周期信号的傅里叶级数和频谱分析

周期信号的傅里叶级数和频谱分析
周期信号的傅里叶级数和频谱分析

实验报告

课程名称信号与线性系统分析

实验名称周期信号的傅里叶级数和频谱分析实验类型验证(验证、综合、设计、创新)

3日实验四、周期信号的傅里叶级数和频谱分析1实验目的

1)学会利用MATLAB分析傅里叶级数展开,并理解傅里叶级数的物理含义;

2)学会利用MATLAB分析周期信号的频谱特性。

2实验原理及实例分析

周期信号可以再函数的区间里展成在完备正交信号空间中的无穷级数。如果完备的正交函数集是三角函数集或指数函数集,那么,周期信号所展开的无穷级数就分别成为“三角型傅里叶级数”或“指数型傅里叶级数”,统称为傅里叶级数。

2.1周期信号的傅里叶级数

(基本原理请参阅教材第四章的4.1节和4.2节。)

例1:周期方波信号)(t f 如图1所示,试求出该信号的傅里叶级数,利用MATLAB 编程实现其各次谐波的叠加,并验证Gibbs 现象。

图1 周期方波信号)(t f 的波形图

解:从理论分析可知,周期方波信号)(t f 的傅里叶级数展开式为

)9sin 9

17sin 715sin 513sin 31(sin 4)(00000 +++++=t t t t t t f ωωωωωπ 其中,ππω220==

T 。则可分别求出1、3、5、9、19、39、79、159项傅里叶级数求和的结果,其MATLAB 程序如下,产生的图形如图2所示。 close all;clear all;

clc

t = -2:0.0001:2;

omega = 2 * pi;

y = square(2 * pi * t,50);

n_max = [1 3 5 9 19 39 79 159];

N = length(n_max);

for k = 1:N

fk = zeros(1,length(t));

for n = 1:2:n_max(k)

bn = 4 / (pi * n);

fk = fk + bn * sin(n * omega * t);

end

figure;plot(t,y,t,fk,'Linewidth',2);

xlabel('t(sec)');ylabel('部分和的波形');

f(t)

t(sec)

String = ['最大谐波数=',num2str(n_max(k))];

axis([-2 2 -3 3]);grid;title(String);

disp([String,'时,在信号跳变点附近的过冲幅度(%)']);

f_max = (max(fk) - max(y)) / (max(y) - min(y)) * 100

end

t(sec)部分和的波形最大谐波数=1

t(sec)部分和的波形最大谐波数=3

t(sec)部分和的波形最大谐波数=5

t(sec)部分和的波形

t(sec)部分和的波形最大谐波数=19

t(sec)部分和的波形最大谐波数=39

t(sec)部分和的波形最大谐波数=79

图2 例1程序产生的图形

程序输出的用于验证Gibbs 现象的数值分别为:

13.6620 10.0211 9.4178 9.1164 8.9907 8.9594 8.9484 8.9464

2.2周期信号的频谱分析

(基本原理请参阅教材第四章的4.3节。)

例2:已知周期矩形脉冲信号)(t f 的脉冲幅度为1=A ,宽度为τ,重复周

期为T (角频率T

πω20=)。将其展开为复指数形式的傅里叶级数,研究周期矩形脉冲的宽度τ和周期T 变化时,对其频谱的影响。

解:根据傅里叶级数理论可知,周期矩形脉冲信号的傅里叶系数为

??

? ??=??? ??=??? ??=??? ??Ω=T n A T n Sa A T n Sa A n Sa A F n ττπτττπτττsinc 222 各谱线之间的间隔为T

π2=Ω。图3画出了1=τ、10=T ,1=τ、5=T 和2=τ、10=T 三种情况下的傅里叶系数。MATLAB 程序如下。

close all

clear all

clc

tau = 1; T = 10;

w1 = (-8 * pi) : (2 * pi / T) : (8 * pi);

fn = tau * sinc(w1 / pi * tau / 2);

subplot(311);stem(w1, fn);grid;

title('\tau = 1,T = 10');

axis([-25 25 -0.5 2]);

tau = 1; T = 5;

t(sec)部分和的波形

w2 = (-8 * pi) : (2 * pi / T) : (8 * pi);

fn = tau * sinc(w2 / pi * tau / 2);

subplot(312);stem(w2,fn);grid;

title('\tau = 1, T = 5');

axis([-25 25 -0.5 2]);

tau = 2; T = 10;

w3 = (-8 * pi) : (2 * pi / T) : (8 * pi);

fn = tau * sinc(w3 / pi * tau / 2);

subplot(313);stem(w3,fn);grid;

title('\tau = 2, T = 10');

axis([-25 25 -0.5 2]);

τ = 1,T = 10

-25-20-15-10-50510152025

τ = 1, T = 5

-25-20-15-10-50510152025

-25-20-15-10-50510152025

图3 例2程序产生的波形图

3实验报告与要求

请简要说明对信号进行傅里叶级数展开的原理及其物理意义,简要说明Gibbs现象,并解释周期信号频谱与脉冲宽度τ和周期T之间的关系。

答:吉布斯现象:合成波所包含的谐波分量越多时,除间断点附近外,它月接近于原方波信号。在间断点附近,随着所含谐波次数的增高,合成波形的尖峰越靠近间断点,单尖峰幅度并未减小。可以证明,即使合成波形所含的谐波次数趋于无穷时,在间断点仍有9%的偏差,这种现象就叫做吉布斯现象。

周期信号频谱与脉冲宽度和周期间的关系:

由1,3图可见,周期相同时,相邻频谱线的间隔相同;脉冲宽度越窄,起频谱包络先第一个零点频率越高,信号带宽越宽;可见,信号的频带宽度与脉冲

宽度成反比。

有1,2图可见,这时的频谱包络线的零点所在位置不变,而当周期增长时,相邻谱线的间隔减小,频谱变密。如果周期信号无限增长,那么相邻谱线的间隔将趋于零,周期信号的离散频谱就过渡为飞周期信号的连续频谱。

实验总结:

学会了用MATLAB分析傅里叶级数的展开,并理解起含义。并学会将周期函数转换成傅里叶级数,将方波信号变为傅里叶的展开,傅里叶的扩充,有信号信息推出原信号。还验证了吉布斯现象;通过将周期信号变为复数形式的傅里叶展开式,弄清了周期信号频谱与脉冲宽度和周期间的关系。并了解到信号波动的变化随系统信号的增加,位置越靠近端点。

实验一 离散时间信号与系统的傅里叶分析

电子信息工程系实验报告 课程名称: 数字信号处理 实验项目名称:实验1 离散时间信号与系统的傅里叶分析 时间: 2012-3-17 班级:电信092 姓名:XXX 学号:910706201 实 验 目 的: 用傅里叶变换对离散时间信号和系统进行频域分析。 实 验 环 境: 计算机、MATLAB 软件 实 验 原 理: 对信号进行频域分析即对信号进行傅里叶变换。对系统进行频域分析即对其单位脉冲响应进行傅里叶变 换,得到系统的传输函数;也可由差分方程经过傅里叶变换直接求其传输函数,传输函数代表的就是频率响应特性。而传输函数是w 的连续函数,计算机只能计算出有限个离散频率点的传输函数值,故可在0~2∏之间取许多点,计算这些点的传输函数的值,并取它们的包络,所得包络即所需的频率特性。 实 验 内 容 和 步 骤: 1、已知系统用下面差分方程描述:y (n )=x (n )+ay (n -1),试在a =0.95和a =0.5 两种情况下用傅立叶变换分析系统的频率特性。要求写出系统的传输函数,并打印|H (e j ω)|~ω曲线。 解:B=1;A=[1,-0.95]; [H,w]=freqz(B,A,'whole'); subplot(1,3,1);plot(w/pi,abs(H),'linewidth',2);grid on; xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性'); axis([0,2,0,2.5]); B=1;A=[1,-0.5];[H,w]=freqz(B,A,'whole'); subplot(1,3,3);plot(w/pi,abs(H),'linewidth',2);grid on; xlabel('\omega/\pi');ylabel('|H(e^j^\omega)|');title('幅频响应特性'); axis([0,2,0,2.5]); 图形如下图1、2所示: 图1 a=0.95时的幅频响应特性 图2 a=0.5时的幅频响应特性 2、已知两系统分别用下面差分方程描述: y 1(n )=x (n )+x (n -1) y 2(n )=x (n )-x (n -1) 试分别写出它们的传输函数,并分别打印|H (e j ω)| ~ω曲线。 解:B=[1,1];A=1;[H,w]=freqz(B,A,'whole'); subplot(1,2,1);plot(w/pi,abs(H),'linewidth',2);grid on; 成 绩: 指导教师(签名):

周期矩形信号的频谱分析

1.周期信号的频谱 周期信号在满足一定条件时,可以分解为无数三角信号或指数之和。这就是周期信号的傅里叶级数展开。在三角形式傅里叶级数中,各谐波分量的形式为()1cos n n A n t ω?+;在指数形式傅里叶级数中,分量的形式必定为1j n t n F e ω 与1-j -n t n F e ω 成对出现。为了把周期信号所具有的各 次谐波分量以及各谐波分量的特征(如模、相角等)形象地表示出来,通常直接画出各次谐波的组成情况,因而它属于信号的频域描述。 以周期矩形脉冲信号为lifenxi 周期信号频谱的特点。周期矩形信号在一个周期(-T/2,T/2)内的时域表达式为 ,2 0,>2 ()A t T t f t ττ ≤?=?? (2-6) 其傅里叶复数系数为 12 n n A F Sa T ωττ?? = ??? (2-7) 由于傅里叶复系数为实数,因而各谐波分量的相位为零(n F 为正)或为π±(n F 为负),因此不需要分别画出幅度频谱n F 与相位频谱n φ。可以直接画出傅里叶系数n F 的分布图。 如图2.4.1所示。该图显示了周期性矩形脉冲信号()T f t 频谱的一些性质,实际上那个也是周期性信号频谱的普遍特性: ① 离散状频谱。即谱线只画出现在1ω的整数倍频率上,两条谱线的间隔为1ω(等于2π/t )。 ② 谱线宽度的包络线按采样函数()1/2a S n ωτ的规律变化。如图2.4.2所示。但1ω 为 2π τ 时,即( )2m π ωτ =(m=1,2,……)时,包络线经过零点。在两相邻 零点之间,包络线有极值点,极值的大小分别为-0.212()2A T τ,

实验:典型信号频谱分析报告

实验3.2 典型信号频谱分析 一、 实验目的 1. 在理论学习的基础上,通过本实验熟悉典型信号的波形和频谱特征,并 能够从信号频谱中读取所需的信息。 2. 了解信号频谱分析的基本方法及仪器设备。 二、 实验原理 1. 典型信号及其频谱分析的作用 正弦波、方波、三角波和白噪声信号是实际工程测试中常见的典型信号,这些信号时域、频域之间的关系很明确,并且都具有一定的特性,通过对这些典型信号的频谱进行分析,对掌握信号的特性,熟悉信号的分析方法大有益处,并且这些典型信号也可以作为实际工程信号分析时的参照资料。本次实验利用DRVI 快速可重组虚拟仪器平台可以很方便的对上述典型信号作频谱分析。 2. 频谱分析的方法及设备 信号的频谱可分为幅值谱、相位谱、功率谱、对数谱等等。对信号作频谱分析的设备主要是频谱分析仪,它把信号按数学关系作为频率的函数显示出来,其工作方式有模拟式和数字式二种。模拟式频谱分析仪以模拟滤波器为基础,从信号中选出各个频率成分的量值;数字式频谱分析仪以数字滤波器或快速傅立叶变换为基础,实现信号的时—频关系转换分析。 傅立叶变换是信号频谱分析中常用的一个工具,它把一些复杂的信号分解为无穷多个相互之间具有一定关系的正弦信号之和,并通过对各个正弦信号的研究来了解复杂信号的频率成分和幅值。 信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。时域信号x(t)的傅氏变换为: 式中X(f)为信号的频域表示,x(t)为信号的时域表示,f 为频率。 3. 周期信号的频谱分析 周期信号是经过一定时间可以重复出现的信号,满足条件: dt e t x f X ft j ?+∞ ∞--=π2)()(

傅里叶分析实验报告

班级: 姓名: 学号: 实验日期: 一、实验名称脉搏、语音及图像信号的傅里叶分析 二、实验目的 1、了解常用周期信号的傅里叶级数表示。 2、了解周期脉搏信号、语音信号及图像信号的傅里叶分析过程 3、理解体会傅里叶分析的理论及现实意义 三、实验仪器 脉搏语音实验仪器,数字信号发生器,示波器 四、实验原理 1、周期信号傅里叶分析的数学基础 任意一个周期为T 的函数f(t)都可以表示为傅里叶级数: 0001 0000000001()(cos sin )21()()1()cos()() 1()sin()()n n n n n f t a a n t b n t a f t d t a f t n t d t b f t n t d t ππ πππ πωωωωπωωωπωωωπ∞=---=++== =∑??? 其中0ω为角频率,称为基频,0a 为常数,n a 和n b 称为第n 次谐波的幅 值。任何周期性非简谐交变信号均可用上述傅里叶级数进行展开,即分解为一系列不同次谐波的叠加。 对于如图1所示的方波,一个周期内的函数表达式为: (0t<)2() (-t 0)2h f t h ππ?≤??=??-≤

其傅里叶级数展开为: 0100041()()sin(21)21411(sin sin 3 sin 5)35n h f t n t n h t t t ωπωωωπ∞==--=+++∑L 同理:对于如图2所示的三角波,函数表达式为: 4t (-t<)44()232(1) (t )44h T T f t t T T h T π?≤??=??-≤

周期信号的频谱分析

信号与系统 实验报告 实验三周期信号的频谱分析 实验报告评分:_______ 实验三周期信号的频谱分析 实验目的: 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs现象”,了解其特点以及产生的原因;

3、掌握各种典型的连续时间非周期信号的频谱特征。 实验内容: (1)Q3-1 编写程序Q3_1,绘制下面的信号的波形图: 其中,0 = 0.5π,要求将一个图形窗口分割成四个子图,分别绘制cos( 0t)、cos(3 0t)、cos(5 0t)和x(t) 的波形图,给图形加title,网格线和x坐标标签,并且程序能够接受从键盘输入的和式中的项数。 程序如下: clear,%Clear all variables close all,%Close all figure windows dt = 0.00001; %Specify the step of time variable t = -2:dt:4; %Specify the interval of time w0=0.5*pi; x1=cos(w0.*t); x2=cos(3*w0.*t); x3=cos(5*w0.*t); N=input('Type in the number of the harmonic components N='); x=0; for q=1:N; x=x+(sin(q*(pi/2)).*cos(q*w0*t))/q; end subplot(221) plot(t,x1)%Plot x1 axis([-2 4 -2 2]); grid on, title('signal cos(w0.*t)') subplot(222) plot(t,x2)%Plot x2 axis([-2 4 -2 2]); grid on, title('signal cos(3*w0.*t))') subplot(223) plot(t,x3)%Plot x3 axis([-2 4 -2 2])

(完整word版)信号系统方波与三角波的傅里叶的分解与合成

实验<编号> 学号姓名分工 11350023 韦能龙编写代码 11350024 熊栗问题分析1.问题描述 实验二信号的合成与分解

2. 问题分析 此次主要是考察傅里叶的合成与分解,运用分解公式求出系数,运用合成公式合成函数,三角波和矩形波是很典型的连个列子,这个大作业只要分解出系数还有用合成公式,基本上就解决了问题了。 3. 实验代码与实验结果 (1)周期性矩形波的系数表示 ,.....7,5,3,1),2 sin(2==n npi kpi a k 代码: t = -3:0.001:3; M = 1;%M =1,7,29,99 T = 2; W = 2*pi/T; f1 = 0*ones(1,length(t)); for n= -M:2:M a = 2/(n*pi)*sin(n*pi/2); f1 = f1+a*exp(j*n*W*t); end plot(t,f1) xlabel('t') ylabel('f(t)') title('M=1,7,29,99时的方波') ylim([-1.5 1.5]); hold on plot(t , zeros(1,length(t))) hold off 图像: M =1时:

M= 7: M = 29

M = 99 (2)三角波的系数表示:

??--==101)()(1dt e t x dt e t x T a jkwt T jkwt k )2 (sin 42 1 2 2 20npi pi n a a n == 代码: t = -3:0.001:3; M = 1;%M =1,7,29,99 T = 1; W = 2*pi/T; G1= 0*ones(1,length(t)); for n= -M:M if n==0 a =1/2; else a = 4/(n^2*pi^2)*(sin(n*pi/2)^2) ; end G1 = G1+a*exp(j*n*W*t); end G1 = G1-0.5; plot(t,G1) xlabel('t') ylabel('G(t)') title('M=1时的三角波') ylim([-1.5 1.5]); hold on plot(t , zeros(1,length(t))) hold off M=1 时

傅里叶变换分析信号的缺点

傅里叶变换分析信号的缺点 基于傅里叶(Fourier)变换的信号频域表示,揭示了时间函数和频谱函数之间的内在联系,在传统的平稳信号分析和处理中发挥了极其重要的作用,很多理论研究和应用研究都把傅里叶变换当作最基本的经典工具来使用.但是傅里叶变换存在着严重的缺点:用傅里叶变换的方法提取信号频谱时,需要利用信号的全部时域信息,这是一种整体变换,缺少时域定位功能,因此必须对其加以改进. 傅里叶变换的特点及其局限性 设函数f(t)在(-,+)内有定义,且使广义积分 都收敛,则称(1)式定义的广义积分为函数f(t)的傅里叶变换,记为F{f(t)},(2)式定义的广义积分为逆傅里叶变换,记为{F()}。傅里叶变换可以完成从时域到频域的转换(正变换),也可以完成从频域到时域的转换(逆变换),但不能同时具有时域和频域信息。其核函数是,由于三角函数具有填满整个空间的特性,其在物理空间中是双向无限延伸的正弦波,在积分变换中体现为积分范围从+到-。因此,傅里叶变换是先天的非局限性,它对信号f(t)中体现任何局部信息处理都是相同的。而事实上,工程技术中的许多信号,如:语音信号、地震信号、心电图和各种电脉冲,他们的信号值只出现在一个短暂的时间间隔t内,以后快速减为零,t以外是未知的,可能为零,也可能是背景噪音,如果

用(1)式从信号中提取谱信号F(),就要取无限的时间量,使用过去的及将来的信号只为计算单个频谱,不能反映出随时间变化的频率,实际上我们需要的是确定的某个时间间隔内的频谱。这就使人们想到改进傅里叶变换使其能用来处理某个确定时间范围内的信号。Gabor提出的窗口傅里叶变换就是一个有效的方法。 另外,傅里叶变换之所得到广泛应用与透镜能实现傅里叶变换是分不开的。由公式 其中物平面为(,),焦平面为(),d0为物距,d1为象平面。要使=F{(,)},即准确实现傅里叶光学变换,只有在==f 时才能实现,否则将出现位相弯曲。并且,只有正透镜才能实现傅里叶变换,这些限制给工程技术中无疑增加了困难。这使得人们不得不寻求新得的方法,分数傅立叶变换不要求严频谱面,可根据需要在既包含空域信息也包括空频域信息的平面上进行处理,这使光学信息处理更具灵活性。 1傅里叶变换缺乏时间和频率的定位功能 傅里叶变换及其逆变换表示如下

用FFT对信号作频谱分析

实验三:用FFT 对信号作频谱分析 一、实验原理与方法 1、用FFT 对信号作频分析是学习数字信号处理的重要内容,经常需要进行分析的信号是模拟信号的时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N π2,因此要求D N ≤π2。可以根据此式选择FFT 的变换区间N 。误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时,离散谱的包络才能逼近连续谱,因此N 要适当选择大一些。 2、周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。如果不知道信号周期,可以尽量选择信号的观察时间长一些。 3、对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。如果是模拟周期信号,也应该选取整数倍周期长度,经过采样后形成周期序列,按照周期序列的谱分析进行。 二、实验内容 1、对以下序列进行FFT 谱分析: )()(41n R n x = ?????≤≤-≤≤+=n n n n n n x 其他0 7483 01 )(2 ?????≤≤-≤≤-=n n n n n n x 其他0 7433 04)(3 选择FFT 的变换区间N 为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析。程序见附录3.1、实验结果见图3.1。 2、对以下周期序列进行谱分析: n n x 4cos )(4π = n n n x 8cos 4cos )(5π π+= 选择FFT 的变换区间N 为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。程序见附录3.2、实验结果见图3.2。 3、对模拟周期信号进行频谱分析: t t t t x πππ20cos 16cos 8cos )(6++= 选择采样频率Fs=64Hz ,FFT 的变换区间N 为16、32、64三种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较。程序见附录3.3、实验结果见图3.3。

ch3.周期信号的傅里叶级数展开

周期信号的傅里叶级数展开: 1. 三角形式: 周期信号()f t ,周期T ,基波频率12w T π=, 所构成的完备正交函数集:三角函数集{}11cos ,sin nwt nwt ; ()0111()cos sin n n n f t a a nw t b nw t ∞ ==++∑ 其中:202 1()T T a f t dt T -=? 2122()cos T T n a f t nw tdt T -=? 212 2()sin T T n b f t nw tdt T -=? 注意: (1) 展开条件:狄利赫利条件 (2) 另外一种形式: 011 ()cos()n n n f t c c nw t ?∞ ==++∑ 其中:00c a = n c = n n n b tg a φ=- (3)物理意义: (4)幅度谱和相位谱 2. 指数形式: 完备正交函数集 :复指数函数集{}1 jnw t e 1()jnw t n n f t F e ∞ =-∞ = ∑ 其中122 1()T jnw t T n F f t e dt T --=?

注意:(1)幅度谱和相位谱n j n n F F e φ= :偶谱和奇谱 与三角形式间的关系 (2)两种级数间的关系 3. 函数()f t 满足对称性的级数展开: (1) 偶函数:011()cos n n f t a a nw t ∞ ==+∑ 0n b = 或011 ()cos()n n n f t c c nw t ?∞ ==++∑,00c a = ||n n c a = 0, 0,0n n n a a ?π>?=? ??=??

常用函数傅里叶变换

信号与系统的基本思想:把复杂的信号用简单的信号表示,再进行研究。 怎么样来分解信号?任何信号可以用Delta 函数的移位加权和表示。只有系统是线性时不变系统,才可以用单位冲激函数处理,主要讨论各个单位冲激函数移位加权的响应的叠加能得到总的响应。 线性系统(齐次性,叠加定理) 时不变系统 对一个系统输入单位冲激函数,得到的响应为h(t).表征线性时不变系统的非常重要的东西,只要知道了系统对单位冲击函数的响应,就知道了它对任何信号的响应,因为任何信号都可以表示为单位冲激函数的移位加权和。 例如:d(t)__h(t) 那么a*d(t-t0)__a*h(t-t0) -()= ()(t-)d f t f τδττ∝∝? 的响应为-y()=()(-)t f h t d τττ∝ ∝ ? 记为y(t)=f(t)*h(t),称为f(t)和h(t)的卷积 总结为两点:对于现行时不变系统,任何信号可以用单位冲激信号的移位加权和表示,任何信号的响应可以用输入函数和单位冲激函数响应的卷积来表示 连续时间信号和系统的频域分析 时域分析的重点是把信号分解为单位冲激函数的移位加权和,只讨论系统对单位冲激函数的响应。而频域的分析是把信号分解为各种不同频率的正弦函数的加权和,只讨论系统对sinwt 的响应。都是把信号分解为大量单一信号的组合。

周期函数可以展开为傅里叶级数,将矩形脉冲展开成傅里叶级数,得到傅里叶级数的系数 n A sin F = T x x τ 其中0=2 nw x τ。 取样函数sin ()=x S a x 。产生一种震荡,0点的值最大,然后渐渐衰减直至0 第一:对于傅里叶级数的系数,n 是离散的,所以频谱也是离散状的每条谱线都出现在基波频率的整数倍上,其包络是取样函数。 第二:谱线的间距是0w .。零点是0=2nw x τ,02w =T π是谱的基波频率。如果τ不变,T 增大,那么0w 减小,当T 非常大的时候,0w 非常小,谱线近似连续,越来越密,幅度越来越小。 傅里叶变换:非周期函数 正变换:--F jw)= ()iwt f t e dt ∝ ∝?( 反变换:-1()=()2jnwt f t F jw e dw π ∝∝ ? 常用函数的傅里叶变换(典型非周期信号的频谱)

第四章 周期信号的频谱分析

第四章 周期信号的频域分析 1. 内容提要 本章介绍连续周期信号的傅立叶级数及其基本性质;连续周期信号频谱的概念,相位谱的作用。对离散周期信号傅立叶级数和其基本性质做简单了解。 2. 学习目标 通过本章的学习,应达到以下要求: (1)掌握周期信号频谱的概念及信号频带宽度的概念。 (2)熟悉傅里叶变换的主要性质。 (3)熟悉频域分析法。 (4)了解离散傅立叶级数的概念 3. 重点难点 (1) 信号的对称性和傅立叶系数的关系 (2) 连续信号的频谱分析,包括周期信号频谱的概念,相位谱和功率谱。 4. 应用 周期信号频域分析的MATLAB 实现 5. 教案内容 4.1 连续时间信号的傅立叶变换 周期信号的定义 周期信号是定义在001/f T =(,)-∞∞区间,每隔一定的时间间隔0T ,按相同规律重复变化的信号。即对t R ?∈,存在一个大于零的0T ,使得 0()(),f t T f t t R +=?∈ 其中0T 为基波周期,002/T ωπ=为基波角频率,001/f T =为基波频率

傅立叶级数的实质 就是将复杂信号分解成为更容易处理的信号形式。 4.1.1 指数形式的傅里叶级数 连续时间信号的傅立叶级数表示为 0()jnw t n n f t C e ∞ =-∞ = ∑ 称n C 为周期信号()f t 的傅立叶系数。傅立叶系数的计算公式为 00 00 1 ()t T jn t t Cn f t e dt T ω+-= ? 4.1.2 三角形式的傅立叶级数 若函数()f t 满足狄里赫利条件,周期信号f(t) 展开成傅里叶级数。 01111212111()cos sin cos 2sin 2cos sin n n f t a a t b t a t b t a n t b n t ωωωωωω=++++++++ 0111 (cos sin )n n n a a n t b n t ωω∞ ==++∑ 式中,n 为正整数;系数0,,n n a a b 称为傅里叶系数,考虑到三角函数集是一组完备的正交函数集,因此,可得一个周期1(0,)T 的傅里叶系数: 1 11200112 11()()T T T a f t dt f t dt T T -==?? 1 10 12()cos T n a f t n tdt T ω=? 1 10 12()sin T n b f t n tdt T ω=?

脉搏、语音及图像信号的傅里叶分析

脉搏、语音及图像信号的傅里叶分析 一、实验目的 1、了解常用周期信号的傅里叶级数表示。 2、了解周期脉搏信号、语音信号及图像信号的傅里叶分析过程 3、理解体会傅里叶分析的理论及现实意义 二、实验原理 任意一个周期为T 的函数f(t)都可以表示为傅里叶级数: 0001 0000000001()(cos sin )21()()1()cos()()1()sin()()n n n n n f t a a n t b n t a f t d t a f t n t d t b f t n t d t ππ π πππωωωωπωωωπωωωπ∞=---=++== =∑??? 其中0ω为角频率,称为基频,0a 为常数,n a 和n b 称为第n 次谐波的幅值。任何周期性非简谐交变信号均可用上述傅里叶级数进行展开,即分解为一系列不同次谐波的叠加。 对于如图1所示的方波,一个周期内的函数表达式为: (0t<)2() (-t 0)2h f t h ππ?≤??=??-≤

1202100022281()(1)()sin(21)21 811(sin sin 3sin 5) 35n n h f t n t n h t t t ωπωωωπ∞-==---=-++∑ 图1 方波 图2 三角波 从以上各式可知,任何周期信号都可以表示为无限多次谐波的叠加,谐波次数越高,振幅越小,它对叠加波的贡献就越小,当小至一定程度时(谐波振幅小于基波振幅的5%),则高次的谐波就可以忽略而变成有限次数谐波的叠加,这对设计仪器电路是很有意义的。 三、实验仪器 脉搏语音实验仪器,数字信号发生器,示波器 四、实验内容 1.傅里叶级数的合成 (1)利用数字信号发生器产生频率分别为100Hz 、300Hz 、500Hz 的正弦信号,并使其位相相同,振幅比为:1:1/3: 1/5,将上述三个信号,分别通过加法器输入到傅里叶分析仪,观察并记录其波形。 (2)利用数字信号发生器产生方波,输入到傅里叶分析仪,并将其与上述合成后的信号相比较。两者有何差异?试分析引起的原因,应如何消除? (3)利用数字信号发生器产生频率分别为200Hz 、600Hz 、1000Hz 的正弦信号,振幅比为:1:1/32:1/52,并且保证其相位相差180°,然后通过加法器输入到傅里叶分析仪,观察并记录其波形,并与数字信号发生器产生的三角波相比较。 (4)利用傅里叶分析仪分别产生方波与三角波,进行傅里叶分析,记录各正弦波频率以及相对的幅度之间的关系,并与上述加法器输入信号相比较。 2.滤波与选频分析 对上述(4)傅里叶分析的频谱,分别选择低频段和高频段信号通过傅里叶反变换,观察它们图像并导出保存,试分析低通滤波和高通滤波图像的区别。 3.周期信号傅里叶分析的应用: (1)“脉搏信号”的傅里叶分析 1)用傅里叶分析仪软件中提供的“脉搏信号”模块和压电晶体测试自己脉搏波的信号,观察你的脉搏信号。

矩形脉冲信号频谱分析

矩形脉冲信号频谱分析

小组成员: 刘鑫 龙宇 秦元成 王帅 薛冬寒 梁琼健 一、傅里叶分析方法与过程 周期信号的分解 1、三角形式 周期为T 的周期信号,满足狄里赫利(Dirichlet )条件(实际中遇到的所有周期信号都符合该条件),便可以展开为傅里叶级数的三角形式,即: ∑∑∞ =∞ =Ω+Ω+=110sin cos 21 )(n n n n t n b t n a a t f (1) ?-=Ω=2 2 ,2,1cos )(2T T n dt t n t f T a n Λ (2)

?-=Ω=2 2 ,2,1sin )(2T T n dt t n t f T b n Λ (3) 式中: T π2= Ω 为基波频率,n a 与 n b 为傅 里叶系数。 其中 n a 为n 的偶函数, n b 为n 的奇函数。 将上式中同频率项合并可写成: ∑∞ =+Ω+=++Ω++Ω+=1022110)cos 21 ... )2cos()cos(21 )(n n n t n A A t A t A A t f ???( 式中: ) arctan(... 3,2,1,2 2 0n n n n a b n b a A a A n n -==+==? (5)

n n n n n n A b A a A a ??sin cos 0 0-=== (6) 2.指数形式 由于 2 cos jx jx e e x -+= (7) 三角函数形式可以写为 t jn j n n t jn j n n t n j n t n j n e e A e e A A e e A A t f n n n n Ω--∞=Ω∞=+Ω-∞ =+Ω∑∑∑++=++=????1 10)(1)(0212121] [2 1 21)( (8) 将上式第三项中的n 用-n 代换,并考虑到 为n 的偶函数, 为n 的奇函数 则上式可写为: t jn j n n t jn j n n t jn j n n t jn j n n e e A e e A A e e A e e A A t f n n n n Ω∞ --=Ω∞=Ω--∞-=-Ω∞=∑∑∑∑++=++=-????1 101 1021 2121212121)( (9)

周期信号的傅里叶级数

《信号、系统与信号处理实验I》 实验报告 实验名称:周期信号的傅里叶级数 姓名:韩文草 学号:15081614 专业:通信工程 实验时间:2016.11.7 杭州电子科技大学 通信工程学院

一、实验目的 二、实验内容

三、实验过程及实验结果 1.1 t = 0:0.02:2*pi; %0-2π时间间隔为0.01 y = zeros(10, max(size(t))); %10*629(t的长度)的矩阵 x = zeros(10, max(size(t))); for k = 1:2:9 %奇次谐波1,3,5,7,9 x1 = 3*sin(k * t)/k; %各次谐波正弦分量 x(k,:) = x(k,:) + x1; %x第k(1,3,5,7,9)行存放k次谐波的629个值y((k+1)/2,:) = x(k,:); %矩阵非零行向量移至1-5行 subplot(7,1,(k+1) /2); plot(t,x(k,:)); end subplot(2,1,1); plot(t, y(1:5,:)); %绘制y矩阵中1-5行随时间波形 grid; halft = ceil(length(t)/2); %行向量长度减半(由对称前后段一致)subplot(2,1,2); %绘制三维图形:矩阵y中全部行向量的一半 mesh(t(1:halft), [1:10], y(:,1:halft));

1.2 t = -4.5 : 0.001 : 5.5; t1 = -4.499 : 0.001 : 5.5; x = [ones(1,1000) , zeros(1,1000)]; x = [x , x , x , x , x]; subplot(1 , 2 , 1); plot(t1 , x , 'b','linewidth', 1.5); axis([-4.5 , 5.5 , -0.5 , 1.5]); N = 10; c0 = 0.5; f1 = c0 * ones(1 , length(t)) for n = 1:N f1 = f1 + cos(pi * n * t)*sinc(n/2); end subplot(1,2,2); plot(t , f1 , 'r' , 'linewidth', 1.5); axis([-4.5, 5.5, -0.5, 1.5]);

第三章傅里叶变换分析.doc

第三章 傅里叶变换分析 1.什么是频谱?如何得到信号的频谱? 目前我们熟悉的是信号幅度随着时间变化而变化的常见表示方式,比如正弦信号的幅度随着时间按正弦函数的规律变化;另一方面,对于正弦信号,如果知道其振幅、频率和相位,则正弦信号的波形也惟一确定。根据这个原理和傅里叶级数理论,满足一定条件的周期信号都可以分解为不同频率的正弦分量的线性组合,从而我们用各个正弦分量的频率-幅度、频率-相位来表示周期信号的描述方式就称为周期信号的频谱表示,随着对信号研究的深入,我们将周期信号的频谱表示又推广到非周期信号的频谱表示,即通常的傅里叶变换。 对于周期信号,其频谱一般用傅里叶级数表示,而傅里叶级数的系数就称为信号的频谱: ()0110111()cos sin cos()T n n n n n n f t a a n t b n t c c n t ωωω?∞∞ ===++=++∑∑ 或 1()jn t T n n f t F e ω∞=-∞= ∑ 其中: 122 00 1() 0,1,2,...,1() 1,2, (2) T jn t T n T n n n F f t e dt n T F a jb n F a ω--==±±±∞=-=∞=? 对于非周期信号,其频谱一般用傅里叶变换表示: 1 ()()2j t f t F j e d ωωωπ ∞-∞=? 其中: ()() j t F j f t e dt ωω∞--∞=? 2.周期信号和非周期信号的频谱有何不同? 周期信号的频谱可以用傅里叶级数表示,它是离散的、非周期的和收敛的。 而非周期信号的频谱用傅里叶变换表示,它是连续的、非周期的和收敛的。若假设周期信 号为()T f t , 非周期信号为0() ()220 otherwise T T T f t t f t ?-<≤?=???,并假设周期信号()T f t 的傅里叶级数 的系数为n F ,非周期信号0()f t 的傅里叶变换为()F j ω,则有如下的关系:

典型信号的地傅里叶变换

例9.1 试将图9.3中所示的非正弦周期信号(称为方波信号)展成傅里叶级数。 解 根据图上所示信号的波形,可知其既对称于纵轴,又具有半波对称性质,所以它是兼有奇谐波函数性质的偶函数。依照上述定理,此信号的傅里叶级数中必定只含有余弦的奇次谐波项,因此只需按公式 ()2 04cos T km A f t k tdt T ω= ? 计算A km 。 对图上的波形图可以写出 ()04 42 T A t f t T T A t ?

图9.3 方波信号 图9.4 三角波信号 例9.2 试求图9.4所示三角波信号的傅里叶级教。 解 视察一下所给的波形可以知道,它既是原点对称又是半波横轴对称。因此,其傅里叶级数仅由正弦奇次谐波分量组成。由于 ()404 4242 A T t t T f t A T T t A t T ???=??-+??≤≤≤≤ 故有 2044444sin 2sin T T km T A A B t k tdt t A k tdt T T T T ωω??= -- ??? ?? 参照积分公式 211 sin sin cos x axdx ax x ax a a = -? 可算出 22 22 81,5,9,83,7,11km A k k B A k k ππ?=??=??-=??L L 于是所欲求的傅里叶级数 ()2222 8111sin sin 3sin 5sin 7357A f t t t t t ωωωωπ?? = -+-+ ??? L 。 例9.3 已知一如图9.5所示的信号波形,试求其傅里叶级数。 图9.5 例9.3用图

傅里叶变换的基本性质.

傅里叶变换的基本性质(一) 傅里叶变换建立了时间函数和频谱函数之间转换关系。在实际信号分析中,经常需要对信号的时域和频域之间的对应关系及转换规律有一个清楚而深入的理解。因此有必要讨论傅里叶变换的基本性质,并说明其应用。 一、线性 傅里叶变换是一种线性运算。若 则 其中a和b均为常数,它的证明只需根据傅里叶变换的定义即可得出。 例3-6利用傅里叶变换的线性性质求单位阶跃信号的频谱函数。 解因 由式(3-55)得 二、对称性 若则 证明因为 有 将上式中变量换为x,积分结果不变,即

再将t用代之,上述关系依然成立,即 最后再将x用t代替,则得 所以 证毕 若是一个偶函数,即,相应有,则式(3-56) 成为 可见,傅里叶变换之间存在着对称关系,即信号波形与信号频谱函数的波形有着互相置换的关系,其幅度之比为常数。式中的表示频谱函数坐标轴必须正负对调。例如: 例3-7若信号的傅里叶变换为 试求。 解将中的换成t,并考虑为的实函数,有 该信号的傅里叶变换由式(3-54)可知为

根据对称性 故 再将中的换成t,则得 为抽样函数,其波形和频谱如图3-20所示。 三、折叠性 若 则 四、尺度变换性 若 则 证明因a>0,由

令,则,代入前式,可得 函数表示沿时间轴压缩(或时间尺度扩展) a倍,而则表示 沿频率轴扩展(或频率尺度压缩) a倍。 该性质反映了信号的持续时间与其占有频带成反比,信号持续时间压缩的倍数恰好等于占有频带的展宽倍数,反之亦然。 例3-8已知,求频谱函数。 解前面已讨论了的频谱函数,且 根据尺度变换性,信号比的时间尺度扩展一倍,即波形压缩了一半,因此其频谱函数 两种信号的波形及频谱函数如图3-21所示。

周期信号频谱分析

实验名称:周期信号的频谱分析 教材名称:电工电子实验技术(下册)页码:P142 实验目的: 1、了解和掌握周期信号频谱分析的基本概念; 2、掌握Multisim软件用于频谱分析的基本方法; 3、加深理解周期信号时域参数变化对其谐波分量的影响及变化趋势。 实验任务: 1、根据9-1给定的波形和参数测量各谐波分量的幅度值。 2、根据所测数据绘制每一波形的谱线图。 设计提示: 实验电路图: 图一、分析用电路及信号发生器调整窗口 实验结果: 表9-1数据: 周期信号的频谱分析(Multisim) 0 10 20 30 40 50 60 70 80 90 100 矩形波10%-4.023 1.923 1.833 1.689 1.499 1.273 1.024 0.763 0.506 0.263 0.047 矩形波30%-2.023 5.123 3.040 0.699 0.897 1.271 0.659 0.236 0.739 0.595 0.046 矩形波50%-0.022 6.366 0.045 2.121 0.045 1.271 0.045 0.906 0.045 0.703 0.045 正弦波0 4.999 0 0 0 0 0 0 0 0 0 三角波50%0 4.053 0 0.451 0 0.162 0 0.083 0 0.050 0 三角波70%0 3.903 1.147 0.166 0.177 0.193 0.079 0.030 0.072 0.048 0 三角波90%0 3.479 1.654 1.012 0.669 0.450 0.298 0.186 0.103 0.043 0 N 0 1 2 3 4 5 6 7 8 9 10 注:谱线数取10+直流。

北京交通大学信号与系统第四章典型例题

第四章 典型例题 【例4-1-1】写出下图所示周期矩形脉冲信号的Fourier 级数。 A T 0 -T 0 t ) (~t x ? ??? ??2 /τO 2/τ- 周期矩形信号 分析: 周期矩形信号)(~t x 是实信号,其在一个周期[T 0/2,T 0/2]的定义为 ???>≤=2/ 02/ )(~ττt t A t x 满足Dirichlet 条件,可分别用指数形式和三角形式Fourier 级数表示。 解: 根据Fourier 级数系数C n 的计算公式,有 t t x T C t n T T n d e )(~ 1000j 2/2/0ω--?=== --? t A T t n d e 10j 2/2 /0ωττ 2/2/j 000e )j (ττωω=-=--t t t n n T A 2/)2/sin(00τωτωτTn n A =)2 (Sa 00τωτn T A = 故周期矩形信号)(~t x 的指数形式Fourier 级数表示式为 t n n t n n n n T A C t x 00j 00j e )2(Sa )(e )(~ωωτωτ∑∑∞ -∞ =∞-∞=== 利用欧拉公式 2 e e )cos(00j j 0t n t n t n ωωω-+= 可由指数形式Fourier 级数写出三角形式的Fourier 级数,其为 ()t n n T A T A t x n 0001 0cos )2(Sa )2()(~ωτωττ∑ ∞ =+= 结论: 实偶对称的周期矩形信号)(~t x 中只含有余弦信号分量。 【例4-1-2】写出下图所示周期三角波信号的Fourier 级数。 A -A 1 0.5 -1 t ) (~t x ? ??? ??-0.5 -2 2 周期三角波信号 分析: 周期矩形信号)(~ t x 是实信号,其在一个周期 [1/2,3/2]的表达式为

第四章傅立叶变换习题

第三章傅立叶变换 第一题选择题 1.连续周期信号f (t )的频谱F(w)的特点是 D 。 A 周期连续频谱 B 周期离散频谱 C 非周期连续频谱 D 非周期离散频谱 2.满足抽样定理条件下,抽样信号f s (t)的频谱)(ωj F s 的特点是 (1) (1)周期、连续频谱; (2)周期、离散频谱; (3)连续、非周期频谱; (4)离散、非周期频谱。 3.信号的频谱是周期的连续谱,则该信号在时域中为 D 。 A 连续的周期信号 B 离散的周期信号 C 连续的非周期信号 D 离散的非周期信号 4.信号的频谱是周期的离散谱,则原时间信号为 (2) 。 (1)连续的周期信号 (2)离散的周期信号 (3)连续的非周期信号 (4)离散的非周期信号 5.已知f (t )的频带宽度为Δω,则f (2t -4)的频带宽度为( 1 ) (1)2Δω (2)ω?2 1 (3)2(Δω-4) (4)2(Δω-2) 6.若=)(1ωj F F =)()],([21ωj F t f 则F =-)]24([1t f ( 4 ) (1)ωω41)(21j e j F - (2)ωω41)2 (21j e j F -- (3)ωωj e j F --)(1 (4)ωω21)2 (21j e j F -- 7.信号f (t )=Sa (100t ),其最低取样频率f s 为( 1 ) (1)π100 (2)π 200 (3)100π (4)200 π 8.某周期奇函数,其傅立叶级数中 B 。 A 不含正弦分量 B 不含余弦分量 C 仅有奇次谐波分量 D 仅有偶次谐波分量 9.某周期偶谐函数,其傅立叶级数中 C 。 A 无正弦分量 B 无余弦分量 C 无奇次谐波分量 D 无偶次谐波分量 10.某周期奇谐函数,其傅立叶级数中 C 。 A 无正弦分量 B 无余弦分量 C 仅有基波和奇次谐波分量 D 仅有基波和偶次谐波分量 11.某周期偶函数f(t),其傅立叶级数中 A 。

相关文档
最新文档