”号转化为分数线,分数线具有“÷”号和括号的双重作用,如被除数或除数含有括号时,括号也可省略。
(3)在一些实际问题中,表示某一数量的代数式往往是有单位名称的,如果代数式是积或商的形式,就将单位名称写在式子的后面即可;如果代数式是和或差的形式,则必须把代数式括起来,再将单位名称写在式子的后面。
3、列代数式及方法?
在解决实际问题时,把实际问题中的数量关系用代数式表示出来,就是列代数式。
???
列代数式时,首先要认真审题,弄清问题中各数量之间的关系和运算顺序,然后按代数式书写格式的规定规范地书写出来。
列代数式的关键在于认真审题,要注意分析问题中各术语的含义,如:和、差、积、商、大、小、多、少、几倍、几分之几、增加、减少、扩大、缩小等。
代数式的值及求法
用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,叫做代数式的值。
代数式的值一般不是某一个固定的量,而是随着代数式中字母取值的变化而变化。
代数式求值时,第一步是“代入”,即用数值代替代数式里的字母;第二步是“计算”,即按照代数式指明的运算,计算出结果.
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。
(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。
典型例题解析
例1、如图所示,把一个长、宽分别为a、b的长方形铁片在四角各剪去一个边长为c的正方形(2c<b<a),然后做成一个长方体的盒子,用字母表示它的容积.
例2、设甲数为x,乙数为y,用代数式表示.
(1)甲、乙两数的平方差;
(2)甲、乙两数差的平方;
(3)甲、乙两数的和与甲、乙两数的差的积;
(4)甲数的相反数与乙数的立方的和.
例3、用代数式表示如图所示中各阴影部分的面积.
例4、当a=3,b=2,c=时,求代数式的值.
例5、当x=7时,代数式ax3+bx-5的值为7,当x=-7时,代数式ax3+bx+5的值为多少?
9.3 整式
1.单项式
(1)单项式的概念:数与字母的积这样的代数式叫做单项式,单独一个数或一个字母也是单项式。
注意:数与字母之间是乘积关系。
单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如,这种表示就是错误的,应写成。
(2)单项式的系数:单项式中的字母因数叫做单项式的系数。
如果一个单项式,只含有字母因数,是正数的单项式系数为1,是负数的单项式系数为—1。
(3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
如是6次单项式。
2.多项式
(1)多项式的概念:几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
一个多项式有几项就叫做几项式。
多项式中的符号,看作各项的性质符号。
(2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
(3)多项式的排列:
1.把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变。
3.整式:
单项式和多项式统称为整式。