定积分求体积
(完整版)定积分简单应用——求体积

定积分的简单应用(二)复习:〔1〕求曲边梯形面积的方法是什么?〔2〕定积分的几何意义是什么?〔3〕微积分根本定理是什么?引入:我们前面学习了定积分的简单应用——求面积。
求体积问题也是定积分的一个重要应用。
下面我们介绍一些简单旋转几何体体积的求法。
简单几何体的体积计算问题:设由连续曲线y f(x)和直线x a,x b及x轴围成的平面图形〔如图甲〕绕x轴旋转一周所得旋转体的体积为V,如何求V?分析:在区间[a,b]内插入n 1个分点,使a x0x1x2L x n1x n b,把曲线y f(x)〔a x b〕分割成n个垂直于x轴的“小长条〞,如图甲所示。
设第i个“小长条〞的宽是x i x i x i1,i 1,2,L,n。
这个“小长条〞绕x轴旋转一周就得到一个厚度是x i的小圆片,如图乙所示。
当x i很小时,第i个小圆片近似于底面半径为y i f(x i)的小圆柱。
因此,第i个小圆台的体积V i近似为V i f2(x i)x i该几何体的体积V等于所有小圆柱的体积和:V[f2(x1)x1 f2(x2)x2L f2(x n)x n]这个问题就是积分问题,那么有:bf2(x)dx b2(x)dxV fa a归纳:设旋转体是由连续曲线y f(x)和直线x a,x b及x轴围成的曲边梯形绕x轴旋转V b2(x)dx而成,那么所得到的几何体的体积为fa2.利用定积分求旋转体的体积1/5〔1〕找准被旋转的平面图形,它的边界曲线直接决定被积函数〔2〕分清端点〔3〕确定几何体的构造〔4〕利用定积分进行体积计算3.一个以y轴为中心轴的旋转体的体积假设求绕y轴旋转得到的旋转体的体积,那么积分变量变为y,其公式为V b2(y)dy ga类型一:求简单几何体的体积例1:给定一个边长为a的正方形,绕其一边旋转一周,得到一个几何体,求它的体积思路:由旋转体体积的求法知,先建立平面直角坐标系,写出正方形旋转轴对边的方程,确定积分上、下限,确定被积函数即可求出体积。
浅析微积分中求旋转体体积的技巧

浅析微积分中求旋转体体积的技巧求旋转体的体积是微积分中的重要内容之一,主要应用于求解如圆锥体、圆柱体、圆盘等等的体积。
在微积分中,常用到的技巧有:用定积分进行求解、套用几何体的公式、使用截面积的方法、用旋转曲线的微元法等等。
一、用定积分进行求解当旋转体的截面是一个薄片,其面积可以表示为一个关于自变量x的函数A(x),则可以通过定积分来求取旋转体的体积V。
假设旋转体是由曲线y=f(x)与x轴所围成,曲线在区间[a,b]上连续、非负并且可微。
则薄片的面积可以表示为:A(x) = π[f(x)]^2薄片的体积可以表示为:dV = A(x)dx = π[f(x)]^2dx整个旋转体的体积可以通过将所有薄片的体积相加求得:V = ∫[a,b]dV = ∫[a,b]π[f(x)]^2dx二、套用几何体的公式在求解旋转体体积的过程中,有时候可以直接套用几何体的公式,而不需要进行定积分求解。
当旋转曲线是一个直线y=kx时,旋转体是一个圆锥体。
圆锥体的体积公式为:V = 1/3 * 底面积 * 高= 1/3 * πr^2 * h底面积为πr^2,r为底面半径,h为高。
r为圆盘的半径,h为圆盘的厚度。
三、使用截面积的方法对于一些形状复杂的旋转体,可以使用截面积的方法来求解体积。
这种方法的基本思想是将旋转体划分为无数个截面,然后计算每个截面的面积,最后将它们累加起来。
当旋转曲线是一个较复杂的曲线y=f(x)时,可以通过将旋转体划分为无数个微小的扇形截面来计算体积。
将旋转曲线划分为一系列微小的线段,然后将每个微小线段旋转一周,形成一个微小的扇形截面。
根据扇形的面积公式A = 1/2 * θ * r^2,其中θ为扇形的弧度,r为扇形的半径,可以计算每个扇形截面的面积。
然后,将所有扇形截面的面积相加,即可得到旋转体的体积。
四、用旋转曲线的微元法当旋转曲线无法用常规的几何形状表示时,可以用旋转曲线的微元法来求解旋转体的体积。
定积分的几何应用(体积))

π πa2 (t sin t)2 a sin t d t
注意上下限 !
2 π
π
π
a
2
(t
sin
t)
2
a
sin
t
d
t
0
π a3
2π
(t
sin
t)2
sin
t
dt
0
注: 2 π (t sin t)2 sin t d t 0
2 π (t 2 sin t 2t sin 2 t sin3 t)d t (令 u t π) 0
V 2 1u[4 (u 3)2 ]du 5
令u x3
2 2 (x 3)(4 x2)dx 2
2 2 (3 x)(4 x2 )dx 2
(※)
补充 2. 如果旋转体是由连续曲线 y f ( x)、直 线 x a、 x b(0 a b)及 x轴所围成的曲边梯
形绕 x = m (>b) 旋转一周而成的立体,体积为
2
令u t 2
16 π a3 π (2u sin 2u) sin 4 u d u 0
令v u π
2
π
16 π
a3
2
π 2
(2v
π
sin
2v)
cos4 v
偶函数
d
v
奇函数
例 3 求由曲线 y 4 x2及 y 0所围成的图形 绕直线 x 3旋转构成旋转体的体积.
解(一) 取积分变量为y , y [0,4]
c
o
x
例2. 计算摆线
的一拱与 y=0
所围成的图形分别绕 x 轴 , y 轴旋转而成的立体体积 .
解: 绕 x 轴旋转而成的体积为
y
定积分求旋转体的体积

7.1.3 定积分求旋转体的体积
第七章 定积分的应用
第一节 定积分在几何上的应用
第三讲 定积分求旋转体的体积
主要内容: 一、旋转体的概念
二、平面图形绕 x 轴旋转所得旋转体的体积
三、平面图形绕 y 轴旋转所得旋转体的体积
四、小结
引入:
一、旋转体:由一个平面图形绕这平面内一条直线旋转一周而
2
1
1 e4 e2 2
V b[ f (x)]2 dx a
y
y ex
1
o x=1 x=2 x
练习 求由抛物线 y x2、直线 x 2 及 x 轴所围成平面图形绕 x
轴旋转一周所得旋转体的体积.
A: 32
5
B: 16
5
C: 8
5
解 选A
D: 64
(3)V
Байду номын сангаас
b
[
f
(x)]2 dx
b y2dx
a
a
xx x dx
例1 求由曲线 y ex,直线 x 1, x 2以及 x 轴所围成的平面图
形绕 x 轴旋转一周所得旋转体的体积.
解
V
2
1
f
x2dx
2
ex
2
dx
1
1 e2x 2
D: 1 e2 1 2
解 选C
四、小结
1. 平面图形绕 x轴旋转所得旋转体的体积
V b [ f (x)]2 dx b y2dx
a
a
2. 平面图形绕 y轴旋转所得旋转体的体积
绕y轴旋转体体积公式两种形式

绕y轴旋转体体积公式两种形式绕y轴旋转体的体积公式是求解由曲线和y轴旋转形成的立体体积的公式。
在数学中,我们可以使用两种不同的形式来表示绕y轴旋转体的体积公式,分别是定积分形式和壳体积分形式。
一、定积分形式当我们有一个曲线y=f(x),在x轴上的积分区间为[a, b]时,我们可以使用定积分来表示绕y轴旋转体的体积。
根据定积分的公式,绕y轴旋转体的体积V可以表示为:V = π∫[a, b] (f(x))^2 dx其中,π表示圆周率,∫[a, b]表示积分区间,f(x)表示曲线上任意一点的纵坐标。
通过对曲线在x轴上的积分,我们可以得到绕y轴旋转体的体积。
二、壳体积分形式除了定积分形式,我们还可以使用壳体积分形式来表示绕y轴旋转体的体积。
壳体积分形式通常适用于一些无法通过定积分形式直接求解的情况。
当我们有一个曲线x=g(y),在y轴上的积分区间为[c, d]时,我们可以使用壳体积分来表示绕y轴旋转体的体积。
根据壳体积分的公式,绕y轴旋转体的体积V可以表示为:V = 2π∫[c, d] g(y) h(y) dy其中,2π表示圆周率的倍数,∫[c, d]表示积分区间,g(y)表示曲线上任意一点的横坐标,h(y)表示该点到y轴的距离。
通过对曲线在y轴上的积分,我们同样可以得到绕y轴旋转体的体积。
绕y轴旋转体的体积公式不仅可以通过数学公式来表示,也可以通过立体图形的理解来加深我们对于体积公式的理解。
通过对绕y轴旋转体的两种不同形式的体积公式的探讨,我们可以更全面、深入地理解这一数学概念。
总结回顾通过以上的讨论,我们可以看出,绕y轴旋转体的体积公式有两种主要的表示形式,分别是定积分形式和壳体积分形式。
在求解绕y轴旋转体的体积时,我们可以根据具体情况选择适合的公式并灵活运用。
通过深入理解这两种形式的体积公式,我们可以更灵活地运用数学知识解决实际问题。
个人观点和理解在我看来,绕y轴旋转体的体积公式是数学中一个非常重要且有趣的概念。
定积分求体积的四个公式

定积分求体积的四个公式定积分是微积分的一个重要概念,可以用来计算曲线与坐标轴之间的面积、质量、重心等各种物理量。
在三维空间中,定积分也可以用来计算体积。
以下是四个常用的定积分求体积的公式:1. 平面图形的旋转体体积公式:假设有一个平面图形,它绕着某个轴旋转一周形成一个立体图形,那么它的体积可以通过定积分计算得到。
设平面图形为函数 y=f(x),则旋转体的体积 V 可以表示为:V = π∫[a, b] f(x)^2 dx其中,a和b是平面图形上的两个点,π是圆周率。
这个公式可以推广到三维空间中的任意轴。
2. 用截面积求体积公式:对于一个平面图形,若其在垂直于某个轴的截面上的面积为 A(x),则体积可以通过定积分计算得到。
设截面积函数为 A(x),则体积 V 可以表示为:V = ∫[a, b] A(x) dx这个公式适用于任意形状的截面。
3. 用截面面积与高度的乘积求体积公式:对于一个平面图形,若其在垂直于某个轴的截面上的面积为 A(x),且高度为 h(x),则体积可以通过定积分计算得到。
设截面面积函数为 A(x),高度函数为 h(x),则体积 V 可以表示为:V = ∫[a, b] A(x)h(x) dx这个公式适用于各种不规则形状的图形。
4. 旋转体绕轴的体积壳公式:对于一个平面图形,若其在垂直于某个轴的截面上的面积为 A(x),且旋转轴到截面的距离为 r(x),则体积可以通过定积分计算得到。
设截面面积函数为 A(x),旋转轴到截面的距离函数为 r(x),则体积 V 可以表示为:V = 2π∫[a, b] A(x)r(x) dx这个公式适用于各种不规则形状的图形。
以上四个公式是定积分求体积常用的方法,可以根据具体问题选择适合的公式进行计算。
定积分应用旋转体体积公式
定积分应用旋转体体积公式定积分是高等数学中非常重要的一个内容。
定积分可以帮助我们求出一定区间内函数的面积、体积等物理量,因此在物理学、工程学、建筑学等领域都有广泛的应用。
在定积分的各种应用中,旋转体体积公式是一个重要的公式,它可以帮助我们求出某个区域在某个轴周围旋转所形成的立体体积。
本篇文章将介绍定积分应用旋转体体积公式的具体内容。
一、旋转体体积公式的定义旋转体体积公式是指,当一个曲线图形在某个轴线绕一定角度旋转时所得到的立体体积大小。
例如,若有一条平面曲线y=f(x),其在x轴旋转而成的旋转体的体积,则体积V可表示为:V=π∫abf(x)2dx其中a,b是曲线上取一个区间,π表示圆周率。
该公式的原理是:在曲线上任意取一个点,在x轴处的投影为x0,它和轴线和转动后所形成的体积为:V0=π[∫x0b f^2(x)dx-∫x0af^2(x)dx]同理,在曲线上任意取一个点,在某个轴线下的投影为y0,它和轴线和转动后所形成的体积为:V0=π[∫y0/dy∫f⁻¹(y)f(x)dx]通过以上两种方法对曲线进行积分,得到的结果即为该曲线在某个轴线下旋转形成的立体体积大小。
二、求解旋转体体积公式的具体步骤1、确定旋转轴线首先要确定旋转轴线,旋转轴线是指曲线旋转时所围绕的轴心线。
通常我们可以将曲线所围成的区域以绕某个轴线为轴心旋转。
在选择轴线时,需要先选择一个轴线作为基准轴线,通常选择x轴或y轴作为基准轴线,然后再确定旋转轴线。
2、将曲线绕轴线旋转其次,将曲线绕轴线旋转成旋转体,这个过程可以想象成把曲线沿着轴线旋转,使其形成一个立体图形。
我们可以将这个立体图形分成无数个小圆柱,然后对每个小圆柱进行分析。
3、求出小圆柱的体积最后,我们可以通过上述的定积分公式求出每个小圆柱的体积,然后将每个小圆柱的体积加和,得到整个旋转体的体积。
三、旋转体体积公式的实际应用旋转体体积公式具有非常广泛的应用,在几何学、物理学、建筑学等领域都有其应用。
定积分的几何应用公式总结
定积分在几何上的应用公式及其应用定积分的几何应用公式主要包括以下几种:
1.曲线长度公式:设曲线L的参数方程为x=f(t),y=g(t),t∈[a,b],则曲线
L的长度L可表示为定积分形式:L = ∫[a,b]√[f'(t)² + g'(t)²] dt。
2.曲线旋转体体积公式:设曲线L的参数方程为x=f(t),y=g(t),t∈[a,b],
绕x轴旋转一周生成的曲面的体积V可表示为定积分形式:V = π∫[a,b] [f(t)]^2 dt。
3.平面图形面积公式:如果平面区域D由曲线y=f(x)和直线x=a,x=b以及
x轴围成,则该平面图形的面积为A = ∫(a,b) [f(x)] dx。
4.旋转体侧面积公式:设曲线y=f(x)在[a,b]上非负、连续、且f(0)=0,则由
该曲线及直线y=0,x=a,x=b所围成的柱体的侧面积为S = ∫(a,b) [2πxf(x)] dx。
这些公式都是定积分在几何上的重要应用,可以通过这些公式解决实际问题。
旋转体定积分体积公式
旋转体定积分体积公式在咱们学习数学的过程中,旋转体定积分体积公式那可是相当重要的一部分。
咱们先来说说什么是旋转体。
想象一下,你有一条曲线,然后让这条曲线绕着某条直线转一圈,就像小朋友玩转圈圈的游戏一样,转出来的这个立体图形就是旋转体。
比如说,把一个直角三角形绕着一条直角边旋转一周,就会得到一个圆锥。
那这个旋转体的体积怎么算呢?这就得靠咱们的旋转体定积分体积公式啦。
比如说,有一个函数 y = f(x) ,它在区间 [a, b] 上连续。
如果我们把这个函数对应的曲线绕着 x 轴旋转一周,那么所形成的旋转体的体积V 就可以用定积分来表示:V = π∫[a,b] f(x)² dx 。
我记得之前给学生们讲这个知识点的时候,有个小家伙一脸迷茫地看着我,说:“老师,这也太抽象了,完全搞不懂啊!”我就给他举了个例子。
咱们就拿一个简单的抛物线 y = x²来说,假设我们要计算它在区间[0, 1] 上绕 x 轴旋转一周形成的旋转体的体积。
按照公式,V = π∫[0,1] x⁴ dx 。
接下来就是计算定积分啦,算出来是π/5 。
这时候,我让那个迷茫的小家伙闭上眼睛,想象一下,有一个像冰淇淋甜筒一样的东西,从底面到尖顶,粗细均匀变化,这就是我们刚刚算出来的旋转体。
然后再想想,如果没有这个公式,我们要怎么去算这个体积呢?是不是感觉脑袋都要大啦!所以说,这个旋转体定积分体积公式可真是个好帮手,能让咱们轻松解决很多看似复杂的问题。
在实际生活中,这旋转体定积分体积公式也有大用处呢。
比如说,工程师在设计一个圆柱形的储油罐,想要知道能装多少油,就得用到这个公式来计算体积。
还有,咱们平时吃的冰淇淋,工厂在生产的时候,也得通过计算旋转体的体积来确定模具的大小和形状,才能做出咱们喜欢的各种口味的冰淇淋。
总之,旋转体定积分体积公式虽然看起来有点复杂,但只要咱们多琢磨琢磨,多做几道题,就能熟练掌握,让它成为我们解决问题的有力武器。
(完整版)定积分的简单应用——求体积
4.2定积分的简单应用(二)复习:(1) 求曲边梯形面积的方法是什么?(2) 定积分的几何意义是什么?(3) 微积分基本定理是什么?引入:我们前面学习了定积分的简单应用——求面积。
求体积问题也是定积分的一个重要应用。
下面我们介绍一些简单旋转几何体体积的求法。
1. 简单几何体的体积计算问题:设由连续曲线()y f x =和直线x a =,x b =及x 轴围成的平面图形(如图甲)绕x 轴旋转一周所得旋转体的体积为V ,如何求V ?分析:在区间[,]a b 内插入1n -个分点,使0121n n a x x x x x b -=<<<<<=L ,把曲线()y f x =(a x b ≤≤)分割成n 个垂直于x 轴的“小长条”,如图甲所示。
设第i 个“小长条”的宽是1i i i x x x -∆=-,1,2,,i n =L 。
这个“小长条”绕x 轴旋转一周就得到一个厚度是i x ∆的小圆片,如图乙所示。
当i x ∆很小时,第i 个小圆片近似于底面半径为()i i y f x =的小圆柱。
因此,第i 个小圆台的体积i V 近似为2()i i i V f x x π=∆该几何体的体积V 等于所有小圆柱的体积和:2221122[()()()]n n V f x x f x x f x x π≈∆+∆++∆L这个问题就是积分问题,则有:22()()b b a a V f x dx f x dx ππ==⎰⎰归纳:设旋转体是由连续曲线()y f x =和直线x a =,x b =及x 轴围成的曲边梯形绕x 轴旋转而成,则所得到的几何体的体积为2()b a V f x dx π=⎰ 2. 利用定积分求旋转体的体积(1) 找准被旋转的平面图形,它的边界曲线直接决定被积函数(2) 分清端点(3) 确定几何体的构造(4) 利用定积分进行体积计算3. 一个以y 轴为中心轴的旋转体的体积若求绕y 轴旋转得到的旋转体的体积,则积分变量变为y ,其公式为2()b a V g y dy π=⎰类型一:求简单几何体的体积例1:给定一个边长为a 的正方形,绕其一边旋转一周,得到一个几何体,求它的体积 思路:由旋转体体积的求法知,先建立平面直角坐标系,写出正方形旋转轴对边的方程,确定积分上、下限,确定被积函数即可求出体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定积分在几何上的应用2——求立体的体积
有两种情形的几何立体的体积可用定积分来计算,它们是
(1)平行截面面积已知的立体
选与平行截面垂直的直线为x轴,截面面积(函数)为S(x).设立体可在的x轴上的范围是区间[a,b],任取一小区间(“微元”)[x,x+Δx],夹在过两个端点的平行平面间的立体体积(“微元”)ΔV与相应的圆柱体体积S(x)Δx,它们相差至多是ΔS·Δx =[dS+0(Δx)]Δx=[S'(x)Δx+0(x)]Δx=0(Δx),即ΔV=S(x)Δx+0(Δx),或dV=S(x)dx,由此得到立体体积
⑧式所说明的和立体几何中的“祖暅原理”是一回事.
(2)旋转体.
由曲线y=f(x)(f(x)≥0,a≤x≤b)与直线x=a,x=b及x轴所围图形绕x轴旋转而成的立体的体积为
因为在坐标x处的截面面积为S(x)=πf2(x),故由⑧即得⑨.
解取z轴为积分轴,积分变量z的取值范围是-c≤z≤c,椭球与在z处垂
所求椭球的体积为
例8 以一平面截半径为R的球,截体高为h,求被截部分的体积.
解取垂直于截面的直径方向为x轴,即积分轴,在沿x轴的截面上建立坐标系如图1.
被截下的部分可以视为由阴影部分绕x轴旋转所得的旋转体,其体积为
其中h的取值范围可以是0<h<2R.此即立体几何中的球缺体积公式.
例9 设底半径为a的圆柱,被一过底面直径的平面所截,如图2,截下楔形的高为h.求此楔形的体积.
解取截面与底面相交的直径方向为x轴,底面中心为原点,于是考虑-a≤x 所求楔形体积为
例10 求由内摆线(星形线)绕x轴旋转所成的旋转体的体积.
解摆线在0≤t≤2π上有
0≤x≤2πa,y≥0.
且dx=a(1-cost)dt.
故由旋转体体积公式得
例12 求由曲线y=2x-x2和y=0分别绕x轴和y轴旋转所成曲面包围的体积.
解作抛物线y=2x-x2的图形如图4.
易知它绕x轴旋转时所成的体积为
而绕y轴旋转时,x作为y的函数有二支,即由方程可解出
因而所生成的旋转体的体积应当等于它的分别生成的旋转体体积之差:
其中x1≥x2≥0,当0≤y≤1时.
当处理有上述情形的曲线时,⑩可以作为一个公式来用.由此可见处理旋转体的情形时一定要注意曲线的形状.
由⑩可知所求抛物线绕y轴旋转的体积为
习题
13.用定积分求两底面半径为r和R,高为h的圆台体积.
14.设立体的垂直于x轴的截面面积为S(x)=Ax2+Bx+C,a≤x≤b,A、B、C 为常数,求证:此立体的体积为
15.底面半径为2的圆柱被过底面圆的一条弦的平面所截,该弦中点到圆的中心的距离为1,且被截去的楔形不含底圆的中心,楔形的高为3,求此楔形体积.
16.抛物线y=x2+1和直线y=2围成的面积分别绕x轴和y轴旋转时得到两个旋转体,求它们的体积.
17.求圆x2+(y-b)2=a2(0<a≤b)绕x轴旋转所生成的旋转体的体积.
18.求曲线y=sinx和x轴上的线段[0,π]围成的面积绕y轴旋转所生成的体积.
20.设两个半径都是r的圆柱,其轴互相垂直,求它们围成立体的体积.
答案
17.2π2a2b.。