n阶行列式的定义

合集下载

第1节 n阶行列式的定义(全)

第1节 n阶行列式的定义(全)

表达式 a11a22 − a12 a21 称为由该 数表所确定的二阶行列式 二阶行列式, 数表所确定的二阶行列式,即
a11 D= a21
a12 = a11a22 − a12 a21 a22
a 其中, 称为元素 元素. 其中, ij ( i = 1, 2; j = 1, 2) 称为元素.
i 为行标,表明元素位于第 行; 行标,表明元素位于第i j 为列标,表明元素位于第 列. 列标,表明元素位于第j
= a11a22 a33 + a12 a23 a31 + a13 a21a32 − a13 a22 a31 − a12 a21a33 − a11a23 a32
注意:对角线法则只适用于二阶与三阶行列式. 注意:对角线法则只适用于二阶与三阶行列式.
例1 计算行列式
3 2 3 D = 2 -3 4 4 -5 2
p 个奇排列均变成偶排列,故 p ≤ q ; 个奇排列均变成偶排列,
同理,对每个偶排列做同一变换, 同理,对每个偶排列做同一变换,则
q 个偶排列均变成奇排列,故 q ≤ p 。 个偶排列均变成奇排列,
从而, 从而,
n! p=q= 2
三、n阶行列式的定义 阶行列式的定义
a11 D = a21 a31 a12 a22 a32 a13 a23 = a11a22 a33 + a12 a23 a31 + a13 a21a32 a33 − a13 a22 a31 − a12 a21a33 − a11a23 a32
解 按对角线法则,有 按对角线法则,
D = 3 × ( −3) × 2 + 2 × 4 × 4 + 2 × ( −5) × 3
−3 × ( −3) × 4 − 2 × 2 × 2 − 3 × 4 × ( −5)

n阶行列式的定义

n阶行列式的定义

§1·2 n 阶行列式的定义1、二、三阶行列式定义对二元线性方程组:11112212112222a x a xb a x a x b +=⎧⎨+=⎩11221122221222112122122212a a x a a xb a a a x a a x b a +=⎧⇒⎨+=⎩122221121122211)(a b a b x a a a a −=−⇒112212210a a a a −≠若:11112212112222,a x a b a a b +=⎧⎨+=⎩对122212111221221211121211221221b a b a x a a a a b a b a x a a a a −⎧=⎪−⎪⎨−⎪=⎪−⎩则:112212210a a a a −≠若211222111222211a a a a a b a b x −−=22211211a a a a =222121a b a b 令:211222112111122,a a a a a b a b x −−22211211a a a a =221111b a b adc ba 二阶行列式+-bc ad −=3213−如11=1112112111112212211221221121212122222212,,a ab a a b a a a a ba a b a b ba a a b a a b =−=−=−例1, 求方程组的解。

12122233x x x x +=⎧⎨+=⎩解: 因为0121313211≠=×−×=所以方程组有唯一解:121333311123x ===212231111123x −===−⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111ba x a x ab a x a x a b x a x a a 同理,对三元线性方程组:111213212223313233a a a a a a a a a 三阶行列式112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a =++−−−仿照二阶行列式,引入三阶行列式:112233122331132132112332122133132231a a a a a a a a a a a a a a a a a a =++−−−+-333231232221131211a a a a a a a a a ++--aa aD 111111=问:(1)当a 为何值时,D ≠0(2)当a 为何值时,D =0【例1】设:解:aa aD 111111=311a a a a=++−−−显然:当a ≠1且a ≠-2时,D ≠0当a =1或a =-2时,D =0332a a =−+2(1)(2)a a =−+⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a bx a x a x a b x a x a x a 对三元线性方程组:0333231232221131211≠a a a a a a a a a 若:则方程组有唯一解,且唯一解为:333231232221131211332312222111211333323123222113121133331232211311123332312322211312113332323222131211,,a a a a a a a a a b a a b a a b a a x a a a a a a a a a a b a a b a a b a x a a a a a a a a a a a b a a b a a b x ===2、n 阶行列式nnn n n n a a a a a a a a a """""""212222111211称为n 阶行列式.a ij ———位于行列式中第i 行第j 列的元素.例如, a 32 ——位于行列式中第3行第2列的元素.定义:由n 2个数a ij (i , j =1、2、3…n )组成的符号二阶行列式其中{}{}211221=j j 为两项的代数和,每一项是行列式中不同行不同列的两个元素的乘积1112112212212122a a a a a a a a =−121212()12(1)j j j jj j a a τ=−∑121212()1122211212(1)j j j j j j a a a a a a τ=−=−∑112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a =++−−−111213212223313233a a a a a a a a a {}{123123,231,312,321,213,132j j j =三阶行列式六项的代数和,每一项是行列式中不同行不同列的三个元素的乘积123123123()123(1)j j j j j j j j j a a a τ=−∑123123123()123(1)j j j j j j j j j a a a τ=−∑{}123123123111213()212223123313233(1)j j j j j j j j j a a a a a a a a a a a a τ=−∑=不同行不同列的两个元素的乘积=不同行不同列的三个元素的乘积2!3!11122122a a a a {}121212()12(1)j j j j j j a a τ=−∑()()121212111212122212121n nnn j j j nj j nj j j j n n nna a a a a a a a a a a a τ=−∑""""""""""nj j j "21n 级排列(由1、2…n 组成,共n!个))(21n j j j "τn 级排列的逆序数n j j j "21nnj j j a a a "2121行列式中n 个不同行不同列的元素的乘积=n!项的代数和,每一项是行列式中不同行不同列的n 个元素的乘积nn nj j j j j j a a a ""212121)()1(τ−行列式的一般项:一般我们称()()nn nnj j j j j j j j j a a a """212121211τ∑−nnn n nna a a a a a a a a """""""212222111211为n 阶行列式的展开式。

n 阶行列式的定义与性质

n 阶行列式的定义与性质
是标准排列。故
a a
12
1n
a a
n
22
2n
a a ...a a . 11 22
nn
ii
i1
a a a
n1
n2
nn
例 2 计算 n 阶行列式
a a a
11
12
1n
0 a a
22
2
n
.
0 0 a nn
解 分析
展开式中项的一般形式是 a1 p1a2 p2 anpn . pn n, pn1 n 1, pn3 n 3, p2 2, p1 1,
a11 a12 a1n
ai1 ai2 ain
a j1 a j2 a jn
an1 an2 ann
a11 a12 a1n
a j1 a j2 a jn
ai1 ai2 ain
an1 an2 ann
证明 根据行列式的定义及定理 1.1
左端
(1)
(
a j1 ji j j jn ) 1 j1
an1 an2 ann
设 n 阶行列式 D 的第 i 行与第 k 行相同,于 是将第 i 行与第 k 行互换,行列式不变;但由性 质 4个知,它们又应当反号即有 D=-D ,即 2 个 D=0个,故 D=0.。
性质 6 如果行列式中两行(两列)的对应元 素成比例,那么行列式为 0 .
证明 a11 a12 a1n
an1 an2 ann
右端
说明
利用行列式的性质可简化行列式的计算,基 本思路是根据性质把行列式化成为上三角形 行列式,它等于变换后的行列式的主对角元 素的乘积。
例5 解
计算行列式
1 9 13 7 2 5 1 3 3 1 5 5 2 8 7 10

n阶行列式的定义及性质

n阶行列式的定义及性质

推论 如果行列式有两行(列)完全相同,则此行列式为零
证 把这两行互换,有 D D , 故D 0
推论1 行列式中某一行(列)的所有元素的公因子 可以提到行列式符号的外面
推论2 若行列式中有两行(列)成比例,则此行列 式等于零.
推论3 若行列式中某一行(列)的元素全为零,则 此行列式等于零.
证 设行列式
a11 D1 kai1 an1
a12 kai 2 an 2
a1n kain ann
是由行列式 D det(aij ) 的第i行中所有的元素都乘以同一数 k得到的. 由行列式的定义知 ( p1 p2 pn ) ( 1) a1 p1 D1
p1 p2 pn
ai 1 pi1 (kaipi )ai 1 pi1
因此 当
n 4k
或者 n
4k 1
时,该排列是偶排列;
当n
4k 2
或者
n 4k 3 时,该排列是奇排列。
6
定义 在一个排列中,把某两个数的位置互换,而保持其余的 数不动,这种对一个排列作出的变动叫做对换. 将相邻两个数 对换,叫做相邻对换.
例 五级偶排列21354经过2,3对换变成排列31254,容易计算
(21354)=2,所以21354是偶排列.
(2) 在六级排列135246中,共有逆序32,52,54,即
(135246)=3,所以135246是奇排列.
二、排列的逆序数
2. 逆序数计算法:
(q1q2 qn ) ( qi前边的比它
i 1
n
大的数字的个数 )
.例如
(64823517 ) 0 1 0 3 3 2 6 1 16

n阶行列式的定义及性质

n阶行列式的定义及性质
综上, 我们有
注 在计算行列式 中, 经常需要用初等 变换来“打洞”, 可 以看出“打洞”中 起主要作用的是性 质5.
•命题
(1) A 初 B, 则|A|与|B|要么同时为0, 要么同时不为0.
(2)设n阶方阵A满足|A|≠0, 且A经过有限次初等行变换变 成行简化阶梯矩阵R, 则R=En.
❖性质7
a2n
an1 an2 ann
简记为det(aij) 其中p1p2 pn为自然数1 2 n的一个排列 t为这个排列的逆序数 ∑表示对所有排列p1p2 pn取和.
在n阶行列式D中 数aij为行列式D的(i j)元.
特别规定一阶行列式|(a)|的值就是a.
❖三阶行列式的结构二:
a12 a1n
a11 a12 a1n a11 a12 a1n
(2) ai1 bi1 ai2 bi2 ain bin ai1 ai2 ain bi1 bi2 bin .
an1
an2 ann an1 an2 ann an1 an2 ann
1 2 3 4
1 0 7 2


A
0
7
9 1
2 4
5
,
则Hale Waihona Puke 6AT 23
9 2
1 4
1. 8
2
1
8
3
4 5 6 3
(1)A的第3列元素3,2,4,8正好是AT的第3行元素; (2)A的第3列元素的余子式
0 9 51 2 41 2 41 2 4
7 1 6,7 1 6,0 9 5,0 9 5
2 1 32 1 32 1 37 1 6
行列式某一行(列)的元素与另一行(列)的对应元素的代
数余子式乘积之和等于零. 即

n阶行列式的定义全

n阶行列式的定义全

02 行列式的性质
代数余子式
01
代数余子式
在n阶行列式中,去掉元素所在的行和列后,剩下的元素按照原来的排
列顺序构成的n-1阶行列式称为该元素的代数余子式。
02
代数余子式的计算
代数余子式等于(-1)^(i+j) * (n-1)阶行列式,其中i和j分别为元素所在
的行号和列号。
03
代数余子式的性质
代数余子式与元素所在的行和列的顺序无关,但与元素的位置有关。
n阶行列式的定义全
目录
• 行列式的定义 • 行列式的性质 • 行列式的展开 • 行列式的计算方法 • 行列式的应用
01 行列式的定义二阶行Fra bibliotek式总结词
二阶行列式是2x2矩阵的行列式值 ,由其主对角线上的元素相乘减 去副对角线上的元素相乘得到。
详细描述
对于2x2矩阵[a, b; c, d],其行列 式值为ad-bc,即主对角线元素a 和d相乘减去副对角线元素b和c相 乘。
n阶行列式
总结词
n阶行列式是nxn矩阵的行列式值,由其主对角线上的元素相乘减去副对角线上 的元素相乘得到。
详细描述
对于nxn矩阵,其行列式值的计算方法可以归纳为Laplace展开,即从n阶行列式 中任取k行和k列,形成一个k阶行列式,然后乘以相应的代数余子式,并求和。 最终得到的值即为n阶行列式的值。
线性方程组的求解
行列式可以用来求解线性方程组,通过对方程组的系数矩阵进行行 列式变换,可以求解方程组的解。
向量空间
行列式可以用来定义向量空间的一组基,以及基之间的变换关系。
在微积分中的应用
微分学
行列式在微分学中用于计算多元函数的偏导数和 全微分。

3-1 n阶行列式的概念

3-1 n阶行列式的概念
第三章 n阶行列式 阶行列式
行列式理论是研究线性方程组的解法而产生的. 行列式理论是研究线性方程组的解法而产生的. 近代,被广泛应用于数学, 近代,被广泛应用于数学,物理以及工程技术等 许多领域. 许多领域. 在线性代数中,更是一个不可缺少的重要工具. 在线性代数中,更是一个不可缺少的重要工具. 主要介绍定义,性质,计算及克莱姆法则. 主要介绍定义,性质,计算及克莱姆法则. 定义
(a , b)
证明: 证明 (1)相邻对换
AabB → AbaB
A,B中的每一个数的逆序数都没有发生改变, 所以只需考虑a ,b的逆序数 若 a > b a的逆序数不变, b 的逆序数减少1 若
a < b a 的逆序数增加1,b 的逆序数不变, 所以, AabB, AbaB 的奇偶性不同
7
(2)一般对换
Aak1k2 kmbB → Abk1k2 kmaB
情况太复杂,改变思考角度 不是通过一次性得到结果,而是作如下过程:
(a , b)
Aak1k2 kmbB
m+1 +1次相邻对换 作m+1次相邻对换 作m次相邻对换 次相邻对换

由(1)知, 改变了2m+1(奇数) 次奇偶性 奇偶性当然改变.
8

Ak1k2 kmbaB Abk1k2 kmaB
1
第一节 n阶行列式的概念 阶行列式的概念
2
一,排列及其逆数 由n个自然数组成的一个有序数组, 定义3.1.1 定义3.1.1 称为由这n个自然数的一个全排列 全排列,简称排列 全排列 排列 记作: i1i2 in 例
自然数 1,2 1,2,3 1,2,3,4 123 1234 132 12 213 231 …… …… 312 4321 n(n-1) 321 ( -1)…321

n阶行列式

n阶行列式

3、 n 阶行列式的每项都是位于不同行、不同 列 n 个元素的乘积; 4、 一阶行列式 a a 不要与绝对值记号相混淆;
a1 j1 a2 j2 anjn 的符号为 1N . 5、
例1
计算上三角行列式
a11 a12 a1n 0 a22 a2 n 0 0 ann

定义
由 n 2 个数组成的 n 阶行列式等于所有 取自不同行不同列的n 个元素的乘积 的代数和

a11 a21 an1
( 1 ) N a1 j1 a2 j2 anjn . a12 a1n a22 a2 n an 2 ann
记作
D
其中 j1 j2 jn 为自然数 1, ,n 的一个排列, 2, N 为这个排列的逆序数.
4 ( 41 ) 2
1 2 3 4 24.
三、小结
1 、行列式是一种特定的算式,它是根据求解 方程个数和未知量个数相同的一次方程组的需 要而定义的. 2、 n 阶行列式共有 n! 项,每项都是位于不同 行、不同列 的 n个元素的乘积,正负号由下标排 列的逆序数决定.
思考题
x
已知
例如a14a23a31a42
行标排列为1234,元素取自不同的行, 列标排列为4312,元素取自不同的列, 因为N(4312)=5,所以该项取负号,
即a14a23a31a42
是上述行列式中的一项.
a11a24a33a44 有两个元素取自第4列,
所以它不是行列式中的一项.
说明 1、行列式是一种特定的算式,它是根据求解方 程个数和未知量个数相同的一次方程组的需要而 定义的; 2、 n 阶行列式是 n! 项的代数和;
0
0
1
3 2 5 1 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 = (-1)t a1na2,n−1 "an1
其中t为n(n-1)……21的逆序数,因此由第一节的例2
可知t=n(n-1)/2。
例2 证明下三角行列式
a11 0 "
D
=
a21 #
a22 #
" #
0
0 #
= a11a22 "ann
an1 an2 " ann
证: 由于当j > i时,aij = 0,因此行列式的求和
对行列式中元素 ,cij第一个下标i表示元素所在
的行,称为行标;第二个下标j表示元素所在的列, 称为列标。从上述表达式可以发现三阶行列式有如下 特点:
(1)表达式共有3!=6项求代数和。且每项均为
不同行不同列的三个元素的乘积;
(2)6项中有3项的代数符号为正,3项的代数符 号为负;
(3)如果把每一项元素的行标按1、2、3依次排 列,则每一项元素的列标排列分别为123, 231, 312以 及321, 213, 132, 恰好是1、2、3这三个数的所有可能 的排列。
d krk k +1 rk+1
0,因此
" r1,
dr2k,+"n rk+,nrk,,只有
在1, 2,…,k中选取时,该项才可能不为0。而根据
行列式的定义,当 r1, r2 ,", rk 在1, 2,…,k中选取时, rk+1, rk+2 ,", rk+n只能在k+1, k+2项可以记为
(−1)t d1r1 " dkrk d k +1 rk+1 " dk +n rk+n = (−1)t a1r1 " akrk b1 p1 "bnpn
这的里逆,序p数i =。rk+以i −sk、,m而分t为别排表列示rr11,,rr22""rkr(kk和+
p1)"(k + pn ) p1 " pn的逆序
角线。
例1 证明主对角行列式(其中对角线上的元素为 aii (i = 1,2,", n)其余的元素为0)的值为
a11 0 " 0 a22 " # ##
0
0 #
= a11a22 "ann
0 0 " ann
次对角行列式(其中对角线上的元素为 aij,i + j = n +1,
i = 1,2,", n ,其余的元素为0)的值为
列共有n! 个, 因此形如(1)式的项共有n!项。所有
这n!项的代数和
∑ (-1)t a a 1p1 2 p2 "anpn
p1 p2"pn
称为n阶行列式(determinant),记为
a11 a12 " a1n
D
=
a21 #
a22 #
" a2n ##
an1 an2 " ann
或数者aij简(i记=作1,2Δ,"(a, ni)j ; 或j =者1d,2e,t"( ai,j)n。) 称为行列式Δ (aij )的元素。
c11 c12 c13
∑ c21 c22 c23 =
(−1)t c1p1c2 p2 c3 p3 .
c31 c32 c33
p1 p2 p3
其中p1p2p3是1、2、3这三个数的一个排列,t是这 个排列的逆序数,共有3!=6项求和。其中求和符号 Σ表示连加。
完全类似,我们可以定义n阶行列式。 定义1 设有 n2 个数,排成n行n列的数表
r1 " rk
∑ = D 2
( − 1) s a1r1 " a krk
r1 " rk
= D1D2 。
0 " 0 a1n
0 #
" a2,n−1 ##
0 #
= (−1)n(n−1)/ 2 a1na2n−1 "an1
an1 " 0
0
证:第一式是显然的。下面我们只证明第二个结
果。
根据行列式的定义
0 " 0 a1n
0 " a2,n−1 ## #
an1 " 0
∑ 0
#
= (-1)t
p1 p2"pn
a1p1 a2 p2 "anpn
数 ,则显然有t =s+m。因此
∑ ∑ D =
( − 1) s + m a1 r1 " a kr k b1 p1 " b np n
r1 " rk p1 " p n
∑ ∑ =
( − 1) s a1r1
r1 " rk
"
a kr k
⎡ ⎢ ⎣
p1"
(
pn

1)
m
b1
p1
"
b np n
⎤ ⎥ ⎦
∑ =
( − 1) s a1r1 " a krk D 2
a11 a12 " a1n a21 a22 " a2n # ###
an1 an2 " an3
作出表中位于不同行不同列的n个数的乘积,并冠以 符号 (−1)t, 得到形如
的项,其中
p1
(-1) t
p2 "
a1 p1
pn
a2 p2 "anpn
(1)
为自然数1,2,……,n的
一个全排列,t为这个排列的逆序数。由于这样的排
(4)排列123, 231, 312的逆序数分别为0, 2, 2, 而排列321, 213, 132的逆序数分别为3, 1, 1, 即在6项 求和中,取行标为标准顺序的排列时,其列标排列为 偶排列时,则该项的代数符号为正;当列标排列为奇 排列时,则该项的代数符号为负 。
因此,我们可以把三阶行列式的定义写成
表达式中可能不为0的项的n个因子的下标 ipi 应有pi ≤ i
即 p1 ≤ 1, p2 ≤ 2,", pn ≤ n而在所有排列 p1 p2 " pn 中,
能满足上述关系的排列只有一个,即1,2……n,所以 行列式中可能不为0的项只有一项,即 (-1)t a11a22 "ann, 这一项的符号显然为正(因为t=0),所以
第二节 n 阶行列式的定义
为给出n阶行列式的定义,让我们来分析前面所 讲的三阶行列式的定义。在§1中的(6)我们定义
c11 c12 c13 c 21 c 22 c 23 = c11c 22c33 + c12c 23c31 + c13c 21c32 c31 c32 c33
− c13c 22c31 − c12c 21c33 − c11c 23c32 ,
D = a11a22 "ann
例3 设
a11 " a1k 0 " 0 ### ###
D = a1k c11 #
" akk " c1k ##
0"0
b11 " b1n ###
a11 D1 = #
ak1
ck1 " ckk
" a1k ##
" akk
bn1 " bnn
b11 " b1n
D2 = # # #
bn1 " bnn
显然,按此定义给出的二阶行列式和三阶行列
式与我们前面所说的定义是一致的。 以后为方便起见,我们称行列式中 a11, a22 ,", ann
为行列式的主对角线,
a11 a12 " a1n a21 a22 " a2n # ###
an1 an2 " ann
而称 a1n , a2n−1, an1的线段为行列式的次对角线或副对
证明 D = D1D2
记 D = det(dij ),其中 dij = aij , (i = 1,2,", k; j = 1,2,", k)
dk+i,k+ j = bij , (i = 1,2,", n; j = 1,2,", n)
考察D的一般项(−1)t d1r1 "d
由于当i ≤ k,j > k时,dij =
相关文档
最新文档