晶体学基础8-晶体内部结构的微观对称和空间群

合集下载

材料分析方法3 微观对称性-空间群-实际晶体结构

材料分析方法3 微观对称性-空间群-实际晶体结构
I坐标:2d: (1/3,2/3,z );(2/3,1/3,-z).
整理课件
29
整理课件
30
密堆积填隙示意图
• CdCl2: 堆积顺序:
整理课件
31
从填隙模型角度讨论CdCl2,CdI2,TiO2的关系
整理课件
32
可以归结为密堆积结构的复杂化合物
(1)可以归结为ccp简单结构的复杂化合物:
• 高温下NH4+,CN-,BF4-等离子基团,自由转动;NaCl结构:
• [ZnS4]; [SZn4]
整理课件
23
8. 萤石CaF2和反萤石Na2O:面心立方点阵,空间群:Fm3m(225号), 萤石结构是由Ca构成的面心立方构架,F填充了其中所有四面体间
隙,构成简单立方结构。反萤石构是以简单立方Na为骨架, O部
分填充简单立方的体心间隙,[CaF8]; [FCa4]
(2)空间群序号,完整国际符号
(3)空间群图示,包括几个方向 的对称要素正投影图和一个一般等 效点系分布图
(4)原点的位置对称性
(5)空间群的基本对称操作,包 括对称操作序号,对称要素符号及 其轨迹,由初始的一般点出发,在 这些对称操作作用下可以找到一般 等效点系中的所有点。
(6)晶胞中一般点和特殊点的位
整理课件
43
两个都是体心正交
整理课件
44
整理课件
40
2. 画出四种平面点阵(它是无限大的)除平移外的所有对称 元素及其所在位置(在有限个阵点画出就可以了)。
整理课件
41
整理课件
42
3. 某正交晶系单胞中,在如下位置有单原子存在:①(0, 1/2, 0),(1/2, 0, 1/2)两种位置都是同类原子;②([1/2, 0,0]), (0, 1/2, 1/2)上是A 原子,(0, 0, 1/2),(1/2, 1/2, 0)是B 原子。 问上两种晶胞各属于哪一种布喇菲点阵?

晶体结构的对称性

晶体结构的对称性

晶体的对称性1. 晶体的宏观和微观对称性晶体的对称性最直观地表现在其几何外形上,由于晶体外形为有限的几何图形,故晶体外形上所体现的对称性与分子一样为点对称性,称为宏观对称性。

有四种类型的对称操作和对称元素旋转旋转轴反映反映面(镜面)反演对称中心旋转反演反轴由于晶体内部结构为点阵结构,点阵结构是一种无限的几何对称图形。

故晶体结构具有这种基本的空间对称性(通过平移对称操作能使点阵结构复原),常称为晶体的微观对称性。

有三种类型的对称操作和对称元素平移点阵螺旋螺旋轴滑移滑移面2. 晶体和晶体结构对称性的有关定理晶体和晶体结构的对称元素及相应的对称操作有上述七种。

晶体中点阵与对称元素的制约关系为:对称面和对称轴的取向定理在晶体结构的空间点阵图形中,对称轴必与一组直线点阵平行,并与一组平面点阵垂直;对称面则必与一组直线点阵垂直,并与一组平面点阵平行。

(对称轴包括旋转轴、反轴和螺旋轴;对称面包括反映面、滑移面)∙对称轴的轴次定理在晶体结构中存在的对称轴,其轴次只能为1、2、3、4、6这五种。

3. 7个晶系和32个晶体点群∙根据晶体的对称性,可将晶体分为7个晶系,每个晶系有它自己的特征对称元素。

晶体特征对称元素立方晶系四个按立方体的对角线取向的3重轴六方晶系唯一的6重轴四方晶系唯一的4重轴三方晶系唯一的3重轴正交晶系三个互相垂直的2重轴或二个互相垂直的对称面单斜晶系一个2重轴或对称面三斜晶系无∙由于晶体的对称性定理,限制了对称轴的轴次只能为1、2、3、4、6;又由于反轴中只有4重反轴是独立的对称元素,所以在晶体的宏观对称性中,只能找到8个独立的对称元素:1、2、3、4、6、m、i、。

∙与分子所含的对称元素相比,晶体中所含的对称元素有限,这八个对称元素按一定的组合规则组合后只能产生32个对称类型(对称元素系),每个对称类型所具有的对称元素所对应的对称操作构成一个群。

由于晶体的宏观外形为有限图形,故各种对称元素至少要相交于一点,故称为32个晶体点群。

晶体的对称性

晶体的对称性
7. 三斜–点阵符号后是1或(- 1)。
晶体结构的对称性-董成
从空间群符号确定点群
点群可以从简略H-M符号通过下列变换得出: 1.把所有滑移面全部转换成镜面; 2.把所有螺旋轴全部转换成旋转轴。 例如: 空间群= Pnma 点群= mmm
空间群= I `4c2 点群= `4m2 空间群= P42/n 点群= 4/m
21,31,32,41,42,43,61,62,63,64,65
41
对称要素的符号表示
从晶系到空间群
7个晶系 (按照晶胞的特征对称元素分类)
旋转,反射,反演
32个点群
平移
14种Bravais格子
螺旋轴,滑移面
230个空间群
空间群国际符号LS1S2S3
运用以下规则,可以从对称元素获得H-M空间群符号。
对称方向
三斜 单斜
正交 四方 六角 三角 三角
立方
从空间群符号辨认晶系
1. 立方–第2个对称符号: 3 或 `3 (如: Ia3, Pm3m, Fd3m)
2. 四方–第1个对称符号: 4, `4 , 41, 42 或 43 (如: P41212, I4/m, P4/mcc)
3. 六方–第1个对称符号: 6, `6 , 61, 62, 63, 64 或 65 (如: P6mm, P63/mcm)
立变化。 特殊位置:所有不在一般位置的。 1. 处于一个或多个对称元素上的位置;
2. 其多重性是一般位置多重性的公因子,即比一般位置小(一个整数倍)。
3. 特殊位置的分数座标中必有一个(或多个)是不变的常数。
晶体结构的完整描述
1、晶体化学式 (化学成分)
2、名称
Chem Name Min Name

结晶学讲7-晶体内部结构的微观对称

结晶学讲7-晶体内部结构的微观对称

• s:小于n的自然数
• 旋转的方向:左旋:左手系,顺时针 右旋:右手系,逆时针
• 移距
t= (s/n)T
• t为螺距(滑移距离),T为沿螺旋轴方向的 结点间距 • 当s=n 时,即为对称轴 • 举例: •
31 43
基转角为120°, 平移距离为t=1/3T 基转角为90 ° 平移距离t =3/4T
• 为什么只有14种空间格子的原因; • 会读懂内部对称要素的各种符号: 如:31,42,65,n, d, • 空间群及其国际符号:如:Pn3m, Cmcm,
2、空间群的国际符号
• 国际符号的优点:能直观地看出空间格子的型式和 什么方向上有什么对称要素; 缺点:同一种空间群由于不同的定向以及其它原因 可以写成不同的符号。 • 空间群国际符号的组成: ①格子类型(大写英文字母) + ② 内部结构对称型的国 际符号(与宏观对称型的国符书写方式基本相同) 如:金刚石的空间群为Fd3m,属m3m对称型 • 如何看懂空间群?
3c
43m
等 立方 轴 面心
c
滑移
空间群
点群
晶 格子 对称要素方向 系 类型 及名称
1、平行Z轴有 63 螺旋轴, 垂直Z有对称面 m
2、垂直于xyu有c 滑移面 3、垂直于相邻两水平晶 轴(y u)角平分线有对称 面
P63/mc m
6/mmm 六 六方 方 原始
Abm2
mm 2
斜 斜方 1、垂直于X轴有滑移 方 底心 面 b 格子 2、垂直于y 轴有对称 面m 3、平行于 Z 轴有L2
四、 等效点系
• 等效点系(equivalent point-system): 是 指晶体结构中由一原始点经空间群中所有 对称要素操作所推导出来的规则点系。 • 晶体结构中的空间群,对应于晶体几何外 形的对称型 ;而等效点系的概念则类似于 单形的概念。

大学化学《结构化学-晶体结构》课件

大学化学《结构化学-晶体结构》课件

3、各种晶体生长中会自发形成确定的多面体外形。 晶体在生长过程中自发形成晶面,晶面相交成
为晶棱,晶棱聚成顶点,使晶体具有某种多面体外 形的特点。
熔融的玻璃体冷却时,随着温度降低,粘度变 大,流动性变小,逐渐固化成表面光滑的无定形物, 工匠因此可将玻璃体制成各种形状的物品,它与晶 体有棱、有角、有晶面的情况完全不同。 4、晶体有确定的熔点而非晶态没有。
1.平移—点阵:
平移是晶体结构中最基本的对称操作, 可用T来表示
Tmnp=ma+nb+pc
m,n,p为任意整数 即一个平移矢量Tmnp作用在晶体三维点 阵上,使点阵点在a方向平移m单位,b方向 平移n单位,c方向平移p单位后,点阵结构 仍能复原。
⑵ 晶体的对称操作和对称元素受到点阵的制约: 其中旋转轴、螺旋轴和反轴的轴次只能为1、2、3、 4、6等几种;螺旋轴和滑移面中的滑移量也只能符 合点阵结构中平移量的几种数值。
晶体结构中可能存在的对称元素有:对称中心 ();镜面(m);轴次为1、2、3、4、6的旋转轴(1,2, 3,4,6)、螺旋轴(21,31,32,41,42,43,61,62,63,64,65)、反轴
学习要点
⑴晶体结构周期性与点阵。 ⑵ 7 个 晶 系 和 14 种 Bravias 空 间 格 子 。 ⑶晶胞、晶面间距。 ⑷ 晶体(X射线)衍射方向―Laue方程和Bragg方程。 ⑸ 晶体衍射强度与立方晶系的系统消光。
学时安排 学时----- 6学时
第八章.晶体的点阵结构和晶体的性质
晶体
远古时期,人类从宝石开始认识晶体。红 宝石、蓝宝石、祖母绿等晶体以其晶莹剔透 的外观,棱角分明的形状和艳丽的色彩,震 憾人们的感官。名贵的宝石镶嵌在帝王的王 冠上,成为权力与财富的象征,而现代人类 合成出来晶体,如超导晶体YBaCuO、光学 晶体BaB2O4、LiNbO3、磁学晶体NdFeB等 高科技产品,则推动着人类的现代化进程。

晶体内部结构的微观对称

晶体内部结构的微观对称
催化剂设计
利用晶体对称性,可以设计具有特定催化性能的 催化剂,提高化学反应的效率和选择性。
3
药物合成与筛选
通过研究药物分子与晶体之间的相互作用,可以 优化药物分子的设计和合成,提高药物的疗效和 降低副作用。
06
晶体内部结构对称性的研 究方法
X射线晶体学
总结词
X射线晶体学是研究晶体内部结构的主要方法之一,通过分析X射线在晶体中的衍射现象,可以获得晶体中原子的 排列方式和晶格结构等信息。
晶体内部结构的微观对 称
目录 CONTENT
• 晶体微观对称的概念 • 晶体微观对称的几何基础 • 晶体内部结构的对称元素 • 晶体内部结构的对称操作 • 晶体内部结构对称性的应用 • 晶体内部结构对称性的研究方法
01
晶体微观对称的概念
定义与特性
定义
晶体内部结构的微观对称是指晶体内 部原子或分子的排列方式具有的对称 性。
空间群对称
晶体内部原子或分子的排列具 有空间群对称性,如立方晶系
的点群对称。
02
晶体微观对称的几何基础
点群
定义
点群是指晶体中由一个或多个对 称元素组成的集合,这些对称元 素在晶体中所有可能的取向中保
持不变。
分类
点群可以分为一维、二维和三维点 群,分别对应于一维、二维和三维 晶体结构。
应用
点群是晶体结构分类的基础,通过 点群可以确定晶体的对称性,进而 确定晶体的物理和化学性质。
总结词
旋转轴是晶体内部结构中的一种对称元素,能够使晶体内部结构在旋转一定角度后恢复到原始状态。
详细描述
旋转轴在晶体内部结构中起着重要的作用,不同的旋转轴会导致晶体具有不同的对称性,从而影响晶体 的物理性质和化学性质。例如,在矿物学中,许多矿物具有特定的对称性,可以通过观察其晶体形态和 内部结构来确定其对称元素。

晶体几何学理论基础

晶体几何学理论基础
周期平移是晶体学中最基本的对称操作。它通过平移操作使 晶体中的某个点或图形在某些晶体学方向上做有规律的周期 重复。晶体结构正是周期性平移操作的结果。
图3.1表示了周期平移对称性。将图中的一个星形的中心作为 原点A,则图中的其他星形图案均可通过对位于A的星形图案 的平移来获得。可以将图案从A平移到B和G,也可将图案从A 平移到C然后再平移至F。
4.4.2 等效点系
等效点系是利用一个空间群中所有对称要素的操作由一个原始点推导出来的规则点 系,由于原始点与空间群中对称要素的相对位置有区别,可用推导出数种等效点系。 一半等效点系:从原始点在一般位置上(也包括原始点在螺旋轴及滑移面上)推导 出来的等效点系称为一般等效点系。特殊等效点系:从与对称要所有特殊的位置关 系(如位于对称面、对称轴、对称要素的交点、对称中心或旋转反伸中心上)的点 所得到的等效点系称为特殊等效点系。由于各等效点系的对称要素的位置有别。其 本身的对称程度也有区别。一般等效点系的对称程度最低。一套等效点系在一个晶 胞中所具有的等效点系数称为该等效点系的重复点数。在一个空间群中等效点系可 在X射线结晶学国际表上查到。
晶体几何学理论基础
对称性是一种规律的重复,具有变化中的不变性,是自 然科学中一个重要的基本概念。晶体就是指原子或分子 在空间按一定规律重复排列构成的固体物质。晶体结构 的基本特征是其中的质点在三维空间作规律的重复排列。 晶体结构研究的就是揭示晶体内部原子和分子在空间排 列上的对称规律,这种规律只有在晶体结构中每个原子 在空间相对位置揭示出来时才能得到完整证明。
1.4 反伸
在反伸对称操作中,一个点或基本图案通过一个点做等距离投影来进行 重复。这个操作可以想象为通过一个点的反映。
1.5 复合对称操作
复合对称操作是基本对称操作的组合。当两个操作结合时,只有两个操作 都完成时基本图案才能被重复。对称操作的可能组合很多,但其中只有3 种组合产生的对称图样是独特的,它们不能用一组基本操作的一次作用而 复制出来。

晶体学第二章-6

晶体学第二章-6

平移轴(translation axis ):一条直线,沿此直线平移一定距离可使晶体的等同部分重合,即整个晶体复原。

¾平移轴:布拉菲点阵中的任意行列¾平移轴的移距:使晶体复原的最小平移距离,即行列上相邻两点间距对称操作:平移t晶格平移矢量——原胞基矢的线性组合平移群{}332211a l a l a l v v v ++螺旋轴n s2131、3241、42、436l 、62、63、64、65•0<s <n/2;采用右手系(右螺旋轴),螺距为τ=(s /n )t 。

•若n/2<s <n ;采用左手系(左螺旋轴),螺距为τ=(1-s /n )t 。

•若s =n/2;中性螺旋轴,左右手系等效。

螺旋轴21,31,3241意为按左旋方向旋转90度后移距1/4 t 。

43意为按右旋方向旋转90度后移距1/4 t;6462螺旋轴61,62,63,64,65滑移面(glide plane):一假想平面,对此平面反映后平行于该平面平移一定距离可使晶体中每一个质点与其等同的质点重合,即整个晶体复原。

国际符号a,b,c,n,d¾滑移面(像移面):一种复合的对称要素¾辅助几何要素有两个:一个假想的平面和平行此平面的某一直线方向¾平移的距离(移距):该方向行列结点间距的一半对称操作:反映+ 平移(联合操作)¾沿晶轴方向移距为轴单位的1/2¾滑移矢量为a/2,b/2,c/2d ——金刚石型滑移面¾沿面对角线或体对角线滑移¾滑移矢量:(a+b)/4, (b+c)/4, (a+c)/4,(a+b+c)/4nn ——对角线滑移面¾沿面对角线或体对角线滑移¾滑移矢量:(a+b)/2, (b+c)/2, (a+c)/2,(a+b+c)/2滑移面a,b,c,n,dA:各种滑移面在3个轴方向上滑移矢量分布B:滑移面平行于投影面的投影C:滑移面垂直于投影面的投影晶体中可能存在的对称元素类型及符号:二、二维空间群1. 二维晶体的宏观对称元素:6个对称轴(1,2,3,4,6)、对称面(m)2. 二维晶系、布拉菲点阵与点群:¾晶轴只能取a和b,只剩下一个角度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3/4
41
43
规定: 41为右旋,43则为左旋。但43右旋时 移距应为3/4T。
即螺旋轴的国际符号ns是以右旋为准的。
凡0<s<n/2者,为右旋螺旋轴(包括31、 41、61、62);凡n/2<s<n者,为左旋螺 旋轴(包括32、43、64、65);而s=n/2 者,为中性螺旋轴(包括21、42、63)。
平移轴
为一直线,图形沿此直线移动一定距离,可使相 等部分重合,晶体结构中任一行列都是平移轴。 NaCl晶体结构
能够使图形复原的最小平移距离,称为平移轴的移距。
螺旋轴
为一条假想直线,当结构围绕此直线旋转一定 角度,并平行此直线移动一定距离后,结构中 的每一质点都与其相同的质点重合。
螺旋轴的国际符号一般写成ns。n为轴次,s为 小于n的自然数。 若沿螺旋轴方向的结点间距标记为T,则质点平 移的距离t应为(s/n)· T,其中t称为螺距。 螺旋轴据其轴次和螺距可分为21;31、32;41、 42、43;61、62、63、64、65共11种。
阵点平面投影的符号表示 阵点
+

在纸面上方
在纸面下方 手性的变换 对称面相关的阵点
- , +
对称面平行纸面
二维空间群
10种二维点群
1 2 3 4 6 / m 2mm 3m 4mm 6mm
4种二维晶系
晶系 晶胞参数 点群符号
单斜
正交 四方 六方
ab,90
ab,=90 a=b,=90 a=b,=120
43在旋转2个90度后移距2×3/4 T=1T+1/2T,旋 转3个90度后移距3×3/4 T=2T+1/4T。T的整数倍 移距相当于平移轴,可以剔除,所以, 43相当于旋转 270度移距1/4T,也即反向旋转90度移距1/4T 。 所以,41和43是旋向相反的关系。
1/2
3/4
1/4
1/2
1/4 0 0

滑移面
是一假想的平面,当结构对此平面反映,并平行此平面移 动一定距离后,结构中的每一个点与其相同的点重合。 滑移面按其滑移的方向和距离可分为a、b、c、n、d五种。 其中a、b、c为轴向滑移,移距分别为 1/2a, 1/2b,1/2c。 n为对角线滑移,移距为1/2(a+b)or 1/2(b+c)等。 d为金刚石型滑移,移距为 1/4(a+b)等。
1,2
1m, 2mm 4,4mm 3,3m,6,6mm
晶体学基础
第七章 晶体内部的微观对称和空间 群
平移轴
螺旋轴
滑移面
二维空间群
石墨烯
强度高、轻、透明 单层铁强度的100倍
1平方米的石墨烯 (0.77mg)可承重4KG
透光率97%以上
Geim和Novoselov 2010 诺贝尔物理学奖
学习要求
掌握晶体内部的微观对称元素的对称特点和规 律,掌握平移轴、螺旋轴和滑移面的具体含义。 了解晶体二维空间群的对称元素、点群类型、 点阵类型。
螺旋轴 (1)
二次对称轴(a) 和二次螺旋轴21(b)
螺旋轴 (2)
三次对称轴(a),右旋三次螺旋轴 31(b)和左旋三次螺旋轴(c)32.
螺旋轴 (3)
四次对称轴4(a)、右旋四次螺旋轴41 (b)、中性四次螺旋轴42(c)和左旋 四次螺旋轴43(d)
螺旋轴 (4)
六次对称轴6(a)、右旋六次螺旋轴61(b)、 62(c)、中性六次螺旋轴63(d)和左旋六次 螺旋轴64(e)、65(f)
相关文档
最新文档