高二数学集体备课教案范文
高二数学教案(优秀13篇)

高二数学教案(优秀13篇)数学高二教案篇一一、教学内容分析本小节的重点是数列的概念.在由日常生活中的具体事例引出数列的定义时,要注意抓住关键词“次序”,准确理解其概念,还应让学生了解数列可以看作以正整数集(或它的有限子集)为定义的函数,使学生能在函数的观点下理解数列的概念,这里要特别注意分析数列中项的“序号”与这一项“”的对应关系(函数关系),这对数列的后续学习很重要.本小节的难点是能根据数列的前几项抽象归纳出一些简单数列的通项公式.要循序渐进的引导学生分析归纳“序号”与“”的对应关系,并从中抽象出与其对应的关系式.突破难点的关键是掌握数列的概念及理解数列与函数的关系,需注意的是,与函数的解析式一样,不是所有的数列都有通项公式;给出数列的有限项,其通项公式也并不唯一,如给出数列的前项,若,则都是数列的通项公式,教学上只要求能写出数列的一个通项公式即可.二、教学目标设计理解数列的概念、表示、分类、通项等,了解数列与函数的关系,掌握数列的通项公式,能用通项公式写出数列的任意一项,对于比较简单的数列,会根据其前几项写出它的一个通项公式.发展和培养学生从特殊到一般的归纳能力,提高观察、抽象的能力.三、教学重点及难点理解数列的概念;能根据一些数列的前几项抽象、归纳出数列的通项公式.四、教学流程设计五、教学过程设计一、复习回顾思考并回答问题:函数的定义二、讲授新课1、概念引入请同学们观察下面的例子,看看它们有什么共同特点:(课本p5)食品罐头从上到下排列成七层的罐头数依次为:3,6,9,12,壹五,18,21延龄草、野玫瑰、大波斯菊、金盏花、紫宛花、雏菊花的花瓣数从少到多依次排成一列数:3,5,8,一三,21,34的不足近似值按精确度要求从低到高排成一列数:1,1.7,1.73,1.732,1.7320,1.73205,-2的1次幂,2次幂,3次幂,4次幂依次排成一列数:-2,4,-8,16,无穷多个1排成一列数:1,1,1,1,1,谢尔宾斯基三角形中白色三角形的个数,按面积大小,从大到小依次排列成的一列数:1,3,9,27,81,依次按计算器出现的随机数:0.098,0.264,0.085,0.956由学生回答上面各例子的共同特点:它们均是一列数,它们是有一定次序的,由此引出数列及有关定义:1、定义:按一定次序排列起来的一列数叫做数列.其中,数列中的每一个数叫做这个数列的项,各项依次叫做这个数列的第1项(首项),第2项,第3项,第项,数列的一般形式可以写成:简记作2、函数观点:数列可以看作以正整数集(或它的有限子集)为定义域的函数,当自变量按照从小到大的顺序依次取值时,所对应的一列函数值3、数列的分类:有穷数列:项数有限的数列(如数列①、②、⑦)无穷数列:项数无限的数列(如数列③、④、⑤、⑥)4、数列的通项:如果数列的第项与之间可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.启发学生练习找上面各数列的通项公式:数列①:数列④:数列⑤:(常数数列)数列⑥:指出(由学生思考得到)数列的通项公式不一定都能由观察法写出(如数列②);数列并不都有通项公式(如数列③、⑦);由数列的有限项归纳出的通项公式不一定唯一(如数列①的通项还可以写为:5、数列的图像:请同学练习画出数列①的图像,得出其特点:数列的图像都是一群孤立的点2、例题精析例1:根据下面的通项公式,写出数列的前5项:(课本P6)(1);(2)解:(1)前5项分别为:(2)前5项分别为:[说明]由数列通项公式的定义可知,只要将通项公式中依次取1,2,3,4,5,即可得到数列的前5项。
高二数学备课组老师教学设计3篇 数学课备课教案

高二数学备课组老师教学设计3篇数学课备课教案下面是整理的高二数学备课组老师教学设计3篇数学课备课教案,供大家参阅。
高二数学备课组老师教学设计1[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P2~P5,回答下列问题.(1)对于一般的二元一次方程组a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何写出它的求解步骤?提示:分五步完成:第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③第二步,解③,得x=b2c1-b1c2a1b2-a2b1.第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④第四步,解④,得y=a1c2-a2c1a1b2-a2b1.第五步,得到方程组的解为x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.(2)在数学中算法通常指什么?提示:在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.2.归纳总结,核心必记(1)算法的概念12世纪的算法指的是用阿拉伯数字进行算术运算的过程续表数学中的算法通常是指按照一定规则解决某一类问题的明确和有限的步骤现代算法通常可以编成计算机程序,让计算机执行并解决问题(2)设计算法的目的计算机解决任何问题都要依赖于算法.只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.[问题思考](1)求解某一个问题的算法是否是的?提示:不是.(2)任何问题都可以设计算法解决吗?提示:不一定.高二数学备课组老师教学设计21.预习教材,问题导入根据以下提纲,预习教材P54~P57,回答下列问题.(1)在教材P55的“探究”中,怎样获得样本?提示:将这批小包装饼干放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取.(2)最常用的简单随机抽样方法有哪些?提示:抽签法和随机数法.(3)你认为抽签法有什么优点和缺点?提示:抽签法的优点是简单易行,当总体中个体数不多时较为方便,缺点是当总体中个体数较多时不宜采用.(4)用随机数法读数时可沿哪个方向读取?提示:可以沿向左、向右、向上、向下等方向读数.2.归纳总结,核心必记(1)简单随机抽样:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样方法有两种——抽签法和随机数法.(3)一般地,抽签法就是把总体中的N个个体分段,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.(4)随机数法就是利用随机数表、随机数骰子或计算机产生的随机数进行抽样.(5)简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.[问题思考](1)在简单随机抽样中,某一个个体被抽到的可能性与第几次被抽到有关吗?提示:在简单随机抽样中,总体中的每个个体在每次抽取时被抽到的可能性相同,与第几次被抽到无关.(2)抽签法与随机数法有什么异同点?提示:相同点①都属于简单随机抽样,并且要求被抽取样本的总体的个体数有限;②都是从总体中逐个不放回地进行抽取不同点①抽签法比随机数法操作简单;②随机数法更适用于总体中个体数较多的时候,而抽签法适用于总体中个体数较少的情况,所以当总体中的个体数较多时,应当选用随机数法,可以节约大量的人力和制作号签的成本高二数学备课组老师教学设计3学习目标1.回顾在平面直角坐标系中刻画点的位置的方法.2.能够建立适当的直角坐标系,解决数学问题.学习过程一、学前准备1、通过直角坐标系,平面上的与(),曲线与建立了联系,实现了。
高二数学教案优秀15篇

高二数学教案优秀15篇高二数学教案篇一第一课时一、课题10.1分析计数原理和分步计数原理(1)二、教学目标1、知识传授目标:正确理解和掌握加法原理和乘法原理2、能力培养目标:能准确地应用它们分析和解决一些简单的问题3、思想教育目标:发展学生的思维能力,培养学生分析问题和解决问题的能力三、教学重、难点1.重点:加法原理,乘法原理。
解决方法:利用简单的举例得到一般的结论.2.难点:加法原理,乘法原理的区分。
解决方法:运用对比的方法比较它们的异同.四、教学方法启发式教学法五、教学手段多媒体课件.六、教学过程1.新课导入随着社会发展,先进技术,使得各种问题解决方法多样化,高标准严要求,使得商品生产工序复杂化,解决一件事常常有多种方法完成,或几个过程才能完成。
排列组合这一章都是讨论简单的计数问题,而排列、组合的基础就是基本原理,用好基本原理是排列组合的关键.2.新课我们先看下面两个问题.(l)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4班,汽车有2班,轮船有3班,问一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?板书:图因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每一种走法都可以从甲地到达乙地,因此,一天中乘坐这些交通工具从甲地到乙地共有4十2十3=9种不同的走法.一般地,有如下原理:加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,??,在第n类办法中有mn种不同的方法.那么完成这件事共有N=m1十m2十?十mn种不同的方法.(2) 我们再看下面的问题:由A村去B村的道路有3条,由B村去C村的道路有2条.从A村经B村去C村,共有多少种不同的走法?板书:图这里,从A村到B村有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C村又有2种不同的走法.因此,从A村经B村去C村共有3X2=6种不同的走法.一般地,有如下原理:乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,??,做第n步有mn种不同的方法.那么完成这件事共有N=m1 m2?mn种不同的方法.例1 书架上层放有6本不同的数学书,下层放有5本不同的语文书.1)从中任取一本,有多少种不同的取法?2)从中任取数学书与语文书各一本,有多少的取法?解:(1)从书架上任取一本书,有两类办法:第一类办法是从上层取数学书,可以从6本书中任取一本,有6种方法;第二类办法是从下层取语文书,可以从5本书中任取一本,有5种方法.根据加法原理,得到不同的取法的种数是6十5=11.答:从书架L任取一本书,有11种不同的取法.(2)从书架上任取数学书与语文书各一本,可以分成两个步骤完成:第一步取一本数学书,有6种方法;第二步取一本语文书,有5种方法.根据乘法原理,得到不同的取法的种数是N=6X5=30.答:从书架上取数学书与语文书各一本,有30种不同的方法.练习:一同学有4枚明朝不同古币和6枚清朝不同古币1)从中任取一枚,有多少种不同取法?2)从中任取明清古币各一枚,有多少种不同取法?例2(1)由数字l,2,3,4,5可以组成多少个数字允许重复三位数?(2)由数字l,2,3,4,5可以组成多少个数字不允许重复三位数?(3)由数字0,l,2,3,4,5可以组成多少个数字不允许重复三位数?解:要组成一个三位数可以分成三个步骤完成:第一步确定百位上的数字,从5个数字中任选一个数字,共有5种选法;第二步确定十位上的数字,由于数字允许重复,这仍有5种选法,第三步确定个位上的数字,同理,它也有5种选法.根据乘法原理,得到可以组成的三位数的个数是N=5X5X5=125.答:可以组成125个三位数.练习:1、从甲地到乙地有2条陆路可走,从乙地到丙地有3条陆路可走,又从甲地不经过乙地到丙地有2条水路可走.(1)从甲地经乙地到丙地有多少种不同的走法?(2)从甲地到丙地共有多少种不同的走法?2.一名儿童做加法游戏.在一个红口袋中装着2O张分别标有数1、2、?、19、20的红卡片,从中任抽一张,把上面的数作为被加数;在另一个黄口袋中装着10张分别标有数1、2、?、9、1O的黄卡片,从中任抽一张,把上面的数作为加数.这名儿童一共可以列出多少个加法式子?3.题2的变形4.由0-9这10个数字可以组成多少个没有重复数字的三位数小结:要解决某个此类问题,首先要判断是分类,还是分步?分类时用加法,分步时用乘法其次要注意怎样分类和分步,以后会进一步学习七、练习设计1.(口答)一件工作可以用两种方法完成.有5人会用第一种方法完成,另有4人会用第二种方法完成.选出一个人来完成这件工作,共有多少种选法?2.在读书活动中,一个学生要从2本科技书、2本政治书、3本文艺书里任选一本,共有多少种不同的。
数学高二教案(优秀8篇)

数学高二教案(优秀8篇)数学高二教案篇1评课内容:他在教学本节课时,精心设计游戏,让学生在游戏中感悟数学的魅力,领悟数学的生活化。
创造性地使用教材资源,合理运用教学方法,充分发挥多媒体辅助教学的优势,营造生动活泼的学习氛围,使学生始终充满信心、充满激情地学习数学。
不仅如此,教学中,他还用饱满的热情、生动形象的语言、具体的活动材料、富有趣味化的活动形式,为学生创设了独立思考、自我体验、自我探索、合作交流的学习情境,使得教学过程始终民主、平等、宽松、愉快。
本节课条理清楚,层次分明,我认为有以下几点值得我校教师学习与借鉴:1、精心设计游戏活动,让学生在游戏中亲历数学,体验数学。
在这一节课中,他精心设计了九个游戏,贯穿于整个教学之中。
《数学课程标准》明确指出:"让学生在具体的数学活动中体验数学知识。
"这节课通过一系列的数学游戏活动,学生逐渐地、有层次地提高了自己的数学水平,丰富了对可能、不可能、一定的现象的亲身体验。
如在教学"一定"这个概念时,林主任在透明网袋里放入三个红球,非常直观,然后让学生说一说,摸到红球的可能性是多少,学生通过前面的学习,很快地说出答案,可能性是1,一定能摸到红球。
能因势利导,得出了"一定"的概念。
整个教学过程就成为游戏-猜测-体验-推想-验证的游戏过程,使学生在游戏中亲历数学,体验数学。
2、教学要紧密联系生活,突出学以致用。
本节课教学一开始,就从平时学生课间游戏"石头、剪子、布"入手,提出游戏是否公平,与学生生活实际相联系,激发学生的探索学习积极性,调动了学生学习的主动性。
课上所设计的一系列游戏,如摸球游戏,翻扑克牌游戏等都非常贴近学生的生活场景,体现了数学****于生活这个理念,又用本节课中所获得的知识解决游戏是否公平的问题,体现了数学反过来又服务于生活的理念。
让学生感到数学与生活息息相关。
如在学习了可能性是多少以后,让学生自己设计游戏规则,并进行交流。
高二数学优秀教案(优秀8篇)

高二数学优秀教案(优秀8篇)高二数学教案篇一教学目标1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;3.通过对椭圆概念的引入教学,培养学生的观察能力和探索能力;4.通过椭圆的标准方程的推导,使学生进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力;5.通过让中国学习联盟胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识.教学建议教材分析1.知识结构2.重点难点分析重点是椭圆的定义及椭圆标准方程的两种形式.难点是椭圆标准方程的建立和推导.关键是掌握建立坐标系与根式化简的方法.椭圆及其标准方程这一节教材整体来看是两大块内容:一是椭圆的定义;二是椭圆的标准方程.椭圆是圆锥曲线这一章所要研究的三种圆锥曲线中首先遇到的,所以教材把对椭圆的研究放在了重点,在双曲线和抛物线的教学中巩固和应用.先讲椭圆也与第七章的圆的方程衔接自然.学好椭圆对于学生学好圆锥曲线是非常重要的.(1)对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,可以对比圆的定义来理解.另外要注意到定义中对“常数”的限定即常数要大于.这样规定是为了避免出现两种特殊情况,即:“当常数等于时轨迹是一条线段;当常数小于时无轨迹”.这样有利于集中精力进一步研究椭圆的标准方程和几何性质.但讲解椭圆的定义时注意不要忽略这两种特殊情况,以保证对椭圆定义的准确性.(2)根据椭圆的定义求标准方程,应注意下面几点:①曲线的方程依赖于坐标系,建立适当的坐标系,是求曲线方程首先应该注意的地方.应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的方程形式整齐和简洁.②设椭圆的焦距为,椭圆上任一点到两个焦点的距离为,令,这些措施,都是为了简化推导过程和最后得到的方程形式整齐、简洁,要让学生认真领会.③在方程的推导过程中遇到了无理方程的化简,这既是我们今后在求轨迹方程时经常遇到的问题,又是学生的难点.要注意说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一侧;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项.④教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程“而没有证明,”方程的解为坐标的点都在椭圆上”.这实际上是方程的同解变形问题,难度较大,对同学们不作要求.(3)两种标准方程的椭圆异同点中心在原点、焦点分别在轴上,轴上的椭圆标准方程分别为:,.它们的相同点是:形状相同、大小相同,都有,.不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同.椭圆的焦点在轴上标准方程中项的分母较大;椭圆的焦点在轴上标准方程中项的分母较大.另外,形如中,只要,,同号,就是椭圆方程,它可以化为.(4)教科书上通过例3介绍了另一种求轨迹方程的常用方法——中间变量法.例3有三个作用:第一是教给学生利用中间变量求点的轨迹的方法;第二是向学生说明,如果求得的点的轨迹的方程形式与椭圆的标准方程相同,那么这个轨迹是椭圆;第三是使学生知道,一个圆按某一个方向作伸缩变换可以得到椭圆.教法建议(1)使学生了解圆锥曲线在生产和科学技术中的应用,激发学生的学习兴趣.为激发学生学习圆锥曲线的兴趣,体会圆锥曲线知识在实际生活中的作用,可由实际问题引入,从中提出圆锥曲线要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子,还可以启发学生寻找身边与圆锥曲线有关的例子。
高二数学教案(优秀6篇)

高二数学教案(优秀6篇)高二数学教案篇一一、教材分析推理是高考的重要的内容,推理包括合情推理与演绎推理,由于解答高考题的过程就是推理的过程,因此本部分内容的考察将会渗透到每一个高考题中,考察推理的基本思想和方法,既可能在选择题中和填空题中出现,也可能在解答题中出现。
二、教学目标(1)知识与能力:了解演绎推理的含义及特点,会将推理写成三段论的形式(2)过程与方法:了解合情推理和演绎推理的区别与联系(3)情感态度价值观:了解演绎推理在数学证明中的重要地位和日常生活中的作用,养成言之有理论证有据的习惯。
三、教学重点难点教学重点:演绎推理的含义与三段论推理及合情推理和演绎推理的区别与联系教学难点:演绎推理的应用四、教学方法:探究法五、课时安排:1课时六、教学过程1. 填一填:① 所有的金属都能够导电,铜是金属,所以;② 太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此;③ 奇数都不能被2整除,20xx是奇数,所以.2.讨论:上述例子的推理形式与我们学过的合情推理一样吗?3.小结:① 概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为____________.要点:由_____到_____的推理。
② 讨论:演绎推理与合情推理有什么区别?③ 思考:所有的金属都能够导电,铜是金属,所以铜能导电,它由几部分组成,各部分有什么特点?小结:三段论是演绎推理的一般模式:第一段:_________________________________________;第二段:_________________________________________;第三段:____________________________________________.④ 举例:举出一些用三段论推理的例子。
例1:证明函数在上是增函数。
例2:在锐角三角形ABC中,,D,E是垂足。
求证:AB的中点M到D,E的距离相等。
高二数学优秀教案5篇

高二数学优秀教案5篇高二数学优秀教案(篇1)选修Ⅱ1.概率与统计(14课时)离散型随机变量的分布列。
离散型随机变量的期望值和方差。
抽样方法、总体分布的估量、正态分布、线性回归。
实习作业。
教学目标:(1)了解随机变量、离散型随机变量的意义,会求出某些简洁的离散型随机变量的分布列。
(2)了解离散型随机变量的期望值、方差的意义,会依据离散型随机变量的分布列求出期望值、方差。
(3)会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本。
(4)会用样本频率分布估量总体分布。
(5)了解正态分布的意义及主要性质。
(6)通过生产过程的质量掌握图了解假设检验的基本思想。
(7)了解线性回归的方法。
(8)实习作业以抽样方法为内容,培养学生用数学解决实际问题的能力。
2. 极限(12课时)数学归纳法。
数学归纳法应用举例。
数列的极限。
函数的极限。
极限的四则运算。
函数的连续性。
教学目标:(1)理解数学归纳法的原理,能用数学归纳法证明一些简洁的数学命题。
(2)从数列和函数的变化趋势理解数列极限和函数极限的概念。
(3)把握极限的四则运算法则;会求某些数列与函数的极限。
(4)了解连续的意义,借助几何直观理解闭区间上连续函数有最大值和最小值的性质。
3.导数与微分(16课时)导数的概念。
导数的几何意义。
几种常见函数的导数。
两个函数的和、差、积、商的导数。
复合函数的导数。
基本导数公式。
微分的概念与运算。
利用导数研究函数的单调性和极值。
函数的最大值和最小值。
教学目标:(1)了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);把握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。
(2)熟记基本导数公式(c,xm(m为有理数), sin x, cos x, ex, ax, ln x, logax的导数);把握两个函数和、差、积、商的求导法则和复合函数的求导法则,会求某些简洁函数的导数。
(3)理解微分的概念(dy=y'dx),了解函数在一点处的微分是函数增量的线性近似值,会求某些简洁函数的微分。
高二数学教案13篇

高二数学教案13篇高二数学教案篇一【教学目标】1.能够用语言描述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
2.能够根据几何结构特征对空间物体进行分类。
3.提高学生的观察能力,培养学生的空间想象能力和抽象思维能力。
【教学重难点】教学重点:通过让学生观察真实的空间物体和模型,概括出柱、锥、台、球的结构特征。
教学难点:如何概括柱、锥、台、球的结构特征。
【教学过程】1.情景引入教师提出问题,引导学生观察、举例和相互交流,介绍本节课所学内容,出示课题。
2.阐述目标,检查预习3.合作探究、交流展示(1)引导学生观察棱柱的实物和图片,说出它们各自的特点是什么?它们有什么共同点?(2)组织学生分组讨论,每组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征:(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两个平行四边形的公共边互相平行。
概括出棱柱的定义。
(3)提出问题:请列举身边的棱柱并进行分类。
(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的。
结构特征,并得出相关的定义、分类和表示。
(5)让学生观察圆柱,并演示圆柱的实物模型,概括出圆柱的定义以及相关的定义和表示。
(6)引导学生思考圆锥、圆台、球的结构特征,并得出相关定义、表示以及分类,借助演示模型引导学生思考、讨论、概括。
(7)教师指出圆柱和棱柱�4.提问回答,解决问题,扩展思维,教师提出问题,让学生思考。
(1)有两个面互相平行,其余各面都是平行四边形的几何体是否为棱柱?(通过反例说明)(2)棱柱的任何两个平面都可2、过程与方法通过正弦函数在R上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。
3、情感态度与价值观通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学集体备课教案范文常年备课。
也就说教师备课不能局限课前的几个小时,他应包括教师平时的对现实生活素材的留意肠视察,包括教师对各种教学资料的积存。
这就是说的常年备课。
今天作者在这里整理了一些最新高二数学集体备课教案范文,我们一起来看看吧!最新高二数学集体备课教案范文1教学目标:(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.(2)进一步知道曲线的方程和方程的曲线.(3)初步掌控求曲线方程的方法.(4)通过本节内容的教学,培养学生分析问题和转化的能力.教学重点、难点:求曲线的方程.教学用具:运算机.教学方法:启示引导法,讨论法.教学进程:【引入】1.提问:什么是曲线的方程和方程的曲线.学生摸索并回答.教师强调.2.坐标法和解析几何的意义、基本问题.对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:(1)根据已知条件,求出表示平面曲线的方程.(2)通过方程,研究平面曲线的性质.事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.【问题】如何根据已知条件,求出曲线的方程.【实例分析】例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.第一由学生分析:根据直线方程的知识,运用点斜式即可解决.解法一:易求线段的中点坐标为(1,3),由斜率关系可求得l的斜率为于是有即l的方程为①分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?(通过教师引导,是学生意识到这是以前没有解决的问题,应当证明,证明的根据就是定义中的两条).证明:(1)曲线上的点的坐标都是这个方程的解.设是线段的垂直平分线上任意一点,则即将上式两边平方,整理得这说明点的坐标是方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.设点的坐标是方程①的任意一解,则到、的距离分别为所以,即点在直线上.综合(1)、(2),①是所求直线的方程.至此,证明完毕.回想上述内容我们会发觉一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明进程就表明一种求解进程,下面试试看:解法二:设是线段的垂直平分线上任意一点,也就是点属于集合由两点间的距离公式,点所合适的条件可表示为将上式两边平方,整理得果然成功,当然也不要忘了证明,即验证两条是否都满足.明显,求解进程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.让我们用这个方法试解以下问题:例2:点与两条相互垂直的直线的距离的积是常数求点的轨迹方程.分析:这是一个纯洁的几何问题,连坐标系都没有.所以第一要建立坐标系,明显用已知中两条相互垂直的直线作坐标轴,建立直角坐标系.然后仿惯例1中的解法进行求解.求解进程略.【概括总结】通过学生讨论,师生共同总结:分析上面两个例题的求解进程,我们总结一下求解曲线方程的大体步骤:第一应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入座标;最后整理出方程,并证明或修正.说得更准确一点就是:(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;(2)写出合适条件的点的集合;(3)用坐标表示条件,列出方程 ;(4)化方程为最简情势;(5)证明以化简后的方程的解为坐标的点都是曲线上的点.一样情形下,求解进程已表明曲线上的点的坐标都是方程的解;如果求解进程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情形下证明可省略,不过特别情形要说明.上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.下面再看一个问题:例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.【动画演示】用几何画板演示曲线生成的进程和形状,在运动变化的进程中寻觅关系.解:设点是曲线上任意一点,轴,垂足是 (如图2),那么点属于集合由距离公式,点合适的条件可表示为①将①式移项后再两边平方,得化简得由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.【练习巩固】题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程.分析、略解:第一应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为 .根据条件,代入座标可得化简得①由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范畴,最后曲线方程可表示为【小结】师生共同总结:(1)解析几何研究研究问题的方法是什么?(2)如何求曲线的方程?(3)请对求解曲线方程的五个步骤进行评判.各步骤的作用,哪步重要,哪步应注意什么?【作业】课本第72页练习1,2,3;最新高二数学集体备课教案范文2教学目标(1)掌控圆的标准方程,能根据圆心坐标和半径熟练地写出圆的标准方程,也能根据圆的标准方程熟练地写出圆的圆心坐标和半径.(2)掌控圆的一样方程,了解圆的一样方程的结构特点,熟练掌控圆的标准方程和一样方程之间的互化.(3)了解参数方程的概念,知道圆的参数方程,能够进行圆的普通方程与参数方程之间的互化,能运用圆的参数方程解决有关的简单问题.(4)掌控直线和圆的位置关系,会求圆的切线.(5)进一步知道曲线方程的概念、熟悉求曲线方程的方法.教学建议教材分析(1)知识结构(2)重点、难点分析①本节内容教学的重点是圆的标准方程、一样方程、参数方程的推导,根据条件求圆的方程,用圆的方程解决相干问题.②本节的难点是圆的一样方程的结构特点,以及圆方程的求解和运用.教法建议(1)圆是最简单的曲线.这节教材安排在学习了曲线方程概念和求曲线方程之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备.同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.因此教学中应加强练习,使学生确切掌控这一单元的知识和方法.(2)在解决有关圆的问题的进程中屡次用到配方法、待定系数法等思想方法,教学中应多总结.(3)解决有关圆的问题,要常常用到一元二次方程的理论、平面几何知识和前边学过的解析几何的基本知识,教师在教学中要注意多复习、多运用,培养学生运算能力和简化运算进程的意识.(4)有关圆的内容非常丰富,有很多有价值的问题.建议适当挑选一些内容供学生研究.例如由过圆上一点的切线方程引申到切点弦方程就是一个很有价值的问题.类似的还有圆系方程等问题.教学设计示例圆的一样方程教学目标:(1)掌控圆的一样方程及其特点.(2)能将圆的一样方程转化为圆的标准方程,从而求出圆心和半径.(3)能用待定系数法,由已知条件求出圆的一样方程.(4)通过本节课学习,进一步掌控配方法和待定系数法.教学重点:(1)用配方法,把圆的一样方程转化成标准方程,求出圆心和半径.(2)用待定系数法求圆的方程.教学难点:圆的一样方程特点的研究.教学用具:运算机.教学方法:启示引导法,讨论法.教学进程:【引入】前边已经学过了圆的标准方程把它展开得任何圆的方程都可以通过展开化成形如①的方程【问题1】形如①的方程的曲线是否都是圆?师生共同讨论分析:如果①表示圆,那么它一定是某个圆的标准方程展开整理得到的.我们把它再写本钱来的情势不就可以看出来了吗?运用配方法,得②明显②是不是圆方程与是什么样的数密切相干,具体以下:(1)当时,②表示以为圆心、以为半径的圆;(2)当时,②表示一个点 ;(3)当时,②不表示任何曲线.总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示.圆的一样方程的定义:当时,①表示以为圆心、以为半径的圆,此时①称作圆的一样方程.即称形如的方程为圆的一样方程.【问题2】圆的一样方程的特点,与圆的标准方程的异同.(1) 和的系数相同,都不为0.(2)没有形如的二次项.圆的一样方程与一样的二元二次方程③相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件.圆的一样方程与圆的标准方程各有千秋:(1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然.(2)圆的一样方程表现出明显的代数的情势与结构,更合适方程理论的运用.【实例分析】例1:下列方程各表示什么图形.(1) ;(2) ;(3) .学生演算并回答(1)表示点(0,0);(2)配方得,表示以为圆心,3为半径的圆;(3)配方得,当、同时为0时,表示原点(0,0);当、不同时为0时,表示以为圆心,为半径的圆.例2:求过三点,,的圆的方程,并求出圆心坐标和半径.分析:由于学习了圆的标准方程和圆的一样方程,那么本题既可以用标准方程求解,也能够用一样方程求解.解:设圆的方程为由于、、三点在圆上,则有解得:,,所求圆的方程为可化为圆心为,半径为5.请同学们再用标准方程求解,比较两种解法的区分.【概括总结】通过学生讨论,师生共同总结:(1)求圆的方程多用待定系数法.其步骤为:由题意设方程(标准方程或一样方程);根据条件列出关于待定系数的方程组;解方程组求出系数,写出方程.(2)如何选用圆的标准方程和圆的一样方程.一样地,易求圆心和半径时,选用标准方程;如果给出圆上已知点,可选用一样方程.下面再看一个问题:例3:经过点作圆的割线,交圆于、两点,求线段的中点的轨迹.解:圆的方程可化为,其圆心为,半径为2.设是轨迹上任意一点.∵∴即化简得点在曲线上,并且曲线为圆内部的一段圆弧.【练习巩固】(1)方程表示的曲线是以为圆心,4为半径的圆.求、、的值.(结果为4,-6,-3)(2)求经过三点、、的圆的方程.分析:用圆的一样方程,代入点的坐标,解方程组得圆的方程为 .(3)课本第79页练习1,2.【小结】师生共同总结:(1)圆的一样方程及其特点.(2)用配方法化圆的一样方程为圆的标准方程,求圆心坐标和半径.(3)用待定系数法求圆的方程.【作业】课本第82页5,6,7,8.最新高二数学集体备课教案范文3一、教学内容分析向量作为工具在数学、物理以及实际生活中都有着广泛的运用.本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的运用.二、教学目标设计1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的运用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路.2、了解构造法在解题中的运用.三、教学重点及难点重点:平面向量知识在各个领域中运用.难点:向量的构造.四、教学流程设计五、教学进程设计一、复习与回想1、提问:下列哪些量是向量?(1)力 (2)功 (3)位移 (4)力矩2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?[说明]复习数量积的有关知识.二、学习新课例1(书中例5)向量作为一种工具,不仅在物理学科中有广泛的运用,同时它在数学学科中也有许多妙用!请看例2(书中例3)证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立.证法(二)向量法[说明]本例关键引导学生视察不等式结构特点,构造向量,并发觉(等号成立的充要条件是)例3(书中例4)[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明.二、巩固练习1、如图,某人在静水中游泳,速度为 km/h.(1)如果他径直游向河对岸,水的流速为4 km/h,他实际沿什么方向前进?速度大小为多少?答案:沿北偏东方向前进,实际速度大小是8 km/h.(2) 他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?答案:朝北偏西方向前进,实际速度大小为km/h.三、课堂小结1、向量在物理、数学中有着广泛的运用.2、要学会从不同的角度去看一个数学问题,是数学知识有机联系.四、作业布置1、书面作业:课本P73, 练习8.4 4最新高二数学集体备课教案范文4一、教学内容分析向量作为工具在数学、物理以及实际生活中都有着广泛的运用.本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的运用.二、教学目标设计1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的运用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路.2、了解构造法在解题中的运用.三、教学重点及难点重点:平面向量知识在各个领域中运用.难点:向量的构造.四、教学流程设计五、教学进程设计一、复习与回想1、提问:下列哪些量是向量?(1)力 (2)功 (3)位移 (4)力矩2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?[说明]复习数量积的有关知识.二、学习新课例1(书中例5)向量作为一种工具,不仅在物理学科中有广泛的运用,同时它在数学学科中也有许多妙用!请看例2(书中例3)证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立.证法(二)向量法[说明]本例关键引导学生视察不等式结构特点,构造向量,并发觉(等号成立的充要条件是)例3(书中例4)[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明.二、巩固练习1、如图,某人在静水中游泳,速度为 km/h.(1)如果他径直游向河对岸,水的流速为4 km/h,他实际沿什么方向前进?速度大小为多少?答案:沿北偏东方向前进,实际速度大小是8 km/h.(2) 他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?答案:朝北偏西方向前进,实际速度大小为km/h.三、课堂小结1、向量在物理、数学中有着广泛的运用.2、要学会从不同的角度去看一个数学问题,是数学知识有机联系.四、作业布置1、书面作业:课本P73, 练习8.4 4最新高二数学集体备课教案范文5一、知识与技能1.能从二倍角的正弦、余弦、正切公式导出半角公式,了解它们的内在联系;揭示知识背景,引发学生学习爱好,激发学生分析、探求的学习态度,强化学生的参与意识. 并培养学生综合分析能力.2.掌控公式及其推导进程,会用公式进行化简、求值和证明。