分子诊断
分子诊断技术分析

分子诊断技术分析分子诊断技术是一种通过检测个体的DNA、RNA或蛋白质等分子水平的方法,用来诊断和预测疾病。
随着生物技术的飞速发展,分子诊断技术已经成为医学领域的重要研究方向。
本文将介绍分子诊断技术的原理、应用和前景。
一、分子诊断技术的原理分子诊断技术通过检测和分析个体的遗传物质来判断健康状况和病理状态。
它使用了一系列的技术手段,如聚合酶链反应(PCR)、芯片技术、基因测序等。
其中,PCR技术是分子诊断技术的核心和基础。
它通过扩增个体的DNA序列,从而使其能够被检测和分析。
二、分子诊断技术的应用1. 遗传性疾病诊断:分子诊断技术可以检测和分析个体的基因组,从而判断是否患有遗传性疾病。
例如,通过检测染色体异常,可以诊断唐氏综合征、血友病等疾病。
2. 肿瘤诊断:分子诊断技术在肿瘤的早期筛查和诊断中发挥着重要作用。
它可以检测肿瘤相关基因的突变,并进行肿瘤的分型和分级,指导临床治疗。
3. 感染病诊断:分子诊断技术可用于检测和鉴定病原体,如病毒、细菌和真菌等,快速诊断感染性疾病,提供针对性的治疗方案。
4. 精准医学:分子诊断技术可以根据患者的基因组信息,个性化制定治疗方案。
例如,根据患者的基因型判断特定药物的疗效和副作用,以实现精准医疗。
三、分子诊断技术的发展前景分子诊断技术在医学领域具有广阔的应用前景。
随着基因测序技术的不断进步和降低成本,分子诊断技术将更加普及和便捷,为疾病的预防、筛查、诊断和治疗提供更加有效和精准的手段。
此外,分子诊断技术的发展还将推动疾病的分型和个体化治疗。
通过深入研究基因组信息,我们可以更好地理解疾病的发生机制,寻找新的治疗靶点,并开发相应的靶向药物。
同时,随着人工智能和大数据等技术的融合,分子诊断技术的数据处理和分析能力将大大提高,为疾病的早期预警和精准预测提供更高效和可靠的支持。
综上所述,分子诊断技术作为一种新兴的医学技术,具有巨大的应用前景。
随着技术的不断进步和创新,相信分子诊断技术将在疾病诊断和治疗中发挥越来越重要的作用,为人类的健康事业做出更大的贡献。
分子诊断技术

分子诊断技术随着科技的不断发展,分子诊断技术逐渐成为医学界的一个热门话题。
分子诊断技术是指通过对人体细胞或体液中的分子进行分析和检测,以辅助实现疾病的早期诊断、治疗和预防,从而提高医学的精准性和个体化水平。
一、分子诊断技术的原理分子诊断技术主要通过检测和分析人体细胞或体液中的分子物质来判断人体是否存在病理性变化。
这些分子物质可以是DNA、RNA、蛋白质等。
分子诊断技术的基本原理是通过先对目标分子进行提取和扩增,再通过各种方法进行分析和检测,最后根据结果来判断病情或者进行预测。
二、分子诊断技术的应用领域分子诊断技术的应用领域非常广泛,涵盖了肿瘤学、微生物学、遗传学等多个学科。
在肿瘤学中,分子诊断技术可以通过检测肿瘤细胞中的某些特定分子,来判断患者肿瘤的类型和分级,以及选择最适合的治疗方案。
在微生物学中,分子诊断技术可以通过检测病原微生物的特定分子,来快速准确地诊断感染病原体,为患者提供合理的治疗方案。
在遗传学中,分子诊断技术可以通过检测患者DNA中的突变,来判断是否存在遗传性疾病的风险,为患者提供遗传咨询和预防措施。
三、分子诊断技术的优势与传统的诊断方法相比,分子诊断技术具有以下几个明显的优势。
首先,分子诊断技术具有高灵敏度和高特异性,可以在早期阶段就检测出微量的病理性变化,从而实现早期诊断和治疗。
其次,分子诊断技术可以进行个体化治疗,根据每个患者的个体差异来选择最适合的治疗方案,提高治疗效果。
再次,分子诊断技术具有快速和准确的特点,可以在短时间内给出检测结果,加快诊断速度和治疗进程。
此外,分子诊断技术还可以通过监测治疗过程中的分子变化,来评估治疗效果并进行个体化调整。
四、分子诊断技术的挑战和发展方向尽管分子诊断技术已经取得了很大的进展,但仍面临一些挑战。
首先,分子诊断技术在技术和设备上还存在一定的局限性,需要进一步提高检测的准确性和敏感性。
其次,分子诊断技术的应用范围和适用人群还需要进一步拓展和确定。
分子诊断学

分子杂交 技术
Southern 杂交技术 Northern 杂交技术 斑点杂交 原位杂交
12
常规PCR步骤: 1.变性:双链DNA模板在热作用下,氢键断裂,形成单链DNA 2.退火:系统温度降低,引物与DNA模板结婚,形成局部双链 3.延伸:在Taq酶的作用下,以dNTP为原料,合成与模板互补的DNA链 每一循环经过变性、退火和延伸,DNA含量增加一倍。
论为基础,利用分子生物学的技术
和方法研究人体内源性或外源性生
物大分子和大分子体系的存在、结
对象 内容 目的
构或表达调控的变化,为疾病的预
防、预测、诊断、治疗和转归提供
5
=≠ ? 分子诊断 基因诊断
基因诊断
分子诊断学包括:核酸诊断(DNA、RNA)、
蛋白质检测诊断
6
2.分子诊断学研究范畴
★利用分子生物学与其他相关学科的理论和方法,
分子诊断学
1999年11月,美国研究病理学会和分子 病理学协会创刊出版《The Journal of Molecular Diagnostics》杂志,标志着基因 诊断技术已经发展成为一个成熟的学科— —分子诊断学。
2
What ? Why ?
3
What ?
4
1.分子诊断学定义
方法、手段
分子诊断学是以分子生物学理
老年痴呆可以通过基因诊断进行早 期预测(与之相关的遗传位点至少有4个:APP、S182和 ) STM-2基因和APOE基因
携手共进,齐创精品工程
Thank You
世界触手可及
16
未来分子诊断三个重要发展方向 1.胚胎着床前诊断-早期产前诊断
即在囊胚8个细胞时期对细胞进行染色体核 型分析和原位杂交,从而将人类的遗传缺陷 控制在最早期阶段。
分子诊断知识科普

分子诊断知识科普分子诊断是一种基于分子生物学和遗传学原理的诊断方法,通过分析个体的基因、蛋白质或其他分子水平的信息,来判断其是否患有某种疾病或具有某种特定的遗传变异。
分子诊断可以通过检测基因突变、基因表达水平、蛋白质标记物等来识别疾病的存在或发展状态。
与传统的疾病诊断方法相比,分子诊断具有更高的准确性和灵敏度。
传统的诊断方法主要依靠临床症状、体征和影像学检查等,但这些方法往往无法提供足够的信息来进行准确的诊断。
而分子诊断则可以直接检测疾病相关的分子标记物,从而提供更为准确的诊断结果。
一、分子诊断的基本原理分子诊断的基本原理是通过检测和分析个体的基因组、转录组和蛋白质组等分子信息,来确定是否存在某种疾病或病理状态。
这种方法通常需要从患者的血液、体液或组织样本中提取并分析分子,并与正常个体或已知疾病个体的分子信息进行比对。
分子诊断的核心技术包括基因测序、PCR(聚合酶链式反应)、核酸杂交等。
其中,基因测序是一种通过测定DNA序列来获取个体基因信息的方法。
PCR是一种通过扩增DNA片段来增加检测灵敏度的方法。
核酸杂交则是一种通过将目标序列与一段互补的DNA或RNA序列结合来检测目标序列的方法。
通过这些技术,分子诊断可以检测到包括遗传疾病、感染病、肿瘤等在内的多种疾病。
例如,通过检测BRCA1和BRCA2基因的突变可以判断一个人是否患有乳腺癌或卵巢癌的遗传风险。
通过检测某种病原体的DNA或RNA可以确定感染者的感染状态。
通过检测肿瘤细胞中的特定基因突变可以确定肿瘤的类型和治疗策略。
二、分子诊断的应用领域分子诊断在医学领域有着广泛的应用。
下面将介绍一些常见的应用领域。
1. 遗传疾病诊断:分子诊断可以通过检测个体的基因突变来确定遗传疾病的存在和风险。
例如,通过检测孩子的基因突变可以确定其是否患有遗传性疾病,如先天性心脏病、遗传性失聪等。
2. 传染病诊断:分子诊断可以通过检测病原体的DNA或RNA来确定感染病的存在和类型。
分子诊断学知识点总结

分子诊断学知识点总结分子诊断学是指利用分子生物学的技术和方法,对生物体内的DNA、RNA、蛋白质等分子水平进行诊断和检测的一门学科。
随着分子生物学技术的不断发展和进步,分子诊断学在临床诊断、疾病预防和治疗等方面发挥着越来越重要的作用。
下面将对分子诊断学的基本原理、常见技术和应用进行概述。
一、基本概念1. DNA、RNA和蛋白质的基本结构和功能DNA是生物体内的遗传物质,包含了细胞的遗传信息,主要存在于细胞核中。
RNA是一种中间体分子,可以将DNA中的遗传信息转录成蛋白质。
蛋白质是生物体内的重要分子,是细胞结构和功能的基本单位。
2. 基因突变与疾病基因是决定生物性状的遗传信息的单位,基因突变是指基因序列发生了变化,可能导致蛋白质功能异常,甚至引发疾病。
3. 分子诊断学的基本原理分子诊断学利用分子生物学技术对生物体内的分子进行检测和分析,从而实现疾病的诊断、预防和治疗。
二、常见技术1. 聚合酶链式反应(PCR)PCR是一种在体外扩增DNA片段的技术,可以从少量的DNA样本中扩增出大量的DNA片段,是分子诊断学中常用的技术手段。
2. 核酸杂交技术核酸杂交技术是一种通过DNA或RNA的互补配对进行检测的方法,可以用于寻找特定基因或病毒的存在。
3. 蛋白质质谱分析蛋白质质谱分析是一种通过蛋白质的质量和结构来对蛋白质进行分析和检测的技术。
4. 基因测序技术基因测序技术是一种对DNA序列进行测定和分析的技术,可以帮助人们了解基因的结构和功能。
5. 基因芯片技术基因芯片技术是一种可以在一个芯片上同时检测多个基因的技术,可以用于疾病的诊断和预测。
三、应用领域1. 临床诊断分子诊断学在临床诊断中可以对各种疾病进行快速和精准的诊断,如肿瘤、遗传病、感染病等。
2. 疾病预防分子诊断学可以通过对病原体的检测和分析,帮助人们预防感染性疾病的发生和传播。
3. 个体化治疗分子诊断学可以根据个体的基因信息,为患者提供个性化的治疗方案,提高治疗的效果和减少副作用。
分子诊断分析

分子诊断分析分子诊断分析是一种先进的生物技术,在医学领域起着重要的作用。
它通过检测和分析个体的遗传物质,如DNA和RNA,来确定疾病的存在和相关病因,从而为个体提供准确的诊断和治疗方案。
本文将探讨分子诊断分析的原理、应用以及未来发展趋势。
一、分子诊断分析的原理分子诊断分析的原理是基于个体的遗传物质中存在着与疾病相关的变异。
DNA是个体的遗传信息库,而RNA则是将该信息转录和翻译为蛋白质的媒介。
通过检测和分析DNA和RNA中的特定序列,我们可以确定是否存在特定的致病基因、突变等。
分子诊断分析通常包括以下几个步骤:1. 样本采集:通常从患者的血液、唾液、尿液、组织等处采集样本,以提取其中的遗传物质作为分析的基础。
2. DNA/RNA提取:利用化学方法或自动提取系统,将样本中的DNA/RNA分离和提取出来。
3. 扩增:通过聚合酶链反应(PCR)等方法,将目标DNA/RNA扩增至足够的数量,以便进行后续的分析。
4. 检测和分析:利用不同的技术手段,如聚合酶链反应、电泳、基因芯片等,对扩增的DNA/RNA进行检测和分析,以鉴定是否存在特定的变异。
二、分子诊断分析的应用1. 遗传疾病的诊断:许多疾病具有遗传性,通过检测个体的DNA序列,我们可以确定是否存在与疾病相关的突变或致病基因,从而为疾病的早期诊断提供依据。
2. 药物治疗反应的预测:个体对药物的反应往往与其基因有关,通过分子诊断分析,我们可以预测个体对特定药物的反应,从而为个体提供个体化的治疗方案。
3. 癌症的早期诊断:某些癌症具有特定的DNA或RNA序列变异,通过分子诊断分析,我们可以在癌症早期发现这些变异,从而提供早期诊断和治疗机会。
4. 微生物感染的检测:分子诊断分析还可以用于检测和鉴定各种细菌、病毒和真菌等微生物感染,有助于指导治疗和控制传染病的传播。
三、分子诊断分析的发展趋势分子诊断分析正不断发展和创新,以满足临床实践的需求。
以下是一些未来发展的趋势:1. 新技术的应用:随着技术的不断突破,新的分子诊断分析技术不断涌现,如基因测序技术、单细胞分析技术等,这些新技术将为分子诊断分析提供更准确、更高通量的手段。
分子诊断及其临床应用
总结词
通过分子诊断技术,对遗传性疾病进行早期筛查和预 防,降低疾病的发生率和危害。
详细描述
利用基因检测技术,检测遗传性疾病相关基因突变, 为有遗传性疾病家族史的人群提供早期筛查服务。通 过早期筛查,及时发现潜在风险,采取相应的预防措 施,降低遗传性疾病的发生率和危害。
案例三:病毒检测在疫情防控中的作用
高灵敏度与特异性
分子诊断技术能够检测到极低浓度的病原体 或异常基因,提供更准确的诊断结果。
早期诊断
分子诊断有助于在疾病早期发现,从而提高 治愈率,降低治疗成本。
个性化治疗
通过对基因突变等进行检测,为患者提供更 个性化的治疗方案。
监测治疗效果
实时监测患者体内病原体或异常基因的变化 ,指导调整治疗方案。
详细描述
基因芯片技术利用微阵列技术将大量基因探 针固定在硅片、玻璃片或聚合物薄膜等固相 支持物上,通过与标记的样本进行杂交,检 测出样本中与探针互补的核酸序列。基因芯 片技术可应用于基因表达谱分析、单核苷酸 多态性检测、基因组测序等方面,具有高通
量、词
生物信息学分析是通过计算机技术对生物学数据进行分析和挖掘,以揭示生命现象的本 质和规律。
分子诊断及其临床应用
汇报人:可编辑 2024-01-10
目录
• 分子诊断概述 • 分子诊断技术 • 分子诊断在临床应用中的优势与挑战 • 分子诊断在常见疾病中的应用 • 分子诊断的伦理和社会影响 • 案例研究
01 分子诊断概述
定义与特点
定义
分子诊断是指利用分子生物学技术, 对生物样本进行检测和分析,以评估 和预测疾病状态、进程和治疗效果的 方法。
要点一
总结词
要点二
详细描述
利用分子诊断技术,快速、准确地检测病毒,为疫情防控 提供有力支持。
分子诊断的基本原理是
分子诊断的基本原理是
通过检测和分析生物体内的分子,来诊断疾病或评估健康状况的一种诊断方法。
分子诊断的基本原理包括以下几个步骤:
1. 样本采集:从患者体内获取可能含有疾病相关分子的样本,如血液、尿液、唾液等。
2. DNA/RNA提取:将样本中的细胞或者病原体进行分离,并提取出其中的DNA 或RNA。
3. 分子放大:使用聚合酶链式反应(PCR)等技术将提取的DNA或RNA进行放大,以增加其检测的敏感度。
4. 分子检测:对放大后的DNA或RNA进行检测,常见的方法包括聚合酶链式反应、实时荧光PCR、核酸激发等。
5. 数据分析:将检测结果进行分析和解读,判断样本中是否存在疾病相关的分子。
6. 结果解释:将数据分析结果与临床症状、其他检查结果等进行综合考虑,做出准确的诊断或评估。
通过分子诊断,可以检测到病原体、突变基因、染色体异常等与疾病相关的分子,帮助医生进行准确的诊断,并指导治疗方案的选择和调整。
分子诊断简介介绍
要点二
公共卫生
分子诊断在传染病监测、疫情调查和预测等方面具有重要 作用,有助于及时采取防控措施,保障公众健康。
04
分子诊断在食品安全领域的应用
食品中的有害物质检测
01
02
03
农药残留检测
通过分子诊断技术可以检 测出食品中残留的农药成 分,确保食品的安全性。
毒素检测
分子诊断技术可以检测出 食品中的毒素成分,如黄 曲霉素等,从而避免食品 中毒的发生。
灵敏度
分子诊断技术需要不断提高检测灵敏度,以 便更早、更准确地检测出疾病或病原体。
特异性
为避免误诊,分子诊断技术需具备更高的特 异性,以准确区分不同的疾病或病原体。
实现多目标同时检测和鉴定
多目标检测
同时检测多种疾病或病原体,提高诊断效率。
鉴定与分型
对疾病或病原体进行鉴定和分型,有助于更准确地判断 病情和治疗方案。
反向分子杂交技术
反向分子杂交技术是一种基于DNA-DNA杂交的技术,通过使用特异性设计的 DNA探针,能够检测样本中是否存在与探针互补的DNA序列,实现对基因多态 性的分析。
基于生物芯片的技术
DNA芯片技术
DNA芯片技术是一种高通量的DNA检测技术,通过在芯片表 面固定大量的DNA探针,能够同时检测样本中是否存在与探 针互补的DNA序列,实现对多种病原体的快速检测。
肿瘤的诊断与预后判断
肿瘤标志物检测
分子诊断可检测肿瘤标志物,如癌胚抗 原、甲胎蛋白等,辅助诊断肿瘤并评估 病情进展。
VS
基因突变与预后判断
分子诊断可检测肿瘤细胞的基因突变,有 助于判断患者的预后和治疗效果,为制定 个性化治疗方案提供依据。
其他疾病的应用前景
要点一
医学诊断中的分子诊断技术
医学诊断中的分子诊断技术随着科技的进步,医学诊断中的分子诊断技术也在不断发展。
分子诊断技术是指通过分析人体内分子水平的变化来判断疾病的发生、发展和治疗效果的一种诊断技术。
分子诊断技术具有高灵敏度、高准确性和高特异性等特点,越来越受到医学界的重视和广泛应用。
一、分子诊断技术的分类分子诊断技术按照检测的分子类型可分类为核酸分子和蛋白质分子检测。
其中,核酸检测主要采用聚合酶链式反应(PCR)技术,可以用于检测细菌、病毒和遗传性病等;蛋白质检测主要采用质谱分析技术,可以用于检测肿瘤标记物和蛋白质组学等。
二、分子诊断技术的应用1. 基因诊断分子诊断技术可以用于遗传病的预测和诊断。
例如,PCR技术可以用于检测常染色体遗传病和X染色体遗传病等。
另外,单核苷酸多态性(SNP)分析技术也可以用于遗传性疾病的预测和诊断。
2. 肿瘤诊断分子诊断技术可以通过检测肿瘤标记物来判断是否患有肿瘤、肿瘤的类型和分期等。
例如,前列腺特异抗原(PSA)是前列腺癌的特异标志物,可以通过他免疫测定(ELISA)技术来检测。
3. 药物代谢特异性分子诊断技术可以通过检测某些基因的突变来判断患者对某种药物的代谢特异性。
例如,对于治疗结直肠癌的靶向药物铂类药物,患者中如果存在铂类药物代谢酶基因突变,则该种药物的治疗效果会有显著差异。
4. 病毒检测分子诊断技术可以用于检测传染性疾病的病原体,尤其是病毒。
例如,PCR技术可以检测乙肝病毒、丙肝病毒和艾滋病病毒等。
三、分子诊断技术的优势和局限性优势:1. 高灵敏度:分子诊断技术可以检测非常微小的分子浓度,达到很高的灵敏度,诊断效果更为准确。
2. 高特异性:由于分子诊断技术可以检测非常特异的分子,所以特异性非常高,误诊率低。
3. 操作简便:与传统诊断技术相比,分子诊断技术操作简便,不需要复杂的仪器和技术,可以快速得到检测结果。
局限性:1. 检测成本高:目前分子诊断技术仍然需要昂贵的仪器和耗材,检测成本相对较高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分子诊断学重点内容(Navy)1、分子诊断学(molecular diagnostics)是利用分子生物学技术来研究机体外源性和内源性生物大分子和大分子体系的存在、结构或表达调控的改变,从而为疾病的预测、预防、诊治和转归提供分子水平信息。
2、基因:是一段携带功能产物(多肽,蛋白质,tRNA和rRNA和某些小分子RNA)信息的DNA片段,是控制某种性状的的遗传单位。
3、密码子偏爱(codon bias )指在不同物种的基因中经常为某种氨基酸编码的只是其中的一个密码子。
当鉴别到一个ORF时,密码子偏爱常常用来确定这个ORF是否是一个基因。
4、基因组(genome):指一个细胞或生物体的一套完整的单倍体遗传物质。
5、C值矛盾:生物体的进化程度与基因组大小之间不完全成比例的现象称为C值矛盾也称C值佯谬( C value paradox)6、N值矛盾:基因组中基因数目与生物进化程度或复杂程度的不对称性,称为N值矛盾或N值佯谬(N value paradox)。
7、基因组计划是指以获得某物种基因组全序列为主要目标的科学计划。
8、厘摩尔根(cM)即重组频率为1%的两个基因间的遗传距离9、基因组学(Genomics)指对所有基因进行基因组作图(包括遗传图谱、物理图谱、转录图谱)核苷酸序列分析,基因定位和基因功能分析的一门科学。
10、鉴别蛋白质编码基因的五项标准是什么?开放阅读框、密码子偏爱、序列保守性、转录产物、基因失活 11、原核生物是细菌等原始生物的总称,是最简单的细胞生物体12、质粒:独立于细菌细胞染色体以外,能自主复制并稳定遗传的共价闭合环状DNA(cccDNA)分子,称为质粒(plasmid)13、琼脂糖凝胶电泳泳动速度:超螺旋DNA分子>线性DNA分子>半开环DNA分子14、接合作用(conjugation)当细胞与细胞、或细菌通过菌毛相互接触时,质粒DNA从一个细胞(细菌)转移至另一细胞(细菌)的DNA转移称为接合作(conjugation)。
15、转化作用 (transformation)通过自动获取或人为地供给外源DNA,使细胞或培养的受体细胞获得新的遗传表型,称为转化作用(transformation)。
16、转导: 以噬菌体为媒介把细菌的基因从一个细菌细胞转移到另一个细菌细胞的过程.一般是针对温和噬菌体, 溶血性噬菌体则不会发生转导.17、转染: 病毒侵入宿主细胞过程. 对原核生物说, 转染是噬菌体侵入细菌细胞的过程 18、转座:由插入序列和转座子介导的基因移位或重排称为转座(transposition)。
19、转座因子可移动的基因成分,即能在一个DNA分子内部或两个DNA分子之间移动的DNA片段,称为转座因子(transposable element ) 在细菌中,指可在质粒和染色体之间或质粒和质粒之间可移动的DNA片段20、转座因子的分类:插入序列、转座子、可转座的噬菌体 21、基因转移的方式:接合、转化、转导、转染 22、真核生物基因组的一般特征(一)基因组庞大(二)线状双链DNA和二倍体(三)非编码区远多于编码区(四)断裂基因(split gene)(五)大量重复序列存在23、卫星DNA:由于这类序列的碱基组成不同于其他部份,可用等密度梯度离心法将其与主体DNA 分开,因而称为卫星DNA (或随体DNA)24、中度重复序列片段较长(100-几千bp)具有种属特异性,可作为DNA标记 25、基因家族(gene family)一组功能相似且核苷酸序列具有同源性的基因,在进化过程中从一个祖先基因经重复和突变演变而来的。
26、假基因(pseudogene)与具正常功能的基因序列相似,但无转录功能或转录产物无功能的基因。
27、所有组蛋白基因都不含内含子,而且组蛋白基因序列都很相似,从而编码的组蛋白在结构上和功能上也极为相似 28、质粒与核DNA区别:1.非孟德尔的母系遗传2.高突变率3.异质性和复制分离4.阈值效应5.半自主复制与协同作用29、线粒体病:由于线粒体呼吸链功能不良所导致的临床表现多样化的一组疾病。
30、CpG岛:大约有一半的人类基因富含CpG的顺序,称为CpG岛31、单核苷酸的多态性( single nucleotide polymorphism, SNP) 主要用途:①疾病的连锁分析与基因的定位②指导用药和药物设计③用于进化和种群多样性的研究32、短串联重复序列 ( short tandem repeat , STR)STR在人类基因组内平均15-20kb就有一个STR 点位,占基因组的10%,多存在于非编码区及内含子中。
主要用途:①人类基因遗传图谱的制作。
②目的基因筛选和基因诊断。
③法医学个体识别和亲权鉴定。
33、病毒(virus)是一类比较原始的、有生命特征的、能够自我复制的、严格细胞内寄生的非细胞生物,是结构最简单、最微小的生命形式。
34、末端正向重复序列又称末端冗余(terminal redundancy)是指双链DNA分子两端有一段相同的核苷酸序列35、末端反向重复序列(inverted terminal repeat,ITR)指病毒基因组两端的反向互补重复序列。
ITR可能与病毒的复制、转录及整合有关36、重叠基因:许多病毒基因组的一段DNA序列有两个或两个以上的开放读码框架,可以编码两种或两种以上的多肽链,称为重叠基因37、分段基因组:指病毒基因组由数条不同的核酸分子组成,多见于RNA病毒 38、乙肝病毒(hepatitis B virus,HBV)是目前已知感染人类的最小的双链DNA病毒39、RNA病毒基因组为线状单链或双链,正链RNA病毒基因组均为线状RNA分子仅HDV的负链RNA病毒基因组为环状,其余的负链RNA病毒均为线状40、正链RNA病毒:基因组序列与mRNA相同,可直接作蛋白质合成的模板,此类RNA病毒具有侵染能力41、负链RNA(-RNA)病毒:基因组序列与mRNA互补,基因组只有在其核衣壳蛋白转录酶存在下,才具有侵染能力42、蛋白质组是指特定细胞、组织乃至机体作为一个生命单元中所拥有蛋白质的集合,即生命体中携带的基因信息在某一时段所表达的全部蛋白质。
43、蛋白质组学是指对在特定的时间和环境下所表达的群体蛋白质研究的一门学问。
主要在蛋白质水平上探索蛋白质的表达模式、作用模式、功能机制、调节控制以及蛋白质群体内的相互作用。
是在生物体或其细胞的整体蛋白质水平上进行的,并从一个机体或一个细胞的蛋白质整体活动来揭示生命的规律。
44、二维凝胶电泳是目前蛋白质组研究中最有效的分离技术。
它由两向电泳组成,第一向以蛋白质电荷差异为基础进行分离的等电聚焦凝胶电泳,第二向是以蛋白质分子量差异为基础的SDS-聚丙烯酰胺凝胶电泳。
45、质谱技术是样品分子离子化后,根据不同离子间的质量、电荷比值(质荷比,m/z)差异来确定分子量的技术。
46、凝胶滞后实验是近年来发展起来的用聚丙烯酰胺凝胶电泳直接分析核酸与蛋白质结合的简单、快速、敏感方法。
通过蛋白质与末端标记的核酸探针特异性结合,电泳时这种复合物较无蛋白结合的探针在凝胶中的泳动速度要慢,即表现为相对滞后。
47、细胞的破碎方法机械法:液体剪切法与固体剪切法本法不适合于染色体DNA的分离与纯化非机械法:干燥法与溶胞法溶胞法温和,能保证较高的得率与较好地保持核酸的完整性而得到广泛的应用 48、核酸的分离与纯化应去除的污染物主要包括非核酸的大分子污染物非需要的核酸分子在核酸的分离纯化过程中加入的对后继实验与应用有影响的溶液与试剂49、核酸浓缩最常用的方法---沉淀。
其优点很容易地调整核酸溶液至所需浓度,能去除部分杂质与某些盐离子。
50、核酸沉淀的洗涤:用70%~75%的乙醇51、核酸浓度测定紫外分光光度法:适用于>0.25µg/ml的核酸溶液52、荧光光度法: 用溴化乙锭(EB)。
灵敏度可达1ng~5ng,适合低浓度核酸溶液的定量分析。
SYBR Gold作为一种新的超灵敏荧光染料,可检出<20pg的双链DNA53、核酸纯度鉴定(1) 紫外分光光度法:A260/A280纯DNA比值为1.8,纯RNA比值为2.0。
比值升高与降低均表示不纯。
比值为1.8的DNA溶液不一定为纯的DNA溶液一般28S RNA的荧光强度约为18S RNA的2倍,否则提示有RNA的降解。
如果在加样槽附近有着色条带,则说明有DNA的污染。
54、核酸的保存DNA的保存 DNA溶于TE缓冲液中在-70℃可以储存数年。
RNA的保存 RNA可溶于0.3mol/L NaAc溶液或双蒸水中,在-70℃至-80℃保存。
以焦碳酸二乙酯(DEPC)水溶解RNA可延长保存时间。
RNA沉淀溶于70%乙醇或去离子甲酰胺液中,可在-20℃中长期保存。
55、基因组DNA分离与纯化的方法酚抽提法、甲酰胺解聚法、玻棒缠绕法、其他DNA快速提取法 56、裂解缓冲液中各成分的作用:EDTA:二价金属离子螯合剂,可抑制DNA酶活性,并降低细胞膜的稳定性。
SDS:阴离子去污剂,可降解细胞膜、乳化脂质和蛋白质,并使它们沉淀,同时降解DNA酶。
无DNA酶的RNA酶:可有效水解RNA而避免DNA的消化蛋白酶K:水解蛋白质,可消化DNA酶和细胞中的蛋白质。
酚:可使蛋白变性沉淀、抑制DNA酶活性。
pH8.0的Tris溶液:能保证抽提后DNA进入水相,而避免滞留于蛋白质层。
57、甲酰胺是一种离子化溶剂, 其作用:裂解蛋白质与DNA的复合物、使释放的蛋白质变性、对蛋白酶K的活性无显著影响 58、玻璃缠绕法得到的DNA用途:构建基因组DNA文库、Southern印迹、PCR扩增59、从琼脂糖凝胶中回收DNA片段DEAE纤维素膜插片电泳法操作简单、对小于5kb片段回收率好、回收DNA纯度高、但不能回收单链DNA、不适于大于15kb的DNA片段回收。
电泳洗脱法液氮冷冻挤压法低熔点琼脂糖凝胶块回收法商品试剂盒(柱层析) 60、从聚丙烯酰胺凝胶中回收DNA片段标准方法:压碎与浸泡法本法能很好地回收<1kb的单链或双链DNA61、碱裂解法提取质粒DNA基本原理: pH12.6高碱性条件下,染色体DNA和质粒DNA都变性,但质粒DNA超螺旋共价闭合环状结构的两条互补链不会完全分离。
当以pH4.8的KAc高盐缓冲液调节其pH至中性时,变性的质粒DNA又恢复到原来构型,保存在溶液中。
染色体DNA不能复性而形成缠连的网状结构。
通过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来而被除去。
62、质粒纯化:CsCl-EB等密度梯度超速离心法(标准方法) 63、聚乙二醇(PEG)沉淀法优点:简单、经济、适用广泛,尤其对碱裂解法提取质粒的纯化效果好. 适用: 分子克隆中所有常规的酶学反应、高效的哺乳动物细胞的转染。