n阶行列式按行展开的定义

合集下载

n阶行列式的定义及性质

n阶行列式的定义及性质
综上, 我们有
注 在计算行列式 中, 经常需要用初等 变换来“打洞”, 可 以看出“打洞”中 起主要作用的是性 质5.
•命题
(1) A 初 B, 则|A|与|B|要么同时为0, 要么同时不为0.
(2)设n阶方阵A满足|A|≠0, 且A经过有限次初等行变换变 成行简化阶梯矩阵R, 则R=En.
❖性质7
a2n
an1 an2 ann
简记为det(aij) 其中p1p2 pn为自然数1 2 n的一个排列 t为这个排列的逆序数 ∑表示对所有排列p1p2 pn取和.
在n阶行列式D中 数aij为行列式D的(i j)元.
特别规定一阶行列式|(a)|的值就是a.
❖三阶行列式的结构二:
a12 a1n
a11 a12 a1n a11 a12 a1n
(2) ai1 bi1 ai2 bi2 ain bin ai1 ai2 ain bi1 bi2 bin .
an1
an2 ann an1 an2 ann an1 an2 ann
1 2 3 4
1 0 7 2


A
0
7
9 1
2 4
5
,
则Hale Waihona Puke 6AT 23
9 2
1 4
1. 8
2
1
8
3
4 5 6 3
(1)A的第3列元素3,2,4,8正好是AT的第3行元素; (2)A的第3列元素的余子式
0 9 51 2 41 2 41 2 4
7 1 6,7 1 6,0 9 5,0 9 5
2 1 32 1 32 1 37 1 6
行列式某一行(列)的元素与另一行(列)的对应元素的代
数余子式乘积之和等于零. 即

行列式按行列展开定理

行列式按行列展开定理

行列式按行列展开定理一、 余子式的定义:在n 阶行列式中,把(i.j )元ij a 所在的第i 行,第j 列去掉之后,留下来的n-1阶行列式称作ij a 的余子式,记作ij M二、 代数余子式:在n 阶行列式的ij a 余子式ij M 加上符号(1)i j +-,称作ij a 的代数余子式ij A : (1)i j ij ij A M +=-三、 引理1:一个n 阶行列式,如果其中的第i 行所有元素除了(i,j )元ij a 外都为0,则这个行列式等于ij a 与它的代数余子式乘积: ij ij D a A =⋅四、 行列式按行(列)展开法则:定理3:行列式等于它的任一行(列)的各个元素与其对应的代数余子式的乘积之和:1122i i i i in in D a A a A a A =⋅+⋅+⋅⋅⋅+⋅1122j j j j nj nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)推论:行列式某一行(列)的元素与对应的另一行(列)元素的代数余子式乘积之和等于0:1122i j i j in jn D a A a A a A =⋅+⋅+⋅⋅⋅+⋅1122i j i j ni nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)五、 克拉默法则:如果含有n 个未知数的n 个线性方程组: 11112211n n a x a x a x b ++⋅⋅⋅+=21122222n n a x a x a x b ++⋅⋅⋅+=31132233n n a x a x a x b ++⋅⋅⋅+=………………………………………………………………………………………………………1122n n nn n n a x a x a x b ++⋅⋅⋅+=其系数行列式不等于0,即:1111............0...nn nna a D a a =≠ 那么,方程组有惟一解:11D x D =,22D x D =,…n N D x D= 1111,1122,11,1......................j nj j n n n j nn a b a a b a D a b a a +++=① 定理4:如果含n 个未知数的n 个线性方程组的系数行列式不等于0,则方程一定有解,且解是惟一的。

行列式按行展开

行列式按行展开

4
二:定理1.4(拉普拉斯定理)
若在n阶行列式D中,任意选取k行k 列, 这样组成的所有k阶子式其对应的代数余子式 乘积之和等于行列式D的值。(证略)
5
5 60 0 0 1 5 6 0 0 例 D 0 1 5 6 0 0 01 5 6 0 0 0 1 5
6
5 6 0
1 6 0
56
50
D
1 5 6
一、 n阶行列式展开定理
定理3 n阶行列式D等于它的任意一行(列)各元 素与其对应的代数余子式的乘积之和,即
D ai1Ai1 ai2 Ai2 ain Ain
n
aij Aij i 1,2,, n j 1
按行展开
1

D a1 j A1 j a2 j A2 j anj Anj
n
19
例5(伪范德蒙)
1111 abcd D a2 b2 c2 d 2 a4 b4 c4 d 4
111 1 1
abcd x a2 b2 c2 d 2 x2 a3 b3 c3 d 3 x3 a4 b4 c4 d 4 x4
构造范德蒙行列式 对比x^3的系数。
20
例6(递推降阶法)
21 121
121 D
27
思考题6
a b ab 1 a b ab 1 a b ab
D ... ... ... 1 a b ab 1 ab
28
思考题7
x z z ... z z y x z ... z z y y x ... z z D ... ... ... ... ... ... y y y ... x z y y y ... y x
... ... ... 1 21 12
按第一行展开,可得 Dn 2Dn1 Dn2

行列式按行列展开定理讲解学习

行列式按行列展开定理讲解学习

行列式按行列展开定理行列式按行列展开定理一、 余子式的定义:在n 阶行列式中,把(i.j )元ij a 所在的第i 行,第j 列去掉之后,留下来的n-1阶行列式称作ij a 的余子式,记作ij M二、 代数余子式:在n 阶行列式的ij a 余子式ij M 加上符号(1)i j +-,称作ij a 的代数余子式ij A : (1)i j ij ij A M +=-三、 引理1:一个n 阶行列式,如果其中的第i 行所有元素除了(i,j )元ija 外都为0,则这个行列式等于ij a 与它的代数余子式乘积:ij ij D a A =⋅四、 行列式按行(列)展开法则:定理3:行列式等于它的任一行(列)的各个元素与其对应的代数余子式的乘积之和:1122i i i i in in D a A a A a A =⋅+⋅+⋅⋅⋅+⋅1122j j j j nj nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)推论:行列式某一行(列)的元素与对应的另一行(列)元素的代数余子式乘积之和等于0:1122i j i j in jn D a A a A a A =⋅+⋅+⋅⋅⋅+⋅1122i j i j ni nj D a A a A a A =⋅+⋅+⋅⋅⋅+⋅ (i j ≠)五、 克拉默法则:如果含有n 个未知数的n 个线性方程组:11112211n n a x a x a x b ++⋅⋅⋅+=21122222n n a x a x a x b ++⋅⋅⋅+=31132233n n a x a x a x b ++⋅⋅⋅+=………………………………………………………………………………………………………1122n n nn n n a x a x a x b ++⋅⋅⋅+=其系数行列式不等于0,即:1111............0...nn nna a D a a =≠ 那么,方程组有惟一解:11D x D =,22D x D =,…n N D x D= 1111,1122,11,1......................j nj j n n n j nn a b a a b a D a b a a +++=① 定理4:如果含n 个未知数的n 个线性方程组的系数行列式不等于0,则方程一定有解,且解是惟一的。

3、n阶行列式

3、n阶行列式

18
线性代数
n阶行列式
证明 1)是显然的。 2)若记i ai ,n i 1 , 则依行列式定义
1 2

a n1 a 2 , n 1
t n n1 21
n n1 2
a1n
n
1
1
a1na2,n1 an1
证毕
19
12 n .
n阶行列式
2、余子式与代数余子式
例如
a11 a12 a13 a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 a31 a32 a33 a11a23a32 a12a21a33 a13a22a31,
线性代数
n阶行列式

计算对角行列式
0 0 0 4 0 0 3 0
1 0 0 0
20
0 2 0 0
1 0 0 0

0 0 0 4 0 0 3 0 0 2 0 0
1
t 4321
1 2 3 4 24.
线性代数
n阶行列式

用行列式的定义计算
0 0 Dn 0 0 0 2 1 0 0 0 0 0 0 n
15
线性代数
n阶行列式
a11
1)
a12 a1n a22 a2 n aii ann
a1n
上三角行列 式
2)
a2,n1 an1 an1,n1
a2n ann
( 1)
n ( n1) 2
a
i ,n i 1
16
线性代数
n阶行列式
1 2 3 4

0 4 2 1 D ? 0 0 5 6 0 0 0 8

行列式按一行(列)展开

行列式按一行(列)展开

证明过程
• 利用归纳假设和余子式的性质,证明$D_{n+1}$ 可以按第$n+1$行(或第$n+1$列)展开。
证明过程
3. 结论
通过数学归纳法,证明了行列式可以按任意一行(或列)展开。
04
Байду номын сангаас行列式按一行(列)展开的 实例
实例一:二阶行列式
定义
01
二阶行列式表示为$|begin{matrix} a & b c & d
行列式按一行(列)展 开
目录
• 行列式按一行(列)展开的定义 • 行列式按一行(列)展开的公式 • 行列式按一行(列)展开的证明
目录
• 行列式按一行(列)展开的实例 • 行列式按一行(列)展开的应用
01
行列式按一行(列)展开的 定义
定义与性质
定义
行列式按某一行(或列)展开,是指 将该行列式拆分成若干个二阶子行列 式之和。
• 应用:用于计算高维向量的外积和混合积,以及解决线性方程组等数学问题。
05
行列式按一行(列)展开的 应用
在线性代数中的应用
计算行列式的值
行列式按一行或一列展开,可以方便地计算行列式的 值。
矩阵的逆运算
行列式按一行或一列展开,可以用于计算矩阵的逆运 算。
线性方程组的求解
行列式按一行或一列展开,可以用于求解线性方程组。
数值分析
行列式按一行或一列展开,可以用于数值分析中的矩阵运算和数值逼近。
THANKS
感谢观看
3. 将上述求和结果作 为分子,分母保持不 变,得到按选定行 (或列)展开后的行 列式。
02
行列式按一行(列)展开的 公式
展开公式

n阶行列式展开式

n阶行列式展开式

n阶行列式展开式n阶行列式的展开式是指将n阶行列式按照某一行或某一列进行展开,将其展开为一系列元素相乘的和的形式。

设A是一个n阶方阵,行列式展开式可以表示为:D = a1j1A1j1 + a2j2A2j2 + a3j3A3j3 + ... + anjnAnjn其中,a1j1,a2j2,a3j3,...,anjn是行列式中的元素,分别对应于第1行,第2行,第3行,...,第n行的元素。

A1j1,A2j2,A3j3,...,Anjn是去掉第i行第j列的矩阵的行列式。

展开式的计算方法是通过对于某一行或某一列进行展开,逐步递归地计算较低阶行列式的展开式,最终得到行列式的值。

为了更好地理解和计算行列式的展开式,可以参考以下内容:1. 行列式的性质:了解行列式的基本性质,如行列式转置不变性、行列式互换性等,可以帮助理解行列式的展开式。

2. 代数余子式与代数余子式矩阵:代数余子式是行列式中任意元素的余子式加上相应的符号因子。

代数余子式矩阵是由行列式的元素的代数余子式按照对应位置组成的矩阵。

3. 余子式展开法与行列式按行展开法:余子式展开法是通过计算各元素的代数余子式来展开行列式,而行列式按行展开法是通过递归地计算较低阶行列式的展开式来计算行列式。

4. 基于拉普拉斯定理的行列式展开:拉普拉斯定理是一种常用的展开行列式的方法,根据该定理,可以将n阶行列式按照任意一行或一列展开为n个n-1阶行列式的代数余子式相乘的和。

以上内容是行列式展开式的基本概念和计算方法的相关参考内容,理解和掌握这些内容可以帮助更好地进行行列式展开式的计算。

在实际计算中,可以根据具体情况选择合适的展开方法,如拉普拉斯展开、按行展开等,进一步简化计算过程。

行列式性质按行(列)展开法则

行列式性质按行(列)展开法则
|a31 a32 a33|,可以选择第一行进行展开,得到其值等于a11*(a22*a33-a23*a32) - a12*(a21*a33a23*a31) + a13*(a21*a32-a22*a31)。
高阶行列式求解示例
递归降阶法
对于高阶行列式,可以采用递归降阶的 方法进行求解。即选择一行(列),将 这一行(列)的每个元素分别与其代数 余子式相乘并求和,从而将原行列式降 阶为一个低一阶的行列式。通过不断重 复这一过程,最终可以将高阶行列式降 阶为二阶或三阶行列式进行求解。
矩阵运算与行列式的关系
矩阵运算中的很多性质与行列式的性质密切相关,如矩阵的乘法、转置、逆等运算都与行列式有紧密联系。在求 解线性方程组时,我们常常需要利用矩阵的性质进行化简和计算。
线性方程组求解与行列式的应用
对于n元线性方程组,我们可以利用克拉默法则(Cramer's Rule)进行求解。克拉默法则是一种利用行列式求解 线性方程组的方法,它涉及到计算系数行列式和各个未知数的系数行列式,然后利用这些行列式的值求出未知数 的解。
03
把行列式的某一行(列)的各元素 乘以同一数然后加到另一行(列) 对应的元素上去,行列式不变。
04
行列式计算规则
01
对于二阶和三阶行列式,可以 直接套用公式进行计算。
02
对于高阶行列式,可以采用按行 (列)展开法则进行计算,即选择 某一行(列),将其各元素与对应 的代数余子式相乘后求和。
03
在按行(列)展开时,需要注意 代数余子式的符号取决于被删 除的行和列的序号之和的奇偶 性。
选择要展开的行或列
根据题目要求或行列式的特点,选择合适的行或 列进行展开。通常选择含有零元素较多或元素较 简单的行或列。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n阶行列式按行展开的定义
设ai1,ai2,…,ain(1≤i≤n)为n阶行列式D=|aij|的任意一行中的元素,而Ai1,Ai2,…,Ain分别为它们在D中的代数余子式,则D=ai1Ai1+ai2Ai2+…+ainAin称为行列式D的依行展开。

行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。

行列式性质
1、行列式A中某行(或列)用同一数k乘,其结果等于kA。

2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

4、行列式A中两行(或列)互换,其结果等于-A。

5、把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

相关文档
最新文档