粉末涂料与附着力
喷塑附着力差的原因

喷塑附着力差的原因1.材料选择不当:喷塑所用的材料通常是粉末涂料,而材料的种类和质量会直接影响到喷塑的附着力。
如果选择了质量不好的涂料,或者选择了不适合该材料表面的涂料,就会导致喷塑后的附着力差。
2.表面处理不当:在喷塑之前,需要对材料的表面进行必要的处理,以提高涂层与基材的附着力。
如果表面处理不充分或者不正确,就会使得涂层附着力差。
常见的表面处理方法包括清洗、除油、除锈、打磨等。
3.喷涂工艺不当:喷塑工艺包括喷涂设备、喷涂技术、喷涂厚度等多个方面。
如果设备不好或者技术不熟练,就会导致涂层均匀性和附着力的问题。
另外,如果喷涂厚度不足或者过厚,也会影响附着力。
4.工作环境条件:喷塑需要在相对恒定的温度和湿度条件下进行。
如果工作环境温度太高、湿度太大或者不稳定,就会影响喷塑的附着力。
此外,如果喷塑时存在灰尘、水汽等污染物,也会降低涂层的附着力。
5.基材质量问题:基材的质量也是影响附着力的重要因素。
如果基材表面存在电镀或者涂层等不光滑的层面,或者基材的化学成分不适合喷塑,都会影响附着力。
6.人为因素:喷塑的附着力还受到操作人员的技术水平和工作态度的影响。
如果操作人员不熟悉喷塑工艺,或者工作态度不认真,就会导致附着力差。
针对喷塑附着力差的原因,可以通过以下方法来改善:1.选择合适的涂料:根据喷塑的基材和使用环境选择合适的涂料,确保涂料与基材的相容性。
2.做好表面处理:充分清洗和除油表面,确保表面没有污垢、油脂和氧化层等。
对于一些不易处理的表面,可以考虑使用专门的表面处理剂来改善附着力。
3.控制喷涂工艺:选择合适的喷涂设备,并掌握正确的喷涂技术,确保喷涂的厚度均匀。
同时,还要注意控制底材温度和湿度,尽量在适宜的工作环境下进行喷塑。
4.加强质量检查:在喷塑完成后,进行质量检查,包括涂层的厚度、附着力和外观等。
如有问题,及时进行调整和修复。
5.提高操作人员技术水平:通过培训和学习,提高操作人员对喷塑工艺的理解和技术水平,确保操作规范和认真。
涂料检测之粉末涂料检测的主要项目及标准

涂料检测之粉末涂料检测
一、概述:
粉末涂料是一种新型的不含溶剂100%固体粉末状涂料,具有无溶剂、无污染、可回收、环保、节省能源和资源、减轻劳动强度和涂膜机械强度高等特点。
科标无机检测中心专做粉末涂料成分检测、粉末涂料相关性能检测,下面就以科标检测为例来简单介绍下粉末涂料检测的主要项目及主要标准。
主要检测产品为热塑性粉末涂料和热固性粉末涂料。
二、检测项目:
1、物理性能:外观、透明度、颜色、附着力、粘度、细度、灰分、PH值、闪点、密度、体积固体含量等;
2、施工性能:遮盖力、使用量、消耗量、干燥时间(表干、实干)、漆膜打磨性、流平性、流挂性、漆膜厚度(湿膜厚度、干膜厚度)等;
3、化学性能:耐水性、耐酸碱性、耐腐蚀性、耐候性、耐热性、低温试验、耐化学药品性;
4、有害物质:VOC、苯含量、甲苯、乙苯、二甲苯总量、游离甲醛含量、TDI 和HDI含量总和、乙二醇醚、重金属含量(铅、汞、铬、镉等)。
三、检测标准:
GBT 21776-2008 粉末涂料及其涂层的检测标准指南
HGT 2006-2006 热固性粉末涂料
GBT 21774-2008 粉末涂料烘烤条件的测定
GB/T 18593-2010 熔融结合环氧粉末涂料的防腐蚀涂装。
万昆粉末涂料 技术参数

万昆粉末涂料技术参数万昆粉末涂料是一种高性能的涂料材料,具有许多优越的技术参数。
本文将从涂料的使用范围、施工性能、耐候性能、环境友好性等多个方面介绍万昆粉末涂料的技术参数。
一、涂料的使用范围万昆粉末涂料适用于金属、非金属等多种材料的表面涂装。
其涂装效果均匀,涂层平整、光泽度高,能够有效遮盖基材表面的瑕疵。
因此,万昆粉末涂料被广泛应用于汽车、家具、电器、建筑等领域的涂装工艺中。
二、施工性能1. 干燥时间短:万昆粉末涂料在烘烤过程中可以迅速固化,干燥时间短,提高了生产效率。
2. 良好的附着力:万昆粉末涂料具有良好的附着力,能够牢固地附着在基材表面,不易剥落。
3. 高覆盖率:万昆粉末涂料的覆盖率高,一次涂装即可形成均匀的涂层,减少了涂装的次数和涂料的浪费。
三、耐候性能万昆粉末涂料具有优异的耐候性能,能够在恶劣的自然环境中长期保持涂层的色彩和光泽度。
其耐紫外线、耐酸碱性、耐腐蚀等特性使得涂料具有较长的使用寿命,减少了维护和修复的频率和成本。
四、环境友好性1. 无溶剂:万昆粉末涂料是一种无溶剂涂料,不含有害挥发性有机物(VOC),对环境污染较小。
2. 高利用率:万昆粉末涂料的利用率高,涂料固化后几乎没有废料产生,有效节约了资源和成本。
3. 低能耗:万昆粉末涂料的烘烤温度相对较低,能够减少能源的消耗,降低了生产过程中的碳排放。
万昆粉末涂料具有干燥时间短、良好的附着力、高覆盖率、优异的耐候性能和环境友好性等优越的技术参数。
其在多个领域的应用广泛,能够满足不同材料的表面涂装需求,并为产品提供优质的保护和装饰效果。
未来,随着科技的不断进步,万昆粉末涂料将不断优化和创新,为各行业的涂装工艺带来更多的发展机遇。
粉末喷涂原理

粉末喷涂原理粉末喷涂是一种常用的表面涂装技术,它采用将固态粉末喷射到待涂物表面的方法。
其原理是将粉末涂料通过喷枪加速喷射到待涂物表面,然后在烘烤室中进行加热处理,使粉末熔化和固化,并形成坚固的涂层。
粉末喷涂的原理基于静电吸附和热固化两个主要过程。
首先,喷枪通过压缩空气将粉末涂料喷射到待涂物表面,并且在喷射的同时对粉末带有静电电荷。
由于待涂物表面通常是接地的,静电吸附使得粉末在表面上均匀分布,并紧密附着在待涂物上。
然后,待涂物被送入烘烤室中进行加热处理。
烘烤室中的温度通常介于150°C至200°C之间,这使得粉末快速熔化并流动成涂层。
同时,粉末中的固化剂也会被激活,形成交联反应,使得涂层在高温下固化和硬化。
这个过程称为热固化,它确保了涂层的耐久性和附着力。
粉末喷涂的优点有很多。
首先,粉末涂料不含有溶剂,具有环保性,不会对环境造成污染。
其次,粉末喷涂可以在一次涂装中形成均匀厚度的涂层,能够覆盖各种形状的物体,并且不会产生滴落和流挂现象。
此外,粉末喷涂的涂层硬度高,耐磨损,耐腐蚀,具有较长的使用寿命。
然而,粉末喷涂也存在一些限制。
首先,粉末涂料的选择范围较窄,不适用于某些特殊材料。
其次,粉末喷涂需要较高的设备投资和烘烤室空间,增加了成本和工艺复杂性。
此外,对于大型物体,如汽车和机械设备,喷涂效果可能不够均匀和一致。
总体而言,粉末喷涂是一种高效、环保、耐久的表面涂装技术。
它在许多行业中得到广泛应用,如汽车制造、家具制造、金属加工等。
随着技术的不断发展,粉末喷涂的应用范围将进一步扩大,并且将不断优化涂装效果和提高生产效率。
粉末涂料的详细介绍

粉末涂料的详细介绍粉末涂料是一种应用广泛的涂料类型,具有许多独特的特点和优势。
本文将详细介绍粉末涂料的定义、分类、特点、应用领域以及制备过程等内容。
一、定义粉末涂料是由树脂、颜料、填料和辅助剂等原料组成的一种固体涂料。
与传统的液体涂料相比,粉末涂料的颗粒呈粉末状,不含溶剂,具有环保、高效、耐候性好等特点。
二、分类根据树脂的类型,粉末涂料可以分为热固性粉末涂料和热塑性粉末涂料两大类。
热固性粉末涂料在高温下进行交联反应,形成坚固的涂膜,具有较好的耐化学性和耐热性;热塑性粉末涂料则在加热软化后流动成膜,具有较好的附着力和柔韧性。
三、特点1. 环保性:粉末涂料不含溶剂,不产生挥发性有机化合物(VOCs)的排放,符合环保要求。
2. 高效性:粉末涂料的利用率高,无需溶剂挥发和流动时间,节省了涂料施工时间。
3. 耐候性:粉末涂料具有较好的耐紫外线、耐腐蚀和耐磨损性能,能够长时间保持涂层的色泽和光泽。
4. 色彩丰富:粉末涂料的颜色多样,可根据需求调配出各种亮丽的色彩,满足不同客户的个性化需求。
5. 膜厚可控:粉末涂料的膜厚可以通过喷涂工艺和条件控制,以满足不同涂装要求。
四、应用领域粉末涂料广泛应用于金属制品、家具、建筑、汽车、电器等行业。
在金属制品领域,粉末涂料可用于防腐、装饰和增加产品表面硬度;在家具领域,粉末涂料可用于木质家具和金属家具的表面装饰和保护;在建筑领域,粉末涂料可用于室内外墙面、门窗等的装饰和防护;在汽车领域,粉末涂料可用于汽车车身、零部件的涂装和防腐。
五、制备过程粉末涂料的制备过程主要包括原料混合、熔融混合、研磨、喷粉和固化等步骤。
首先,将树脂、颜料、填料和辅助剂等原料按一定比例混合均匀;其次,将混合后的原料加热熔融,使其形成均匀的涂料糊;然后,将熔融的涂料糊经过研磨处理,使颗粒粒径适中;接着,将研磨后的粉末通过喷粉设备均匀喷涂在待涂物体表面;最后,将喷涂后的物体置于高温下进行固化,形成坚固的涂膜。
粉末涂料的等级标准

粉末涂料是一种应用广泛的涂料,其等级标准主要包括以下几个方面:
1. 固体分:粉末涂料的固体分是指涂料中固体颗粒的含量,一般用百分比表示。
固体分的大小直接影响到粉末涂料的流动性、遮盖力和涂膜的质量等性能。
2. 细度:粉末涂料的细度是指涂料中固体颗粒的平均粒径大小,一般用微米表示。
细度的大小直接影响到涂膜的表面质量和附着力等性能。
3. 耐候性:粉末涂料的耐候性是指其在室外环境下的耐久性能,包括抗紫外线、抗氧化、抗酸碱等性能。
4. 耐腐蚀性:粉末涂料的耐腐蚀性是指其在特定环境下的抗腐蚀性能,例如在潮湿环境下的耐腐蚀性能。
5. 粘附力:粉末涂料的粘附力是指其在涂膜表面与基材之间的附着力,直接影响到涂膜的耐久性和使用寿命。
6. 颜色稳定性:粉末涂料的颜色稳定性是指其在不同环境下颜色的保持稳定程度,例如在阳光、高温等条件下的颜色稳定性。
7. 可焊性:粉末涂料的可焊性是指其在焊接过程中的流动性和涂膜的附着性能,直接影响到涂膜的焊接质量和使用寿命。
以上是粉末涂料的主要等级标准,不同应用场合和要求会有不同的标准和测试方法。
聚酯型粉末涂料产品标准

聚酯型粉末涂料产品标准
聚酯型粉末涂料是一种常见的涂料材料,具有耐候性好、耐化学腐蚀性能优良、颜色丰富、涂层硬度高等优点。
以下是聚酯型粉末涂料的一般产品标准:
1. 外观:涂层应均匀、光滑,无明显的颗粒、起泡、缩孔、剥离等缺陷。
2. 颜色:应符合合同约定的颜色要求,色差不大于标准色板。
3. 膜厚:涂层的膜厚应符合合同约定的要求,常见的膜厚为60-80微米。
4. 附着力:涂层应具有良好的附着力,不得有剥离、脱落现象。
5. 耐候性:涂层应具有优良的耐候性,经过一定时间的暴露在自然环境中,不应有明显的褪色、变色、粉化等现象。
6. 耐化学腐蚀性能:涂层应具有良好的耐化学腐蚀性能,对常见的化学物质不产生明显反应。
7. 硬度:涂层应具有一定的硬度,可通过硬度测试仪进行测试。
8. 耐磨性:涂层应具有一定的耐磨性,经过摩擦、划伤等测试后,不应有明显的损伤。
9. 温度耐受性:涂层应具有一定的温度耐受性,能够在一定温度范围内保持稳定性。
10. 环保性:涂层应符合相关的环保要求,不含有害物质。
以上是一般的聚酯型粉末涂料产品标准,具体标准可以根据不同的行业、产品及应用环境进行调整。
涂料附着力基本原理分析

涂料附着力基本原理分析涂料附着力基本原理分析附着力理论和机理当两物体被放在一起达到紧密的界面分子接触,以至生成新的界面层,就生成了附着力。
附着力是一种复杂的现象,涉及到“界面”的物理效应和化学反应。
因为通常每一可观察到的表面都与好几层物理或化学吸附的分子有关,真实的界面数目并不确切知道,问题是在两表面的何处划界及附着真正发生在哪里。
当涂料施工于底材上,并在干燥和固化的过程中附着力就生成了。
这些力的大小取决于表面和粘结料(树脂、聚合物、基料)的性质。
广义上这些力可分为二类:主价力和次价力(表1)。
化学键即为主价力,具有比次价力高得多的附着力,次价力基于以氢键为代表的弱得多的物理作用力。
这些作用力在具有极性基团(如羧基)的底材上更常见,而在非极性表面如聚乙烯上则较少。
涂料附着的确切机理人们尚未完全了解。
不过,使两个物体连接到一起的力可能由于底材和涂料通过涂料扩散生成机械连接、静电吸引或化学键合。
根据底材表面和所用涂料的物理化学性质的不同,附着可采取上述机理的一种或几种。
一些提出的理论讨论如下。
1.机械连接理论这种涂层作用机制适用于当涂料施工于含有孔、洞、裂隙或空穴的底材上时,涂料能够渗透进去。
在这种情况下,涂料的作用很象木材拼合时的钉子,起机械锚定作用。
当底材有凹槽并填满固化的涂料时,由于机械作用,去掉涂层更加困难,这与把两块榫结的木块拼在一起类似。
对各种表面的仪器分析和绘图(外形图)表明,涂料确实可渗透到复杂“隧道”形状的凹槽或裂纹中,在固化硬化时,可提供机械附着。
各种涂料对老的或已风化的涂层的附着,以及对喷砂底材的附着就属于这种机理。
磷酸锌或铁与涂料具有较大的接触面积,因而能提高附着和耐蚀性。
图2展示了假定的底材表面形状和涂料的渗透。
表面的粗糙程度影响涂料和底材的界面面积。
因为去除涂层所需的力与几何面积有关,而使涂层附着于底材上的力与实际的界面接触面积有关。
随着表面积增大,去除涂层的困难增加,这通常可通过机械打磨方法提供粗糙表面来实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粉末涂料与附着力
1 前言
粉末涂料行业是现代涂料工业中的重要组成部分,从普通的热固性粉末涂料和热塑性粉末涂料,到专用功能型粉末涂料、重防腐粉末涂料、铝型材专用粉末涂料等,与人们的日常生活及高新科学技术息息相关。
附着力是粉末涂料机械性能中的基本性能,但遗憾的是自从引进粉末涂料30 多年来,这一理论还没有得到合理的科学解释。
笔者结合自身的经验,以及在一些实验的基础上,对粉末涂料附着力作了一些尝试性论述,以供商榷。
2 粉末涂料成膜及附着机理
粉末涂料一般在粉末状态下经静电涂装至工件上,经过聚集、流平、固化三个过程后固化成膜。
粉末涂料涂膜的附着机理分为机械附着和化学附着。
机械附着力取决于底材的性质(如粗糙度、多空性)以及所形成的涂膜强度;化学附着力指涂膜和底材之间界面的作用力,包括静电的力、范德华吸引力、氢键及化学结合力,这些决定了涂膜对被涂物体表面的附着性。
3 附着力
附着力涵义
目前,国内外化学家还没有对附着力下一个确切的定义,一般在大多数情况下,认为分开涂膜涂层与底材两个相互粘连的界面所需要做的功,暂且称为涂层的附着力。
涂层与底材之间的界面,理想状态下,底材光滑平整,那么将底材和涂层联系在一起的作用力是单位几何面积上的界面吸力,实际底材都是具有微小尺寸的粗糙表面。
所以涂层与底材表面之间的实际接触面积远远大于其几何面积,由于表面粗糙度存在于微观甚至亚微观尺度,此种情形类似于液体渗入毛细管,故可以引入如下的方程式:
式中:L ——渗透值,cm;
r ——进入毛细管的半径,cm;
t ——时间,s ;
γ——表面张力,mNm - 1 ;
η——粘度,Pa · s ;
θ——接触角。
需要说明的是涂层的表面张力高,渗透速率Lt -1 就较大,毛细管的半径是底材的变量,非涂层的变量。
特别关注的一个变量是粘度,从微观和亚微观尺度,裂纹和小空,涂膜涂层中的一部分颜填料与聚合物颗粒都至少比一些表面不规则尺寸要大,因此临界粘度是涂层连续(外)相的粘度,而不是涂料的总体粘度。
外相的粘度越低,渗透得越快,粉末涂料成膜过程是一个粘度从高到低再到高的过程,如图 1 所示。
把粉末涂料涂覆到被涂物上面,经过加热烘烤,粉末开始熔融,并将粉末粒子之间的空气排出,熔融的粉末涂料逐渐流平,逐步失去流动性固化成膜。
当反面开始熔融时粘度很大,随着烘烤时间的延长,粘度下降得很快,这个区域叫做熔融区域;然后熔融的粉末涂料的粘度开始缓慢地增加,当涂膜的表面基本上看不到流动时,这个区域叫流动流平区域,这时的涂膜用钢针拉丝时还可以拉成细丝;接着涂膜失去流动性,开始明显胶化,完全失去流动性,此时涂料被固化,这一区域叫做交联固化区域。
假设引起粉末涂料流动的主要力是表面张力,当涂膜厚度比通常的厚度(25 ~75 )m m 大时,重力成为重要的因素。
在烘烤时涂料的熔融粘度起着阻碍流动的作用,如果表面张力引起的熔融涂层的流动,那么粉末粒子的曲率半径将起着决定的作用。
因为引起两个球型粒子间的压力与被粒子半径隔开的涂料表面张力成比例关系,其流动时间t 可以用下面的公式表示:
t=f (η R c / σ)(2 )
式中:η——涂料的粘度;
R c ——粉末粒子的平均曲率半径;
σ——涂料的表面张力。
所以,保持足够长时间的低粘度对彻底渗透来说是很重要的。
影响附着力的几个因素
粘度
一般树脂熔融粘度随分子量的增大而增大,其他条件相同的情况下,期望采用较低分子量的树脂来赋予涂层交联后优异的附着力,事实证明确实如此。
低分子量树脂的另一个可能优点是他们的分子能比高分子量树脂分子渗入更小的缝隙。
润湿效应及表面张力
涂膜的附着力,产生于涂料与被涂金属表面极性基的相互吸引力,而这种极性基的相互力取决于涂料对被涂金属表面的润湿能力,这又取决于涂膜的表面张力。
如果液体的表面张力低于固体的表面自由能,那么液体在底材上能自发地展布,如果液体的表面张力太高,一滴液体将在固体表面保持滴状, 接触角为180 °,如果液体具有足够低的表面张力,它可以在底材上自发地展布,接触角是0 。
对于一般情况,中等表面张力,有中等的接触角。
图 2 为接触角的示意图。
cos θ = (γ sv - γ sl )/ γ lv (3 )
( 3 )式表明的是个平面上接触角为θ的底材表面自由能γ sv 、液体表面张力γlv 、液体与固体之间的界面张力γsl 之间的相互关系。
因此,降低表面张力,才能提高润湿效率,增加涂膜对金属表面的附着力。
底材表面
一般,要求符合粉末涂料施工的底材表面的表面张力比任何潜在涂层的表面张力高。
例如:如果金属表面被油腻沾污,其表面张力非常低,此时,具有极性分子的涂料也不会得到附着力好的涂膜。
涂膜与被涂表面的粘附程度将随成膜物质极性增大而增强,因此在成膜物中加入各种极性物质时,将会使附着力增大。
一般,附着力可用下列基团来提高:羧酸基(强氢给予基团)、氨基(强氢接受基团)、羟基、氨酯基、酰氨基、磷酸盐。
另外,涂膜聚合物分子内的极性基自行结合,也会造成极性点的减少,附着力会降低。
例如:环氧树脂对底材的附着力好,主要是由于环氧树脂与金属间形成的氢键连接,-OH 以适当的距离分散着,相互之间吸引困难,极性基没有减少,所以涂层对底材产生良好的附着力。
当然,附着力除了与聚合物的极性有关外,也取决于分子的移动性,对于高分子化合物的大分子,移动困难,当其被涂在底材表面上熔融流动于底材表面时,由于大分子的定向作用较差,极性基就不容易起吸附作用,这就是聚酯粉末涂料附
着力低的主要原因。
相反,在金属表面上涂以较低分子状态的成膜物质,则低分子的极性基就容易吸附在底材表面上,得到较好的附着力,如采用小分子量固化剂固化环氧的纯环氧粉末涂料的附着力就很好。
内应力
同类物质分子间的内聚所引起的力,称之为内应力。
涂层中的内应力能抵消附着力,使得只需较小的外力就能破坏粘合键。
内应力是由于在刚性底材上成膜,涂层无法收缩产生的。
可以降低涂层的厚度,来缩小内应力;另外可以加入适当的颜料,降低内应力,所以一般色漆比清漆附着力要好。
其它
底材的表面处理也很重要,经过打磨过的底材能增加涂膜的附着力,是由于底材表面形成粗糙不平的凹凸面,使有效的附着面积增大。
底材的材质对附着力的影响也很重要。
4 附着力的检测
图 2 接触角示意图
由于附着力现象非常复杂,国内外涂料界还没有给出满意的测试方法,尤其在将测试结果数值化,特别表现在没法提供因组成变化而带来的微小附着力变化的基准。
现在涂膜的测定方法大致分为两种:一种是使涂膜从底材表面上分离时所需之力的直接测定方法;另一种是涂膜在其它性能测定时的间接测定法。
通常,采用划格法的ISO 标准,检验时用30 。
角的单刀,在涂粉末涂料的样板上保持切割工具处在试验表面的平面上,用均匀的压力和每格1mm 的间距及以(20 ~
30)mm/s 的切割速度进行纵横、垂直方向的6 条条痕,应该切穿涂膜的整个深度,然后用软毛刷轻轻沿着格子图形的二对角线前后各轻刷 5 次,然后根据涂膜从板面上脱落的程度来评定优劣。
国内测试一般方法是参照GB/T9286-88 ,采用的是胶带试验法,按划格法划成间隔1mm 的方格后,用胶粘带粘贴在涂膜表面上,再用匀速撕下胶带来评定脱落的程度。
ISO 标准的评定分为 5 级(ISO2409 ):0 级:完整,没有一个方格脱落; 1 级:切割交叉处涂层脱落<5% ; 2 级:5%< 切割交叉处涂层脱落<15% ; 3 级:15%< 切割交叉处涂层脱落<35% ; 4 级:35%< 切割交叉处涂层脱落<65% ; 5 级:65%< 切割交叉处涂层脱落。
当然,可以更直观地对照对应图片,直接判断是几级。
虽然最为广泛的测试方法是划格法,但也存在问题,比如:① 划格的速度,如果划得比较慢,划得比较均匀;但如果划得较快,由于在较高速率的应力作用下,涂层比较脆,有可能裂纹就从切割处向外扩展;② 压敏胶带的选择,以及作用于涂膜上的压力;③ 压敏胶带揭离涂膜表面时的角度与速率;④ 测试涂层的表面,以及表面状态等等。
5 结语
附着力作为考核粉末涂料涂膜性能的重要指标之一,如何认识附着力,并且在此基础上更好地应用意义重大。
只有粉末涂料涂膜具有一定的附着力,才能满足附着在被涂物体上,才会发挥粉末涂料所具有的高装饰性能和保护作用,达到粉末涂料应用目的。