初一数学能力测试题(五)

合集下载

七年级数学奥数题八套(附答案)

七年级数学奥数题八套(附答案)

七年级数学奥数试题(一)一、选择题(每小题7分,共56分.以下每题的4个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内) 1.在-|-3|3,-(-3)3,(-3)3,-33中,最大的是( ). (A)-|-3|3 (B)-(-3)3 (C)(-3)3 (D)-332. “a 的2倍与b 的一半之和的平方,减去a 、b 两数平方和的4倍”用代数式表示应为( )(A)2a+(21b 2)-4(a+b)2 (B)(2a+21b)2-a+4b 2(c)(2a+21b)2-4(a 2+b 2) (D)(2a+21b)2-4(a 2+b 2)23.若a 是负数,则a+|-a|( ),(A)是负数 (B)是正数 (C)是零 (D)可能是正数,也可能是负数 4.如n 是正整数,那么表示“任意负奇数”的代数式是( ). (A)2n+l (B)2n-l (C)-2n+l (D)-2n-l5.已知数轴上的三点A 、B 、C 分别表示有理数a 、1、-l ,那么|a+1|表示( ). (A)A 、B 两点的距离 (B)A 、C 两点的距离 (C)A 、B 两点到原点的距离之和 (D)A 、C 两点到原点的距离之和6.如图所示,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数a 、b 、c 、d ,且d-2a =10,那么数轴的原点应是( ). (A)A 点 (B)B 点 (C)C 点 (D)D 点7.已知a+b =0,a≠b,则化简ab(a+1)+ba (b+1)得( ). (A)2a (B)2b (C)+2 (D)-28.已知m<0,-l<n<0,则m ,mn ,mn 2由小到大排列的顺序是 ( ).(A)m ,mn ,mn 2 (B)mn ,mn 2,m (C)mn 2,mn ,m (D)m ,mn 2,mn 二、填空题(每小题?分,共84分)9.计算:31a -(21a -4b -6c)+3(-2c+2b)= 10.分解因式=ll.某班有男生a(a>20)人,女生20人,a-20表示的实际意义是 12.在数-5,-3,-1,2,4,6中任取三个相乘,所得的积中最大的是 13.下表中每种水果的重量是不变的,表的左边或下面的数是所在行或所在列水果的总重量,则表中问号“?”表示的数是14.某学生将某数乘以-1.25时漏了一个负号,所得结果比正确结果小0.25,则正确结果应是 .15.在数轴上,点A 、B 分别表示-31和51,则线段AB 的中点所表示的数是 .16.已知2a x b n-1与-3a 2b 2m (m 是正整数)是同类项,那么(2m-n)x = 17.王恒同学出生于20世纪,他把他出生的月份乘以2后加上5,把所得的结果乘以50后加上出生年份,再减去250,最后得到2 088,则王恒出生在 年 月.18.银行整存整取一年期的定期存款年利率是2.25%,某人1999年12月3日存入1 000元,2000年12月3日支取时本息和是 元,国家利息税税率是20%,交纳利息税后还有 元.19.有一列数a 1,a 2,a 3,a 4,…,a n ,其中a 1=6×2+l;a 2=6×3+2;a 3=6×4+3;a 4=6×5+4; 则第n 个数a n = ;当a n =2001时,n = .20.已知三角形的三个内角的和是180°,如果一个三角形的三个内角的度数都是小于120的质数,则这个三角形三个内角的度数分别是七年级奥数试题(一)答案 一、1.B 2.C 3.C 4.C 5.B 6.B 7.D 8.D 二、9.一6a+1 06,10.一43.6, 11.男生比女生多的人数,1 2.90, 13.1 6,14.0.1 2 5,15.-151,16.1,17.1988;1. 18.1022.5;101 8,,19.7n+6;2 8 520.2,8 9,8 9或2,7 1,1 07(每填错一组另扣2分).七年级奥数试题(二)一、选择题1.已知x=2是关于x 的方程3x-2m=4的根,则m 的值是( ) (A)5 (B)-5 (C)1 (D)-12.已知a+2=b-2=2c =2001,且a+b+c=2001k ,那么k 的值为( )。

鲁教版(五四制)2019-2020初一数学上册第二章有理数及其运算单元测试题4(含答案)

鲁教版(五四制)2019-2020初一数学上册第二章有理数及其运算单元测试题4(含答案)

鲁教版(五四制)2019-2020初一数学上册第二章有理数及其运算单元测试题4(含答案)1.﹣的相反数是( )A .B .C .﹣3D .32.若x 是2的相反数, 4y =,且0x y +<,则x y -=( )A .6-B .6C .2-D .23.若a 的相反数为1,则a 2019是( )A .2019B .﹣2019C .1D .﹣14.化简|- 2017| 结果正确的是( )A .12017-B .12017C .2017D .– 2017 5.如果|a+2|+(b ﹣1)2=0,那么(a+b )2009 的值是( )A .﹣2009B .2009C .﹣1D .16.下列各数:其中有理数的个数是( )A .3B .4C .5D .67.下列各对数中,数值相等的是( )A .+23与+32B .−32与()32-C .−23与()23-D .3×22与()232⨯ 8.已知,a ,b 两数在数轴上的位置如图,下列各式成立的是( )A .ab >0B .(a+1)(b+1)>0C .a+b >0D .(a ﹣1)(b ﹣1)>09.下列各组数中,相等的是( ).A .–1与(–4)+(–3)B .-3与–(–3)C .234与916D .2-4()与–16 10.-7的相反数是( )A .-7B .17-C .17D .7 11.a ※b 是新规定的这样一种运算法则:a ※b =a (a+b ),则(﹣2)※3=_.12.据媒体公布,我国国防科技大学研制的“天河二号”以每秒3386×1013次的浮点运算速度第五次蝉联冠军,已知3386×1013的结果近似为3430000,用科学记数法把近似数3430000表示成a×10n的形式,则n的值是_____.13.如果出售一个商品,获利记为正,则-20元表示________。

14.计算:(1)=_____;(2)-a+2a______;=_____;(4)(-2)3=_____. 15.-1, 0, 2.5,+34 ,-1.842,-3.14,2036,-127 中,正数有_______,负数有_______. 16.水池中的水位在某天8个不同时间测得记录如下(规定上升为正,单位:厘米):+3,﹣6,﹣1,+5,﹣4,+2,﹣3,﹣2,那么,这天水池中水位最终的变化情况是_____.17.比较大小(用“<”或“>”填空):﹣23_____﹣34;﹣|﹣8|_____﹣(﹣3).18.,用幂的形式表示为________.19.为了节约用水,某市改进居民用水设施,在2017年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为________.20.=________.21.计算:22.(题文)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.23.国际足球比赛对足球的质量有严格的要求,比赛所用足球上标有:430±20(g).请问:(1)比赛所用足球的标准质量是多少?符合比赛所用足球质量的合格范围是多少?(2)组委会随机抽查了8只足球的质量,高于标准质量记为正,低于标准质量记为负,结果分别是:﹣15g,+12g,﹣24g,﹣6g,+13g,﹣5g,+22g,﹣9g,求这8只足球质量的合格率.(足球质量的合格率=)24.已知|a|=2,|b|=4,若|a﹣b|=﹣(a﹣b),求ab的值.25.计算:(1)12﹣(﹣18)+(﹣7)﹣15 (2)4+(﹣2)3×5﹣(﹣0.28)÷426.如图,一辆货车从超市出发,向东走了3 km到达小彬家,继续走了1.5 km到达小颖家,然后向西走了9.5 km到达小明家,最后回到超市.(1)小明家在超市的什么方向,距超市多远?以超市为原点,以向东的方向为正方向.用1个单位长度表示1 km,你能在数轴上表示出小明家、小彬家和小颖家的位置吗?(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?27.一般地,数轴上表示数m和数n的两点之间的距离等于,如:数轴上表示4和1的两点之间的距离是|4﹣1|=3;表示﹣3和2两点之间的距离是|﹣3﹣2|=5.根据以上材料,结合数轴与绝对值的知识回答下列问题:(1)如果表示数和﹣2的两点之间的距离是3,那么=___________;(2)若数轴上表示数的点位于﹣4与2之间,那么的值是_____;当_______时,的值最小,最小值是________.(3)依照上述方法,的最小值是________.28.29.计算题:(1)1+(﹣2)﹣(﹣5); (2)﹣4÷﹣(﹣)×(﹣30);(3)﹣24+3×+; (4)2×(3﹣)﹣5+2.30.(知识重现)我们知道,在a x=N中,已知底数a,指数x,求幂N的运算叫做乘方运算.例如23=8;已知幂N,指数x,求底数a的运算叫做开方运算,例如=2;(学习新知)现定义:如果a x=N(a>0且a≠1),即a的x次方等于N(a>0且a≠1),那么数x叫做以a 为底N的对数(logarithm),记作x=log a N.其中a叫做对数的底数,N叫做真数,x叫做以a为底N的对数.例如log28=3.零没有对数;在实数范围内,负数没有对数.(应用新知)(1)填空:在a x=N,已知幂N,底数a(a>0且a≠1),求指数x的运算叫做_____运算;(2)选择题:在式子log5125中,真数是_____A.3B.5C.10D.125(3)①计算以下各对数的值:log39;log327;log3243.②根据①中计算结果,请你直接写出log a M,log a N,log a(MN)之间的关系.(其中a>0且a≠1,M>0,N>0)参考答案1.B【解析】【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【详解】﹣的相反数是.故选B.【点睛】本题考查了相反数,关键是在一个数的前面加上负号就是这个数的相反数.2.D【解析】试题分析:因为x是2的相反数,所以x=-2,因为|y|=4,所以y=±4,又因为x+y<0,所以x=-2,y=-4,所以x-y=(-2)-(-4)=2.故选D.3.D【解析】【分析】先根据相反数的定义求出a,再代入计算即可求解.【详解】∵a的相反数为1,∴a=−1,∴a2019=(−1)2019=−1.故答案选:D.【点睛】本题考查了相反数的定义,解题的关键是根据相反数的定义求出a的值. 4.C【解析】解:|- 2017 |=2017.故选C.5.C【解析】【分析】根据非负数的性质列出方程求出 a 、b 的值,代入所求代数式计算即可.【详解】 解:∵∴∴故选:C .【点睛】本题考查了非负数的性质:几个非负数的和为 0 时,这几个非负数都为0.6.C【解析】【分析】有理数是整数和分数的集合,整数也可看做是分母为一的分数,有理数的小数部分是有限或为无限循环的数.【详解】是有理数,故答案是5,故选C.【点睛】本题考查的是有理数,熟练掌握有理数的概念是解题的关键.7.B【解析】A 选项中,∵233928+=+=,,∴A 中的两个数不相等; B 选项中,∵()332828-=--=-,,∴B 中的两个数相等;C 选项中,∵()223939-=--=,,∴C 中的两个数不相等;D 选项中,∵()2232123236⨯=⨯=,,所以D 中两个数不相等;故选B.8.D【解析】试题解析:∵由图可知,−2<b <−1<0<a <1,∴ab <0,故A 选项错误;a +1>0,b +1<0,(a +1)(b +1)<0,故B 选项错误;a +b <0,故C 选项错误;a −1<0,b −1<0,(a −1)(b −1)>0,故D 选项正确.故选D.点睛:根据各点在数轴上的位置判断出,a b 的取值范围,进而可得出结论.9.B【解析】试题解析:A , ()()–437.+-=- 不相等.故错误.B , ()33 3.-=--=相等.正确.C , 239.44= 不相等.故错误. D , ()241616.-=≠- 不相等.故错误.故选B.10.D【解析】由相反数的定义:“只有符号不同的两个数互为相反数”可知,-7的相反数是7. 故选D.11.-2【解析】【分析】根据题目所规定的运算法则:a ※b=a(a+b)将(﹣2)※3转化为﹣2×(﹣2+3)进行计算即可.【详解】因为:a ※b=a(a+b),所以(﹣2)※3=﹣2×(﹣2+3)=﹣2.【点睛】本题实际上还是考查了有理数的混合运算,属于新定义题型,弄清题中的新定义以及熟练使用有理数的运算法则是解本题的关键.12.6【解析】【分析】直接利用科学记数法的表示方法分析得出n的值.【详解】3430000=3.43×106,则n=6.故答案为:6.【点睛】考查了用科学记数法表示数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.13.亏损20元【解析】【分析】根据题意可以写出题目中的-20表示的意义,本题得以解决.【详解】∵出售一个商品,获利记为正,∴-20元表示亏损20元,故答案为:亏损20元.【点睛】本题考查正数和负数,解答本题的关键是明确正负数在题目中表示的实际意义.14.-9 a -4 -8【解析】【分析】根据有理数的减法法则,除法法则,乘方法则,以及合并同类项即可解出.【详解】解:(1)=-7+(-2)=-9;(2)-a+2a=(-1+2)a=a;(3)=2×(-2)=-4;(4)(-2)3=(-2) × (-2) × (-2)=-8,故答案为:-9,a,-4,-8.【点睛】考查了有理数的运算及合并同类项,掌握计算法则是基础.15. 2.5,+34,2036 ; -1, -1.842,-3.14,-127.【解析】【分析】根据正数与负数的定义,直接作答即可.【详解】解:根据正数与负数的定义,判断可得,正数有2.5,+34,2036,负数有-1, -1.842,-3.14,-127.故答案为:2.5,+34,2036;-1, -1.842,-3.14,-127.【点睛】本题考查正数与负数的定义,要求学生会区分正数与负数.16.下降6厘米【解析】【分析】明确上升为正,为负下降.依题意列式计算.【详解】(+3)+(-6)+(-1)+(+5)+(-4)+(+2)+(-3)+(-2)=-6(厘米).因此,水位最终下降了6厘米.【点睛】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.17.><【解析】(1)∵2283312-==, 3394412-==,且981212>, ∴2334->-; (2)∵88--=-, ()33--=,且83-<, ∴()83--<--.故答案为:(1)>;(2)<.18.(-)10【解析】【分析】根据乘方的相关概念即可解答.【详解】=(-)10【点睛】此题考查乘方的相关概念,所以熟悉乘方的相关概念是解答此类题目的关键.求n 个相同因数a 的积的运算叫做乘方,乘方的结果叫做幂.即a×a×……×a(n 个a),记作a n ,其中a 叫做底数,n 叫做指数.19.53.0510⨯【解析】试题解析:305000用科学记数法表示为: 53.0510.⨯故答案为: 53.0510.⨯20.【解析】==,故答案为. 21.36.【解析】【分析】根据有理数的运算法则计算即可,先算平方,再算乘除,再算加减,如果有括号先算括号里面的.【详解】原式=-1×(-32-9+ )-=32+9- -=41-5,=36.【点睛】本题考查了含乘方的有理数混合运算,解题的关键是熟练掌握有理数的混合运算的顺序和法则.22.(1)是;(2)是完全平方数的所有m值为1188或2673或4752或7425.【解析】【分析】(1)根据“极数”的概念写出即可,设任意一个“极数”为(其中1≤x≤9,0≤y≤9,且x、y为整数),整理可得由=99(10x+y+1),由此即可证明;(2)设m=(其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)=3(10x+y+1),根据1≤x≤9,0≤y≤9,以及D(m)为完全平方数且为3的倍数,可确定出D(m)可取36、81、144、225,然后逐一进行讨论求解即可得. 【详解】(1)如:1188,2475,9900(答案不唯一,符合题意即可);猜想任意一个“极数”是99的倍数,理由如下:设任意一个“极数”为(其中1≤x≤9,0≤y≤9,且x、y为整数),=1000x+100y+10(9-x)+(9-y)=1000x+100y+90-10x+9-y=990x+99y+99=99(10x+y+1),∵x、y为整数,则10x+y+1为整数,∴任意一个“极数”是99点倍数;(2)设m=(其中1≤x≤9,0≤y≤9,且x、y为整数),由题意则有D(m)==3(10x+y+1),∵1≤x≤9,0≤y≤9,∴33≤3(10x+y+1)≤300,又∵D(m)为完全平方数且为3的倍数,∴D(m)可取36、81、144、225,①D(m)=36时,3(10x+y+1)=36,10x+y+1=12,∴x=1,y=1,m=1188;②D(m)=81时,3(10x+y+1)=81,10x+y+1=27,∴x=2,y=6,m=2673;③D(m)=144时,3(10x+y+1)=144,10x+y+1=48,∴x=4,y=7,m=4752;④D(m)=225时,3(10x+y+1)=225,10x+y+1=75,∴x=7,y=4,m=7425;综上所述,满足D(m)为完全平方数的m的值为1188,2673,4752,7425.【点睛】本题考查数值问题,包括:题目翻译,数位设法,数位整除,完全平方数特征,分类讨论等,易错点是容易忽略数值上取值范围及所得关系式自身特征. 23.(1) 410g~450g (2) 75%【解析】【分析】(1)由题意易知,足球上标有:430±20(g),说明足球的标准质量为430g,最多不超过质量的20g,最少不足20g,即可求解;(2)根据标准质量和抽查结果,可准确求出每个足球的质量,在质量的合格范围内的个数容易求出,进一步可求解.【详解】(1)由题意可知:比赛所用足球的标准质量是430g,符合比赛所用足球质量的合格范围是410g~450g(2)这8只足球的质量分别为415g,442g,406g,424g,443g,425g,452g,421g,有6只足球的质量是合格的,即合格率为:×100%=75%.【点睛】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,要活学活用.24.8或﹣8.【解析】【分析】根据绝对值的性质,可知a-b<0,可得a=2,b=4或a=-2,b=4,由此即可解决问题.【详解】解:∵|a﹣b|=﹣(a﹣b),∴a﹣b<0,∵|a|=2,|b|=4,∴a=2,b=4或a=﹣2,b=4,∴ab的值8或﹣8.【点睛】考查有理数的乘法,绝对值,有理数的减法,熟练掌握绝对值的意义是解题的关键. 25.(1)8;(2)﹣35.3.【解析】【分析】(1)减法转化为加法,再计算可得;(2)将除法变换为乘法,再依据有理数的乘法法则计算可得.【详解】(1)原式=12+18﹣7﹣15=30﹣22=8;(2)原式=4﹣8×5+0.7=4﹣40+0.7=﹣35.3.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.26.(1)图详见解析,小明家在超市西边,距超市5km;(2)8km;(3)19km.【解析】【分析】(1)根据题意画出数轴,根据数轴信息即可知小明家在超市的方向;(2)根据题意列出算式,计算即可得到结果;(3)将行驶的路程相加即可得到结果.【详解】(1)如图,小明家在超市西边,距超市5km;(2)小明家距小李家3-(-5)=8(千米).答:小明家距小李家有8千米.(3)3+1.5+9.5+5=19(千米).答:货车一共行驶了19千米.【点睛】此题考查了有理数加减混合运算的应用,弄清题意是解本题的关键.27.(1)-5或1;(2)6,1,9;(3)16.【解析】【分析】(1)根据数轴上与一点距离相等的点有两个,分别位于该点左右,可得a有两个值;(2)根据-4<a<2,可得|a+4|=a+4,|a-2|=2-a;根据线段上的点与两端点的距离和最小,且让|a-1|=0,可得a的值;(3)根据线段上的点与两端点的距离和最小,-4≤a≤2时,可得原式的最小值.【详解】解:(1)∵=3,∴a+2=3,或a+2=-3,∴a=-5或a=1,故答案为:-5或1;(2)①∵-4<a<2,∴|a+4|+|a-2|=a+4+2-a=6,②∵|a+5|+|a-1|+|a-4|的值最小,∴-5<a<4,|a-1|=0,∴a=1,|a+5|+|a-1|+|a-4|的最小值等于9,故答案为:6,1,9;(3)∵|a+6|+|a-2|+|a-4|+|a+4|的最小值,∴-4≤a≤2,∵|a+6|+|a-2|+|a-4|+|a+4|的最小值=16,故答案为:16.【点睛】本题考查了数轴上点的距离,注意与一点距离相等的点有两个,线段上与两端点的距离和最小的点在线段上.28.5【解析】【分析】先计算乘方,再计算乘法,最后计算加减法即可.【详解】=,=,=2+3,=5.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.29.(1)4;(2)﹣26;(3)﹣9;(4)1.【解析】【分析】(1)根据有理数的加减运算法则进行计算;(2)根据有理数的四则混合运算法则进行计算;(3)根据实数运算法则进行计算,先算开方,再算乘法,最后算加减;(4)先去括号,再算加减.【详解】解:(1)1+(﹣2)﹣(﹣5)=1﹣2+5=4;(2)原式=﹣4×﹣×30=﹣6﹣20=﹣26;(3)原式=﹣24+3×6+(﹣3)=﹣24+18﹣3=﹣9;(4)原式=6﹣2﹣5+2=6﹣5=1.【点睛】本题考核知识点:有理数和实数的运算. 解题关键点:掌握实数的运算法则.30.(1)对数运算(2)D(3)①2,3,5, ②.【解析】【分析】根据定义即可得出答案为对数运算根据定义即可得出真数为125【详解】(1)填空:在a x=N,已知幂N,底数a(a>0且a≠1),求指数x的运算叫做对数运算;(2)选择题:在式子log5125中,真数是D,A.3B.5C.10D.125;故答案为:(1)对数;(2)D(3)①计算以下各对数的值:log39=log332=2;log327=log333=3;log3243=log335=5;②根据①中计算结果,请你直接写出log a M,log a N,log a(MN)之间的关系.(其中a>0且a≠1,M>0,N>0),关系式为:log a M+log a N=log a(MN).。

人教版七年级数学下册第五章测试题(含答案)

人教版七年级数学下册第五章测试题(含答案)

农村管理创新探讨随着城市化的推进和农村经济的快速发展,农村管理面临着新的挑战和需求。

如何利用现代科技和管理理念,提升农村管理水平,助力农村发展,成为亟待解决的问题。

本文将从不同角度出发,探讨农村管理的创新。

一、数字农村建设随着信息技术的迅猛发展,数字化已经成为农村管理的关键词之一。

数字农村建设将现代化技术引入到农村,实现农村基础设施的信息化和智能化。

通过建设农村信息化平台,实现数据的互通共享,可以提高资源的配置效率,并为农村发展提供积极支持。

二、贫困农村的创新案例在农村管理创新的过程中,贫困地区的农村发展是重点和难点。

为了解决贫困问题,一些地方政府和社会组织提出了一些创新案例。

例如,通过发展特色农业和乡村旅游,传统贫困地区的农民可以增加收入。

此外,推动农民参与农产品加工和电商平台的建设,也为贫困地区农民创造了更多就业机会。

三、农村土地管理农村土地管理一直是一个复杂而重要的问题。

传统的土地占有权和承包权制度已经无法满足现代农村管理的需求。

一些地方已经开始尝试土地流转和农地集体经营的改革,以适应现代产业发展的需求。

改革可以通过确保农民权益和保护农村环境等方面,推动农村土地资源的更加合理利用。

四、农村金融服务创新传统金融服务往往难以满足农村的需求,例如小额贷款和农民保险等。

现代金融服务的创新可以提供更多种类的金融产品和服务,满足农村发展的多样化需求。

例如,一些地方政府和金融机构合作,成立农村金融合作社,为农民提供方便快捷的金融服务。

五、农村社会组织建设农村社会组织是促进农村管理创新的重要力量。

传统的村民自治组织在一些地方存在效率低下和权力滥用等问题。

为了解决这些问题,一些地方政府开始鼓励和支持农村社会组织的建设。

通过培育和引导有效的农村社会组织,可以提高村民的自治能力,推动农村管理的创新。

六、农村教育创新农村教育是农村人才培养和农村社会发展的重要基础。

农村教育普及和教师素质提升一直是农村管理创新的重要方向。

(人教版)初一数学下册期末测试题及答案

(人教版)初一数学下册期末测试题及答案

(人教版)初一数学下册期末测试题及答案姓名:__________ 班级:__________考号:__________一、选择题(共10题)1、一件衣服标价132元,若以9折降价出售,仍可获利10%,则这件衣服的进价是( ).A.106元B.105元C.118元D.108元2、某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告.15秒的广告每播一次收费0.6万元,30秒的广告每播一次收费1万元.若要求每种广告播放不少于2次,则电视台在播放时收益最大的播放方式是()A. 15秒的广告播放4次,30秒的广告播放2次B. 15秒的广告播放2次,30秒的广告播放4次C. 15秒的广告播放2次,30秒的广告播放3次D.15秒的广告播放3次,30秒的广告播放2次3、张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示:欲购买的商品原价(元)优惠方式一件衣服420 每付现金200元,返购物券200元,且付款时可以使用购物券一双鞋280 每付现金200元,返购物券200元,但付款时不可以使用购物券一套化妆品300 付款时可以使用购物券,但不返购物券请帮张阿姨分析一下,选择一个最省钱的购买方案. 此时,张阿姨购买这三件物品实际所付出的钱的总数为()A. 500元 B. 600元C. 700元 D. 800元4、式子6+与+1的和是31,则的值是( )A.―12 B.12 C.13D.―195、如图所示,两人沿着边长为90m的正方形,按A→B→C→D→A……的方向行走.甲从A 点以65m/min的速度、乙从B点以72m/min的涑度行走.当乙第一次追上甲时。

将在正方形( )A.AB边上 B.DA边上 C.BC边上 D.CD边上6、中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息税).设到期后银行应向储户支付现金元,则所列方程正确的是( )A.B.C.D.7、李阿姨存入银行2000元,定期一年,到期后扣除20%的利息税后得到本息和为2120元,若该种储蓄的年利率为,那么可得方程( )A. B.C. D.8、下列两个方程的解相同的是()A.方程与方程B.方程与方程C.方程与方程D.方程与9、如果33、27和21分别除以同一个数,余数都是3,那么这个除数最大是()A.4 B.6 C.18 D.3010、今年爸爸比我大30岁,3年前爸爸的年龄是我的4倍,则今年我和爸爸的年龄分别是()A.13,43 B.9,39 C.10,40 D.14,44二、填空题(共10题)1、某商店购进一批商品,每件商品进价为a元,若要获利20%,则每件商品的零售价应定为________元。

初一数学能力培养与测试答案

初一数学能力培养与测试答案

初一数学能力培养与测试答案
一、能力培养
1. 帮助学生建立正确的数学思维方式,引导学生以解决问题的态度去学习数
学知识,培养学生的数学素养。

2. 注重数学基础知识的记忆,在此基础之上继续引导学生进行归纳、概括和
总结,也就是把基确的知识用来解决新问题。

3. 注重数学基础训练,包括掌握常用公式,使学生能根据一定的原理、思想
解决新问题。

4. 养成独立完成题目的习惯,学会深入分析研究,用适当的思维方法解决以
往类似的题目。

二、测试题目:
1. 下列四个数中,最大的数是()
A. -28
B. 28
C. 0
D. 8
2. 将四个数8,11,15,-4按升序排列,则正确排列结果为()
A. 11,8,15,-4
B. 8,11,-4,15
C. -4,8,11,15
D. 11,-4,8,
15
3. 下列根据说法正确的应是()
A. 两个数相加等于零,则这两个数相等
B. 两个数相等,则这两个数相加一定等于零
C. 三个数满足,则这三个数的最小值等于它们的和
D. 三个数之和等于零,则其中一个数等于零
答案:1. B 2. C 3. A。

初一数学前两章测试题

初一数学前两章测试题

初一数学前两章测试题# 初一数学前两章测试题第一部分:选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. -1C. 1D. 22. 如果一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是3. 两个互为相反数的数相加的结果是:A. 0B. 1C. 2D. 不确定4. 绝对值不大于5的所有整数的和是:A. 0B. 5C. 10D. 155. 以下哪个选项是奇数?A. 2B. 4C. 6D. 8第二部分:填空题(每题2分,共10分)6. 一个数的相反数是-3,那么这个数是______。

7. 如果|a|=4,那么a可以是______。

8. 一个数的绝对值是它本身,这个数是______。

9. 两个数的和是12,其中一个数是6,另一个数是______。

10. 一个数的平方是9,这个数可以是______。

第三部分:计算题(每题5分,共15分)11. 计算下列各数的绝对值:- 3.5- -4.2- 012. 计算下列数的和:- 7 + (-5)- 0 + 9- -3 + 313. 计算下列数的乘积:- 3 × (-2)- (-1) × 8第四部分:解答题(每题5分,共15分)14. 一个数的相反数是-8,求这个数。

15. 一个数的绝对值是7,求这个数。

16. 如果a=-2,计算|a|。

第五部分:应用题(每题10分,共20分)17. 某商店在一天内卖出了5件商品,每件商品的售价为x元,如果商店的总利润是100元,求每件商品的售价。

18. 某工厂生产了一种产品,每生产一件产品的成本是c元,如果工厂希望每件产品的利润是10元,求工厂应该将每件产品的售价定为多少。

第六部分:综合题(每题10分,共10分)19. 某班级有40名学生,其中一半是男生,另一半是女生。

如果班级的平均成绩是80分,那么男生和女生的平均成绩分别是多少?(假设男生和女生的平均成绩相同)注意:请考生仔细审题,认真作答,确保答案准确无误。

完整版)初一数学能力测试题

完整版)初一数学能力测试题

完整版)初一数学能力测试题初一数学能力测试题(1)班级:______ 姓名:______一、填空题1.121、1.5、-2、+100、235整数集合{…} 非负数集合{…}2.半夜的气温是-4℃3.-5,24.最小的正整数是1,绝对值最小的数是05.-1,3,-36.-1或17.a = 3,a = 18.-2,-49.{-5,-4,-3,-2,2,3,4}10.-3 < -2 < -111.-712.b/a = 3/2二、选择题1.D2.B3.A4.A5.B6.C7.B1、C、互为相反数的两数积是负数。

如果两个数的乘积为负数,则这两个数必须一个是正数,一个是负数。

2、B、如果两个数的绝对值相等,那么这两个数相等。

如果两个数的绝对值相等,则这两个数要么都是正数,要么都是负数。

3、C、相反数等于它的本身的数是零和一切正数。

这个说法不正确,因为相反数不包括零。

4、B、负数。

因为一个数除以它的绝对值的商为-1,说明这个数是负数。

5、A、平方为16的数是4.因为4的平方是16.6、B、32与(-2)3.因为32的相反数是-32,而(-2)3的相反数也是-32.7、计算题略。

8、减数是20-差。

根据已知,被减数是-2,差是22,所以减数是20-22=-2.9、XXX现在有23元钱。

因为XXX原有20元钱,买研究用品花了12元钱,他父亲又给了他15元钱,所以现在他有20+15-12=23元钱。

10、这10箱苹果的总重量是4千克。

因为+1、+1、+2、+2共增加了6箱,-2、-1、-1、-2共减少了6箱,所以总重量增加了6箱*24千克/箱-6箱*24千克/箱=0千克。

11、山顶的气温是16℃。

因为高度增加了2000米,气温下降了2000米*0.2℃/100米=4℃,所以山顶的气温是20℃-4℃=16℃。

12、∣AB∣=3.因为∣AB∣=∣a-b∣=∣(-2)-1∣=3.数轴上表示2和5的两点之间的距离是3,数轴上表示-2与3之间的距离是5.2) 拥有良好的健康惯是保持健康的关键。

人教版数学七年级上册期末提高专练:数轴类应用题综合(五)

人教版数学七年级上册期末提高专练:数轴类应用题综合(五)

2020年秋人教版数学七年级上册期末提高专练:数轴类应用题综合(五)1.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:若数轴上数﹣3表示的点与数1表示的点重合.(根据此情境解决下列问题)(1)则数轴上数3表示的点与数表示的点重合.(2)若点A到原点的距离是5个单位长度,并且A、B两点经折叠后重合,则B点表示的数是.(3)若数轴上M,N两点之间的距离为2018,并且M,N两点经折叠后重合,如果M点表示的数比N点表示的数大,则M点表示的数是;则N点表示的数是.2.阅读材料:如图①,若点B把线段AC分成两条长度相等的线段AB和BC,则点B叫做线段AC的中点.回答问题:(1)如图②,在数轴上,点A所表示的数是﹣2,点B所表示的数是0,点C所表示的数是3.①若A是线段DB的中点,则点D表示的数是;②若E是线段AC的中点,求点E表示的数.(2)在数轴上,若点M表示的数是m,点N表示的数是n,点P是线段MN的中点.①若点P表示的数是1,则m、n可能的值是(填写符合要求的序号);i)m=0,n=2;ii)m=﹣5,n=7;iii)m=0.5,n=1.5;iv)m=﹣1,n=2.②若点P表示的数是1,m、n之间满足的数量关系是.3.同学们知道,|8﹣3|表示8与3的差的绝对值,也可理解为数轴上表示数8与3两点间的距离.试探索:(1)填空:|8+3|表示数轴上数8与数两点间的距离;(2)|x+5|+|x﹣2|表示数轴上数x与数的距离和数x与数的距离的和.(3)满足|x+5|+|x﹣2|=7的所有整数x的值是.(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有写出最小值;如果没有,说明理由.4.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数﹣2表示的点重合,则数轴上数﹣4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题若数轴上数﹣7表示的点与数1表示的点重合.(根据此情境解决下列问题)①则数轴上数3表示的点与数表示的点重合;②若点A到原点的距离是5个单位长度,并且A、B两点经折叠后重合,则B点表示的数是;③若数轴上M、N两点之间的距离为2020,并且M、N两点经折叠后重合,如果M点表示的数比N点表示的数大,则M点表示的数是,则N点表示的数是;5.根据给出的数轴及已知条件,解答下面的问题:(1)已知点A,B,C表示的数分别为1,﹣2.5,﹣3观察数轴,B,C两点之间的距离为;与点A的距离为3的点表示的数是;(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是;若此数轴上M,N两点之间的距离为2020(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M、N两点表示的数分别是:M:,N:.(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P,Q.(用含m,n的式子表示这两个数)6.阅读下面材料:点A,B在数轴上分别表示有理数a、b,|AB|表示A,B两点之间的距离.当A、B两点中有一点在原点时(假设A在原点),如图①,|AB|=|OB|=|b|=b=|a﹣b|;当A、B两点都在原点右侧时,如图②,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;当A、B两点都在原点左侧时,如图③,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;当AB两点在原点两侧时,如图④,|AB|=|OA|+|OB|=|a|+|b|=﹣a+(﹣b)=|a﹣b|;请根据上述结论,回答下列问题:(1)数轴上表示2和5的两点间距离是,数轴上表示﹣2和﹣5的两点间距离是,数轴上表示﹣1和3的两点间距离.(2)数轴上表示x和﹣1的两点A和B之间的距离可表示为,若|AB|=2,则x 的值为.(3)当|x+2|+|x﹣1|取最小值时,请写出所有符合条件的x的整数值.7.在一条不完整的数轴上从左到右有点A,B,D,C,其中AB=2,BD=3,DC=1,如图所示,设点A,B,D,C所对应数的和是p.(1)①若以B为原点.写出点A,D,C所对应的数,并计算p的值;②若以D为原点,p的值是若以C为原点,p的值是.(2)若原点O在图中数轴上点C的右边,且CO=15,p的值是.8.已知数轴上A,B,C三点对应的数分别为﹣1、3、5,点P为数轴上任意一点,其对应的数为x.点A与点P之间的距离表示为AP,点B与点P之间的距离表示为BP.(1)若AP=BP,则x=;(2)若AP+BP=8,求x的值;(3)若点P从点C出发,以每秒3个单位的速度向右运动,点A以每秒1个单位的速度向左运动,点B以每秒2个单位的速度向右运动,三点同时出发.设运动时间为t秒,试判断:4BP﹣AP的值是否会随着t的变化而变化?请说明理由.9.操作探究:已知在纸面上有一数轴(如图3所示),操作一:(1)折叠纸面,使表示的点1与﹣1表示的点重合,则﹣2表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,那么5表示的点与表示的点重合,此时若数轴上A、B两点之间距离为9,(A在B的左侧),且A、B两点经折叠后重合,那么A、B两点表示的数分别是、.操作三:(3)已知在数轴上点A表示的数是a,点A移动4个单位,此时点A表示的数和a是互为相反数,那么a的值是.10.已知a>b,a与b两个数在数轴上对应的点分别为点A、点B,求A、B两点之间的距离.【探索】小明利用绝对值的概念,结合数轴,进行探索:因为a>b,则有以下情况:情况一、若a>0,b≥0,如图,A、B两点之间的距离:AB=|a|﹣|b|=a﹣b;……(1)补全小明的探索【应用】(2)若点C对应的数c,数轴上点C到A、B两点的距离相等,求c.(用含a、b的代数式表示)(3)若点D对应的数d,数轴上点D到A的距离是点D到B的距离的n(n>0)倍,请探索n的取值范围与点D个数的关系,并直接写出a、b、d、n的关系.参考答案1.解:(1)∵数轴上数﹣3表示的点与数1表示的点关于点﹣1对称,1﹣(﹣3)=4,而﹣1﹣4=﹣5,所以数轴上数3表示的点与数﹣5表示的点重合;故答案为:﹣5;(2)点A到原点的距离是5个单位长度,则点A表示的数为5或﹣5,∵A、B两点经折叠后重合,∴当点A表示﹣5时,﹣1﹣(﹣5)=4,﹣1+4=3,当点A表示5时,5﹣(﹣1)=6,﹣1﹣6=﹣7,∴B点表示的数是﹣7或3;故答案为:﹣7或3;(3)M、N两点之间的距离为2018,并且M、N两点经折叠后重合,∴﹣1+×2018=1008,﹣1﹣×2018=﹣1010,又∵M点表示的数比N点表示的数大,∴M点表示的数是1008,N点表示的数是﹣1010.故答案为:1008,﹣1010.2.解:(1)①点A所表示的数是﹣2,点B所表示的数是0,A是线段DB的中点,∴点D表示的数是﹣4,故答案为:﹣4;②点A所表示的数是﹣2,点C所表示的数是3,E是线段AC的中点,∴点E表示的数为=.(2)①点M表示的数是m,点N所表示的数是n,点P是线段MN的中点,点P表示的数是1,∴1=,即m+n=2,∴m、n可能的值是:(i)m=0,n=2;(ii)m=﹣5,n=7;(iii)m=0.5,n=1.5.故答案为:(i)(ii)(iii);②若点P表示的数是1,m、n之间满足的数量关系是1=,即m+n=2.故答案为:m+n=2.3.解:(1)∵|8﹣3|表示数8与3两点间的距离,∴|8+3|表示数轴上数8与数﹣3两点间的距离,故答案为﹣3;(2)同理可得:|x+5|+|x﹣2|表示数轴上数x与数﹣5的距离和数x与数2的距离的和,故答案为﹣5,2;(3)点P对应的数为x,如图1所示:∴线段AB上所有整数点对应x的取值﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2是都满足AP+BP=7,故答案为﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2;(4)有最小值,最小值为3.其理由如下:①若点P在线段AB上时,∴|x﹣3|+|x﹣6|=AP+BP=3,②若点P在线段AB的延长线上时,∴|x﹣3|+|x﹣6|=AP+BP>3,③若点P在线段AB的反向延长线上时,∴|x﹣3|+|x﹣6|=AP+BP>3,综合所述:|x﹣3|+|x﹣6|≥3.4.解:①∵数轴上数﹣7表示的点与数1表示的点关于点﹣3对称,﹣3﹣3=﹣6,而﹣3﹣6=﹣9,∴数轴上数3表示的点与数﹣9表示的点重合;故答案为:﹣9;②点A到原点的距离是5个单位长度,则点A表示的数为5或﹣5,∵A、B两点经折叠后重合,∴当点A表示﹣5时,﹣3﹣(﹣5)=2,﹣3+2=﹣1,当点A表示5时,5﹣(﹣3)=8,﹣3﹣8=﹣11,∴B点表示的数是﹣11或﹣1;故答案为:﹣11或﹣1;③M、N两点之间的距离为2020,并且M、N两点经折叠后重合,∴﹣3+×2020=1007,﹣3﹣×2020=﹣1013,又∵M点表示的数比N点表示的数大,∴M点表示的数是1007,N点表示的数是﹣1013,故答案为:1007,﹣1013.5.解:(1)观察数轴可知:B、C两点之间的距离为﹣2.5﹣(﹣3)=0.5,与点A的距离为3的点表示的数是1+3=4或1﹣3=﹣2.故答案为0.5,4或﹣2.(2)与点B重合的点表示的数是:﹣1+[﹣1﹣(﹣2.5)]=0.5;M=﹣1﹣=﹣1011,N=﹣1+=1009;故答案为﹣1011,1009.(3)根据题意,得P=n﹣,Q=n+.故答案为n﹣,n+.6.解:(1)数轴上表示2和5的两点间距离是3,数轴上表示﹣2和﹣5的两点间距离是3,数轴上表示﹣1和3的两点间距离4.故答案为:3;3;4;(2)数轴上表示x和﹣1的两点之间的距离是|x+1|,|AB|=2,则|x+1|=2,故x=1或﹣3;故答案为:|x+1|,1或﹣3;(3)若|x+2|+|x﹣1||取最小值,那么表示x的点在﹣2和1之间的线段上,所以﹣2≤x≤1;所以所有符合条件的x的整数值﹣2,﹣1,0,1.故答案为:﹣2,﹣1,0,17.解:(1)①若以B为原点,∵AB=2,BD=3,DC=1∴点A,D,C所对应的数分别为:﹣2,3,4;p=﹣2+3+4=5;②若以D为原点,p=﹣3﹣5+1=﹣7;若以C为原点,p=﹣6﹣4﹣1=﹣11;故答案为:﹣7;﹣11;(2)若原点O在图中数轴上点C的右边,且CO=15则p=﹣21﹣19﹣16﹣15=﹣71.故答案为:﹣71.8.解:(1)由数轴可得:若AP=BP,则x=1;故答案为:1;(2)∵AP+BP=8∴若点P在点A左侧,则﹣1﹣x+3﹣x=8∴x=﹣3若点P在点A右侧,则x+1+x﹣3=8∴x=5∴x的值为﹣3或5.(3)BP=5+3t﹣(3+2t)=t+2AP=t+6+3t=4t+6∴4BP﹣AP=4(t+2)﹣(4t+6)=2∴4BP﹣AP的值不会随着t的变化而变化.9.解:(1)折叠纸面,使表示的点1与﹣1表示的点重合,则﹣2表示的点与 2表示的点重合;故答案为:2(2)由表示﹣1的点与表示3的点重合,可确定对称点是表示1的点,则表示5的点与对称点距离为4,则重合点应该是左侧与对称点距离为4的点,即﹣3;由题意可得,A、B两点距离对称点的距离为9÷2=4.5,∵对称点是表示1的点,∴A、B两点表示的数分别是﹣3.5,5.5.故答案为:﹣3;﹣3.5,5.5(3)当A向左移动时,有a﹣4=﹣a,a=2当A向右移动时,有a+4=﹣a,a=﹣2综上所诉,a=2或﹣2.故答案为:2或﹣2.10.解:(1)情况二:若a≥0,b<0 时,A、B两点之间的距离:AB=a+|b|=a﹣b;情况三:若a<0,b<0 时,A、B两点之间的距离:AB=|b|﹣|a|=a﹣b;(2)∵点C对应的数c,点C到A、B两点的距离相等,∴a﹣c=c﹣b,∴2c=a+b,即c=(a+b);(3)①当0<n<1时,点D的个数为2,此时a﹣d=n(d﹣b),d﹣a+n(d﹣b).②当n=1时,点D的个数为1,此时点D到A,B两点距离相等,d=.③当n>1时,点D的个数为2,此时a﹣d=n(d﹣b),a﹣d=n(b﹣d).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学能力测试题(五)
初一数学能力测试题(五)
班级_______姓名_______
一.填空题
1.-64的绝对值的相反数与-2的平方的差是___________
2.的平方的倒数与0.5倒数的平方的和的相反数是_________
3.计算的结果等于________
4.若,则=_________
5.一个自然数与3的和是5的倍数,与3的差是6的倍数,这样的自然数中最小的是______
6.109除以一个两位数的余数是4,则适合上述条件的两位数有__________个,两位数是_____________________
7.已知a_lt;0,-1_lt;b_lt;0,则a,ab,ab2从小到大排列的顺序是
_______________
8.在四个互不相等的正数a.b.c.d中,a最大,d最小,且,则a+d与b+c的大小关系是____________
9.7100-1的末位数字是________
10.将0,1,2,3,4,5,6分别填入圆圏和方格内,每个数字只出现一次,组成只有一位数和两位数的整数算式
11.甲.乙两个长方形,它们的周长相等,但甲的长:宽=3:2;乙的长:宽=7:5,则甲面积:乙面积=___________
12.小明训练1000米长跑,如果速度提高5%,那么时间比原来的要缩短
_________%(保留一位小数)
13.按一定规律排列的一串数:
中,第98个数是_____________
14.下面的算式里,符号□.○.和△分别代表三个不同的自然数,这三个数的和是________
15.已知代数式m2+m-1=0,那么代数式m3+2m2+_=___________
16.一群整数朋友按照一定的规律排成一排,可排在□位置的数跑掉了,请帮它们把跑掉的朋友找回来.
(1)5,8,11,14,□,20;
(2)1,3,7,15,31,63,□;
(3)1,1,2,3,5,8,□,21
二.选择题
1.下列两列数:
2,4,6,8,10,12,……1994;
6,13,20,27,34, (1994)
这两列数中,相同的数的个数是( )
A.142
B.143
C.284
D.285
2.在数轴上表示和两点的中点所表示的数是( )
A. B. C. D.
3.如果a_lt;-2,则等于( )
A.3-a
B.a-3
C.1+a
D.-1-a
4.两个质数的和是49,则这两个质数的倒数和是( )
A. B. C. D.
5.若a_gt;,那么a的取值范围是( )
A.a_gt;0
B.a_lt;0
C.a_gt;1或-1_lt;a_lt;0
D.a_gt;1
6.在自然数中,前50个奇数的和减去前50个偶数的和的差是( )
A.100
B.-100
C.50
D.-50
7.已知a.b.c.d是互不相等的整数,且abcd=9,则a+b+c+d的值等于( ) A.0 B.4 C.8 D.不能求出
8.当0_lt;__lt;1时,_2,_,的大小关系是( )
A._2<_<
B.<_2<_
C._<< _2
D._ <_2<
三.解答题:非负数a.b.c满足a+b-c=2,a-b+2c=1,求s=a+b+c的最大值和最小值。

相关文档
最新文档