2-杆系结构有限元分析报告

合集下载

有限元 1-2-杆单元

有限元 1-2-杆单元

第2章杆系单元和杆系结构整体分析2.1杆系单元2.2杆系结构整体分析第2章杆系单元和杆系结构整体分析2.1杆系单元2.2杆系结构整体分析对象、任务对象任务对象:研究有限大小的个体(element)对象研究有限大小的个体任务:1. 建立应变与结点位移分量之间的关系;2. 建立应力与结点位移分量之间的关系;33. 建立结点力与结点位移分量之间的关系;4. 把作用在单元内的外载转化成结点荷载,即单元等效节点力。

一、分离单元1 结构离散取杆件与杆件交点、集中力作用点、杆件与支承的交点为节点。

相邻两节点间的杆件段是单元。

节点编号时力求单元两端点号差最小。

YX2 坐标系有限元中的标系有体标系和局部标系有限元中的坐标系有整体坐标系和局部坐标系。

对于一个结构,整体坐标系一般只有一个;而局部坐标系有很多个,一个单元就有一个局部坐标。

并标系有很多个个单元就有个局部标并且局部坐标系每一个单元的规定都是相同的,这样,同类型单元刚度矩阵相同。

YX杆系结构单元主要有铰接杆单元和梁单元两种类型。

它们都只有2个节点i 、j 。

¾约定:单元坐标系的原点置于节点i ;节点i 到j 的杆轴(形心轴)方向为单元坐标系中x 轴的正向。

y 轴、z 轴都与x 轴垂直,并符合右手螺旋法则。

¾对于梁单元,y 轴和z 轴分别为横截面上的两个惯性主轴惯性主轴。

·x yj·z i土木工程学院有限单元法二、杆单元单元分析维杆单元下图示出了一维铰接杆单元,横截面积为A ,长1、一维杆单元度为l ,弹性模量为E ,轴向分布载荷为p x 。

单元有2,单元坐标为一维坐标轴个结点i ,j ,单元坐标为维坐标轴x 。

··i j x p x u ju i l LINK土木工程学院有限单元法P-8··i x p x j l u ju i LINK⎫⎧=i e u ⎧单元结点位移向量{}⎭⎬⎩⎨j u δ单元结点力向量:⎬⎫⎨=j i e F F F }{⎭⎩(1)位移模式和形函数①位移模式因为只有2个结点,每个结点位移只有1个自由度,因此单元的位移模式可设为:12u a a x =+(3)式中a 1、a 2为待定常数,可由结点位移条件时x =x i 时,u =u ix =x j 时,u =u j确定。

杆梁结构的有限元分析原理

杆梁结构的有限元分析原理

e
下面考察该简单问题的FEA求解过程。 (1) 离散化
两个杆单元,即:单元①和单元②
(2) 单元的特征及表达
对于二结点杆单元,设该单元的位移场为 么它的两个结点条件为
,那
设该单元的位移场具有模式(考虑两个待定系数)
利用结点条件,可以确定系数a0和a1,即
将系数a0和a1代入
,可将
表达成结点位移(u1, u2)的关系,即
其中, 为整体坐标系下的单元刚度矩阵, 为 整体坐标系下的结点力,即
由最小势能原理(针对该单元),将 对待定的 结点位移向量 取一阶极小值,有整体坐标系中 的刚度方程
对于本节给出的杆单元,具体有
4.3.3 空间问题中杆单元的坐标变换
就空间问题中杆单元,局部坐标系下的结点位移还 是 而整体坐标系中的结点位移为
这时由全部结点位移[0 u2 u3]分段所插值 出的位移场为全场许可位移场。
由最小势能原理(即针对未知位移u2和u3求 一阶导数),有
可解出
(5) 计算每个单元的应变及应力
在求得了所有的结点位移后,由几何方程
可求得各单元的应变
由方程 可求得各单元的应力
(6) 求结点1的支反力
就单元 ①的势能,对相应的结点位移求极值,可以 建立该单元的平衡方程,即
其中
由一维问题几何方程和物理方程,则该单元 的应变和应力为
其中
单元的势能
其中 叫做单元刚度矩阵。
叫做单元结点外载。
在得到“特征单元”的单元刚度矩阵和单元 结点外载后,就可以计算该单元的势能,因 此,计算各单元的矩阵 和 是一个关 键,下面就本题给出了个单元的 和 。
具体就单元①,有 单元①的结点位移向量
(5) 单元的刚度方程

2 杆系结构有限元法

2 杆系结构有限元法

{F } = [K ]{δ }
[K ]
称为对应于施加在系统上各节点力的刚度矩阵。
问题: 1、复杂结构其刚度矩阵是多少阶的? 2、如何求出? 3、为什么着重讨论系统的刚度矩阵? 系统的整体刚度矩阵-求出所受外力作 用下各杆件节点处的位移-计算各杆件的 受力和应力
2-2 弹簧系统的刚度矩阵
一、单个弹簧的刚度矩阵
0 u1 = 0 − kb u 2 k b u3
从而可得到定解。通过解上述方程可得到各个节点的位移,利用已求得的位 移就可计算出每个弹簧所受力的大小。
弹簧1-2受力 pa=ka×(弹簧1-2长度的变化量) pa=ka×(u2-u1)
有限元方法求解弹簧系统受力问题的基本步骤: ①形成每个单元的刚度矩阵
(b) F1c
u1=0
2-3 有压力kbu2 F2b = (k a + kb )u2 分别对两弹簧求静力平衡,有 F1b = −k a u 2 , F3b = − kbu2
ka
F2c
u2=0
kb
u3,F3c
3) 只允许节点3有位移u3,类似于情况1),有
F3c = kb u3 , F2 c = − F3c = −kbu3
0 0 0 k 2 22 2 0 k32
0 2 k 23 2 k33
三、方程求解(约束条件的引入)
由式(2-6)和式(2-8)可知,刚度矩阵是一个奇异阵,即它的行列 式的值为零,矩阵的逆不存在。 对应线性代数方程组式(2-7)和式(2-9)无定解。 物理概念解释:对整个系统的位移u1、 u2和 u3,没有加以限制,从而在 任何外力的作用下系统会发生刚体运动。
− ka k a + kb − kb

杆梁结构的有限元分析原理[详细]

杆梁结构的有限元分析原理[详细]

le
EAe
le
EAe
u1 u2
P1
le
P2
u1 u2
1 qeTK eqe PeTqe 2
刚度矩阵
节点力列阵
3)离散单元的装配
在得到各个单元的势能表达式后,需要进行离散单元的装配,以
求出整个系统的总势能,对于该系统,总势能包括两个单元部分
e 1 2
1 q1T K1q1 q2T K 2q2 P1Tq1 P2Tq2 2
第4章 杆系结构的有限元分析原理
杆梁单元概述
讨论杆梁单元和由它们组成的平面和空间杆梁结构系统. 从构造上来说其长度远大于其截面尺寸的一维构件 承受轴力或扭矩的杆件成为杆 杆梁问题都有精确解 承受横向力和弯矩的杆件称为梁 平面桁架 平面刚架 连续梁 空间刚架 空间桁架等 承受轴力或扭矩的杆件称为杆 将承受横向力和弯矩的杆件称为梁 变截面杆和弯曲杆件
单元节点条件:u(0)=u1, u(l)=u2
从而得
a0 ui ,
a1
uj
le
ui
i
1,
j
2
回代得
u(x) a0 a1x
ui
u j ui le
x
1
x le
ui
x le
u
j
Niui N ju j
其中Ni,Nj是形函数。
写成矩阵形式为
q Niu Nqe
N
ju
ui u j
1 2
u1
EA1
u2
l1 EA1
l1
EA1
l1
EA1
u1 u2
R1
l1
0
u1 u2
1 2
u2
EA2

结构有限元分析

结构有限元分析

第七章 结构有限元分析引 言求解具体结构工程中的问题是有限元素法的最终目的,而实际工程结构是复杂多样的,要很好的运用有限元素法还得解决好像坐标变换、对称边界条件运用以及复杂结构连接等问题。

本章即为解决有限元方法应用于工程结构中实际问题的算法。

一、杆系或梁系的刚度坐标变换1、向量的坐标变换公式i) 一维向量的平面分解θθsin cos v u u +=⎭⎬⎫⎩⎨⎧=v u ]sin [cos θθii) 一维向量的三维空间分解⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=w v u u ]cos cos [cos γβαiii) 平面向量的坐标变换:⎭⎩⎥⎦⎤⎢⎣⎡-=⎭⎬⎫⎩⎨⎧v v u θθθθcos sin sin cos⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡=⎭⎬⎫⎩⎨⎧w v u n m l n m l v u 2221112、杆元局部系下刚阵与整体系下刚阵的变换 i )局部系下的单元平衡方程:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡--j i j i p p u u l EA 1111 []{}{}p K =δ由坐标变换(对节点力)xx⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧j i jy jx iy ix p p p p p p θθθθsin 0cos 00sin 0cos =>{}{}P P T T ⎥⎦⎤⎢⎣⎡=λλ00 由局部坐标系下的平衡方程{}[]{}δλλK P T T⎥⎦⎤⎢⎣⎡=00 由位移(节点)的坐标变换[]⎭⎬⎫⎩⎨⎧=i i i v u u θθs i n c o sc o s s i n0000c o ss i n i i i j j j u u v u u v θθθθ⎧⎫⎪⎪⎧⎫⎡⎤⎪⎪⎪⎪=⎨⎬⎨⎬⎢⎥⎣⎦⎪⎪⎪⎪⎩⎭⎪⎪⎩⎭{}{}δλλδ⎥⎦⎤⎢⎣⎡=00 代入{P }的表达式:{}[]{}δλλλλ⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=0000K P T T{}}]{][[]'[δT K T P =故 []]][[]'[T K T K = 杆系举例:○1节点编号 ○2单元编号 ○3形成各单元的总体坐标系下刚阵 ○4单元拼装 ○5求解总体刚度方程3、平面梁元局部系下刚阵到整体系的坐标变换 i). 梁元局部系下的单元刚度平衡方程⑧⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------j j y j x i i y i x j jj i i i l EIl EI lEI l EIl EI l EI l EI lEIlEAlEAlEI l EI lEI l EI l EI l EI l EIl EIlEA lEA M P P M P P v u v u θθ46266126122646612612222323222323000000000000000⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡j i j i P P K K K K δδ22211211ii) 坐标变换⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧i i i i i i v u y y x y y x x x v u θθ1000),cos(),cos(0),cos(),cos(⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧j i j i δδλλδδ00[][]⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=22211211222112110000K K K K K K K K K K TT T T Tλλλλλλλλλλλλ iii) 空间梁元有更复杂的变换关系iv )其它单元的坐标变换Homework : 列出平面弹性问题的刚度矩阵向三维空间的变换i) 实际问题ii )问题:一些节点在总体坐标系下,一些节点是在局部坐标系下,这类问题称为混合坐标架问题,即最终的刚度矩阵是一个混合标架下的形式。

杆结构 分析的有限元方法(有限元)

杆结构   分析的有限元方法(有限元)
局部坐标系中的单元述
杆单元形状函数
杆单元刚度矩阵
平面问题中的坐标变换
梁结构分析的有限元方法
梁:承受横向荷载和弯矩的杆件。
梁的主要变形为挠度v
横截面变形前后都垂直于杆变形前的轴线x轴
中性层变形=0
纯弯曲没有剪力,只有弯矩
梁截面的惯性矩
杆结构分析的有限元方法
杆:承受轴向荷载的杆件
最基本的承力结构件:杆、梁
弹簧--简单的承受轴力的结构件
有限元方法中,每一个处理步骤都是标准化和规范化的,
因而可以在计算机上通过编程来自动实现。
F=kδ
k--刚性系数
位移的绝对变化量/杆件的伸长量δ=u2—u1
应力某截面上单位面积上的内力/内力的分布集度
应变相对伸长量单位长度的伸长量
杆单元的特性是节点位移及节点力的方向都是沿轴线方向。
杆结构的力学分析
铰接的杆结构----杆只受轴力-----杆件拉伸问题---可自然离散
两端为铰接的杆件只承受轴力。
各个单元研究(基于局部坐标系的表达)
各个单元研究
离散单元的集合、组装
杆单元及坐标变换
自由度:描述物体位置状态的每个独立变量。
对于杆单元,其节点位移有两个自由度。

有限元分析实验报告

有限元分析实验报告

有限元分析实验报告有限元分析实验报告一、实验基本要求根据实验指导书的要求能够独立的使用ANSYS 软件操作并在计算机上运行,学会判断结果及结构的分析,学会建立机械优化设计的数学模型,合理选用优化方法,独立的解决机械优化设计的实际问题。

二、实验目的1. 加深对机械优化设计方法的理解2. 掌握几种常用的最优化设计方法3. 能够熟练使用ANSYS 软件操作,培养学生解决案例的能力4. 培养学生灵活运用优化设计方法解决机械工程中的具体实例三、实验软件及设备计算机一台、一种应用软件如ANSYS四、实验内容实验报告例题实训1——衍架的结构静力分析图2-2所示为由9个杆件组成的衍架结构,两端分别在1,4点用铰链支承,3点受到一个方向向下的力F y , 衍架的尺寸已在图中标出,单位: m。

试计算各杆件的受力。

其他已知参数如下: 弹性模量(也称扬式模量)E=206GPa;泊松比μ=0.3;作用力F y =-1000N;杆件的2横截面积A=0.125m.一、 ANSYS8.0的启动与设置图2-2 衍架结构简图1.启动。

点击:开始>所有程序> ANSYS8.0> ANSYS ,即可进入ANSYS 图形用户主界面。

图2-4 Preference 参数设置对话框2.功能设置。

电击主菜单中的“Preference ”菜单,弹出“参数设置”对话框,选中“Structural ”复选框,点击“OK ”按钮,关闭对话框,如图2-4所示。

本步骤的目的是为了仅使用该软件的结构分析功能,以简化主菜单中各级子菜单的结构。

3.系统单位设置。

由于ANSYS 软件系统默认的单位为英制,因此,在分析之前,应将其设置成国际公制单位。

在命令输入栏中键入“/UNITS,SI ”,然后回车即可。

(注:SI 表示国际公制单位)二单元类型,几何特性及材料特性定义1.定义单元类型。

2.定义几何特性。

3.定义材料特性。

三衍架分析模型的建立1.生成节点。

有限元第三章杆系结构单元分析

有限元第三章杆系结构单元分析
u N ui ui T N δe
对应的虚应变为:
B δe
根据虚位移原理虚功方程,有:
W外 FdeT δ e
l 0
q(
x)
N

δ
edx


W变
l
0 Adx
l δ eT BT EAB δ edx 0
将上式整理得:
(3-23)
Fde
dx
(3-5)
虚曲率
k d 2 v
dx2
(3-6)
若又设单元任一截面实际的水平和竖向位移为 u (x)、v (x),
则由材料力学可得与位移对应的截面内力为
FN

EA du dx
(3-7)
M

EI
d 2v dx2
(3-8)
式中EA,EI分别为单元的抗拉(压)、抗弯曲刚度。
有限单元法
在图3-3和上述矩阵说明的情况下,将虚位移原理用于单元, 则单元的虚功方程为
类型单元刚度矩阵相同。
Y
x
y
局部坐标


X
○○

整体坐标
P
大家要熟悉知道单元编号,节点编号,位移编号,以及整体 坐标和局部坐标。
有限单元法
2 1
3
4ቤተ መጻሕፍቲ ባይዱ
5
6
图2.1 弯曲杆件系统
1
有限单元法
2
3
4
5
图2.2 截面连续变化杆件系统
结点编号
单元编号
5 (8 9 10) 6
4
3
(2 3 4)
3
1
1 (0 0 0)
设平面杆系结构用结点分成等直杆(单元)集合,其 中某单元e隔离体如图3-3所示,如果建立了单元e的虚位移 原理虚功方程,则整个杆系结构的虚功方程可由对各杆求 和获得。为用矩阵形式写出杆件及杆系结构虚位移原理的 虚功方程,以便于今后推导使用,特引入一下矩阵(向 量):
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

得,正因为形状函数反映了单元的位移分布状态,矩阵 Ν 及其
Ni , N j 也由此而得名为形状函数矩阵和形状函数。
<<结构分析中的有限单元法>> By Xiaojun Wang
8 /120
杆单元
从式(2.4)还可以看出:通过形状函数把两孤立的常值位移
ui , u j 化为连续函数 u(x) ,数学上讲,就是已知函数在闭区间 两个端点上的值 ui , u j ,构成一个连续函数 u(x) ,它在端点应 保证等于 ui ,u j ,这样的计算步骤就是内插,形状函数 Ni , N j 就是实现内插的两个函数,所以 Ni , N j 又叫内插函数,形状函 数矩阵 Ν 又叫内插函数矩阵,而式 u(x) Ni (x)ui N j (x)u j 又叫
1. 本点为 1,它点为 0; 2. 任意一点总各为 1。
杆单元形状函数 Ni , N j 如图 3.3 所示。
<<结构分析中的有限单元法>> By Xiaojun Wang
7 /120
杆单元
当结构变形之后, i,j 结点的位移通常都不为零,这时单
元内位移按式(2.4)由结点位移和相应的形状函数线性组合求
一个元素都是坐标的函数。
<<结构分析中的有限单元法>> By Xiaojun Wang
6 /120
杆单元
分析式(2.4):当 ui 1 , u j 0 时,杆单元的位移 u(x) 就 是 Ni ,当 ui 0 ,u j 1时,杆单元的位移分布就是 N j ,所以
形状函数的力学含义是当单元的一个结点位移为单位值,其他 结点的位移为零时,单元内位移的分布规律。可以发现形状函 数的两个重要性质为:
图 2.2 二力杆单元
<<结构分析中的有限单元法>> By Xiaojun Wang
3 /120
杆单元
单元在结点力作用下各点的位移叫内位移,描绘内位移的
函数叫位移函数。由材料力学知道:仅受轴向作用的二力杆,
其应力及应变在轴线各点处均是恒定常数,因而位移沿杆子轴
线呈线性变化,即
u(x) a1 a2x
Fzi ,Fxj ,Fyj ,Fzj 杆单元结点力分量,一律规定和坐标轴正向一致时为正。 设杆的长度为 l ,弹性模量为 E ,横截面积为 A 。
图 2.1 杆单元结点位移、结点力分量
<<结构分析中的有限单元法>> By Xiaojun Wang
2 /120
杆单元
位移函数
对于铰接杆单元,在小变形假设的前提下,与杆垂直方向的 位移并不使杆产生应变和应力。于是,对每一个结点只需考虑一 个结点位移和结点力,因而只需研究如图 2.2 所示的杆单元即可。
(2.1)
这就是二力杆单元的位移函数,式中 a1 ,a2 是两个待定常
数,可由 i , j 两结点的位移唯一确定。当
x 0, u 0 ui
x l, u(l) u j
(2.2)
<<结构分析中的有限单元法>> By Xiaojun Wang
4 /120
杆单元
将式(2.2)代入式(2.1)有: ui a1,u j a1 a2l ,从而可得
<<结构分析中的有限单元法>>
杆系结构有限元分析
王晓军 航空科学与工程学院固体力学研究所
<<结构分析中的有限单元法>> By Xiaojun Wang
杆系结构有限元分析
杆系是工程中常见的结构体系,比较简单,其 中每一个杆件都可以看作是一个单元,单元受力与 位移的关系很容易求得而且物理概念清晰、直观。 结构力学中介绍的矩阵位移法是采用经典的方法讲 述的,它是利用转角位移方程来建立单元特性公式, 所以只适用于杆系。有限元方法是在结构矩阵分析 的矩阵位移法基础上发展起来的,在建立位移场的 过程中采用的是最有普遍意义的方法,即建立单元 位移场函数,通过最小势能原理进行单元和整体分 析。
<<结构分析中的有限单元法>> By Xiaojun Wang
1 /120
杆单元
拉(压)杆单元 一般规定
如图 2.1 表示某一杆单元 ij ,现约定附属于该单元的局部坐标系为 o'x' y'z ' , i 点为原点, x 轴沿着杆轴线,其正方向为由 i 指向 j ,其余各轴按右手 螺旋规则确定。设 ui ,vi ,wi ,u j ,v j ,w j 为杆元结点位移分量 Fxi ,Fyi ,
对于拉(压)杆,应力与应变之间的关系有
x E x
用矩阵表示为
σ Dε
(2.6)
其中 σ 是应力向量,在杆单元中只有一个元素,D 为弹性矩阵,
为11阶的。
将式(2.5)代入式(2.6)得
<<结构分析中的有限单元法>> By Xiaojun Wang
11 /120
杆单元
σ Dε = DBue = Sue 其中 S = DB 称为应力矩阵,对于拉(压)杆单元有
x
du dx
将位移函数(2.4)代入有
x
d dx
Nue
d dx
1
x l
d dx
x l
ue
11
l
1 ue
或写成
ε Bue
(2.5)
<<结构分析中的有限单元法>> By Xiaojun Wang
10 /120
杆单元
其中 B 1/ l 1 1称为应变矩阵。应变矩阵 B 把单元的结点
位移 ue 和应变列阵 ε 联系起来。
a1 ui
a2
uj
ui l
(值代入式(2.1)得
u(x)
ui
uj
ui l
x
1
x l
ui
x l
u
j
(2.4)
或写成
u(x)
1
x l
x l
ui u j
Ni
N
j
ui u j
Nu e
<<结构分析中的有限单元法>> By Xiaojun Wang
内插多项式。 数学意义:如果说自然结点离散化为有限元的集合,实现了
结构模型离散化,那么,形状函数完成了数学模型离散化,这两 个离散化的步骤构成了有限元法的理论基础。
<<结构分析中的有限单元法>> By Xiaojun Wang
9 /120
杆单元
几何关系和物理关系
有了位移函数,就可以分析单元的应变和应力,根据应变 定义
5 /120
杆单元
通常用 u 代表单元内位移
其中
u Nue Niui N juj
(2.4)
Ni
1
x, l
Nj
x l
在有限元法中, Ni,N j 称为 i 点、 j 点的形状函数或插值函数, Ν 称为形状函数矩阵。形状函数矩阵十分重要,它把单元的结
点位移和单元的内位移连接起来了。显然形状函数矩阵中的每
相关文档
最新文档