化工原理课程设计---水吸收氨气-资料

合集下载

化工原理课程设计水吸收氨气填料塔设计

化工原理课程设计水吸收氨气填料塔设计

《化工原理》课程设计——水吸收氨气填料塔设计学院专业班级姓名学号指导教师2012年12月11 日设计任务书水吸收氨气填料塔设计(一)设计题目试设计一座填料吸收塔,采用清水吸收混于空气中的氨气。

混合气体的处理量为____3200____m3/h,其中含氨为____8%____(体积分数),混合气体的进料温度为25℃。

要求:①塔顶排放气体中含氨低于____0.04%____(体积分数);(二)操作条件(1)操作压力:常压(2)操作温度:20℃(3)吸收剂用量为最小用量的倍数自己确定(三)填料类型聚丙烯阶梯环吸收填料塔(四)设计内容(1)设计方案的确定和说明(2)吸收塔的物料衡算;(3)吸收塔的工艺尺寸计算;(4)填料层压降的计算;(5)液体分布器简要设计;(6)绘制液体分布器施工图(7)吸收塔接管尺寸计算;(8)设计参数一览表;(9)绘制生产工艺流程图(A3号图纸);(10)绘制吸收塔设计条件图(A3号图纸);(11)对设计过程的评述和有关问题的讨论。

目录前言 ............................................................................................................. 错误!未定义书签。

第一节填料塔主体设计方案的确定.................................................. 错误!未定义书签。

1.1装置流程的确定 .................................................................................. 错误!未定义书签。

1.2 吸收剂的选择.................................................................................. 错误!未定义书签。

水吸收氨气-泡沫

水吸收氨气-泡沫
2 2
5×( 427680 / 940896 ) 0.75× [9929.59 / ( 114.2× 3.2 ) ] ( 997.052× 1.27× 108 ) ]
0.2 -0.05
0.1
× [9929.59×114.2 /
× [9929.592 / ( 997.05× 940896× 114.2 ) ]
L=1.7676×84.13=148.71Kmol /h
V(Y1—Y2)=L( X1— X2), 得 X1=84.13×(0.0695—0.0002) /120.16=0.0485 2.2 填料塔的工艺尺寸的计算
4
化工原理课程设计(清水吸收氨气)
2.2.1 塔径的计算
混合气体的平均摩尔质量为: 混合气体的密度:
1
化工原理课程设计(清水吸收氨气)
质。因此,填料的选择是填料塔设计的重要环节。 塔填料的选择包括确定填料的种类、 规格及材料。 填料的种类主要从传质效 率、通量、填料层的压降来考虑,填料规格的选择常要符合填料的塔径与填料公 称直径比值 D/d。 散装填料是一个个具有一定几何形状和尺寸的颗粒体, 一般以随机的方式堆 积在塔内,又称为乱堆填料或颗粒填料。散装填料根据结构特点不同,可分为环 形填料、鞍形填料、环鞍形填料及球形填料等。
0.065×17+(1-0.065)×29=28.22
PM 101.3 103 28.22 103 V 1.154kg / m3 RT 8.314 298
塔径气相质量流量为: V =2200×1.154=2538.8kg/h 液相质量流量可近似按纯水的流量计算,即: L =108.14× 18.02=1949 ㎏/h 塑料阶梯环特性数据据如下
4VS = [(4× 2200/3600)/(3.14× 2.148)] 0.5=0.602m u

化工原理课程设计(水吸收氨填料吸收塔设计)

化工原理课程设计(水吸收氨填料吸收塔设计)

化工原理课程设计(水吸收氨填料吸收塔设计)目录第1节前言31.1填料塔的主体结构与特点31.2填料塔的设计任务及步骤31.3填料塔设计条件及操作条件4第2节精馏塔主体设计方案的确定42.1装置流程的确定42.2吸收剂的选择52.3填料的类型与选择52.3.1填料种类的选择52.3.2填料规格的选择52.3.3填料材质的选择62.4基础物性数据62.4.1液相物性数据62.4.2气相物性数据72.4.3气液相平衡数据72.4.4物料横算8第3节填料塔工艺尺寸的计算93.1塔径的计算93.2填料层高度的计算及分段113.2.1传质单元数的计算113.2.2传质单元高度的计算113.2.3填料层的分段143.3填料层压降的计算14第4节填料塔内件的类型及设计154.1塔内件类型154.2塔内件的设计164.2.1液体分布器设计的基本要求:164.2.2液体分布器布液能力的计算16注:171.填料塔设计结果一览表 (17)2.填料塔设计数据一览 (18)3.参考文献 (19)4.后记及其他 (19)附件一:塔设备流程图20附件二:塔设备设计图20表索引表 21工业常用吸收剂 (5)表 22 常用填料的塔径与填料公称直径比值D/d的推荐值 (6)图索引图 11 填料塔结构图 (3)图 31 Eckert图 (15)第1节前言1.1填料塔的主体结构与特点结构图错误!文档中没有指定样式的文字。

1所示:图错误!文档中没有指定样式的文字。

1 填料塔结构图填料塔不但结构简单,且流体通过填料层的压降较小,易于用耐腐蚀材料制造,所以她特别适用于处理量小,有腐蚀性的物料及要求压降小的场合。

液体自塔顶经液体分布器喷洒于填料顶部,并在填料的表面呈膜状流下,气体从塔底的气体口送入,流过填料的空隙,在填料层中与液体逆流接触进行传质。

因气液两相组成沿塔高连续变化,所以填料塔属连续接触式的气液传质设备。

1.2填料塔的设计任务及步骤设计任务:用水吸收空气中混有的氨气。

化工原理课程设计水吸收氨填料吸收塔设计(1)

化工原理课程设计水吸收氨填料吸收塔设计(1)

化工原理课程设计水吸收氨填料吸收塔设计
(1)
化工原理课程设计——水吸收氨填料吸收塔设计
一、选择填料
本设计所选用的填料为塔形环状填料,其主要优点在于能够提高氨气
与水接触的时间和接触面积,从而提高吸收效率。

其次,填料的表面
积大,对氨气的吸附强度较高。

二、计算填料高度
根据质量平衡公式,吸收塔中氨气的质量=进入氨气的质量-出口氨气
的质量-吸收氨气的质量。

结合我们所设计的填料种类和工艺流程,可
以得到计算填料高度的公式:
θ=(W/N) ln [(C0-C)/(Co-Ct)]
其中,W是空气中氨气的质量流量,单位为kg/h;N是塔形环状填料每立方米的比表面积,单位为m²/m³;C0是氨气从入口口进入吸收器的
浓度,单位为mg/Nm³;Ct是出口处氨气的平均浓度,单位为mg/Nm³;
C是入口处水的浓度,单位为mg/L。

三、塔的直径
根据经验公式可得:填料在瞬间液晶表面液流速等于液降的经验公式。

v=1.2/(μ)½ (ΔP/ρ) ¼
其中,v是液体在塔体内部的平均流速,单位为m/s;μ是液体的粘度,单位为Pa*s;ΔP是液体在塔体内产生的液降,单位为Pa;ρ是液体
的密度,单位为kg/m³。

四、结论
经过以上各个方面的计算和分析,我们得到了适合本工艺流程,并且
具有高效的填料塔高度及塔直径,使本工艺流程吸收效率达到最优化
程度。

我们所选用的填料塔设计方案具有成本低、效率高及运行稳定
等特点,非常符合实际工序的需要。

(完整版)化工原理课程设计(水吸收氨填料吸收塔设计)(正式版)

(完整版)化工原理课程设计(水吸收氨填料吸收塔设计)(正式版)

《化工原理》课程设计水吸收氨气过程填料塔的设计学院专业制药工程班级姓名学号指导教师2013 年 1 月 15 日目录设计任务书 (4)第一节前言 (3)1.1 填料塔的有关介绍 (4)1.2 塔内填料的有关介绍.............................. 错误!未定义书签。

第二节填料塔主体设计方案的确定 .. (5)2.1 装置流程的确定 (5)2.2 吸收剂的选择 (5)2.3 填料的类型与选择 (7)2.4 液相物性数据 (6)2.5 气相物性数据 (8)2.6 气液相平衡数据 (7)2.7 物料横算 (7)第三节填料塔工艺尺寸的计算 (8)3.1 塔径的计算 (8)3.2 填料层高度的计算及分段 (9)3.2.1 传质单元数的计算 (10)3.2.2 传质单元高度的计算 (10)3.2.3 填料层的分段 (11)第四节填料层压降的计算 (12)第五节填料塔内件的类型及设计 (13)第六节填料塔液体分布器的简要设计 (13)参考文献 (15)对本设计的评述及心得 (15)附表:附表1填料塔设计结果一览表 (15)附表2 填料塔设计数据一览 (15)附件一:塔设备流程图 (17)设计任务书(一)、设计题目:水吸收氨气过程填料吸收塔的设计试设计一座填料吸收塔,用于脱除混于空气中的氨气。

混合气体的处理量为7500 m3/h,其中含氨气为5%(体积分数),要求塔顶排放气体中含氨低于0.02%(体积分数)。

采用清水进行吸收,吸收剂的用量为最小用量的1.5倍。

(二)、操作条件(1)操作压力常压(2)操作温度 20℃.(三)填料类型选用聚丙烯阶梯环填料,填料规格自选。

(四)工作日每年300天,每天24小时连续进行。

(五)厂址厂址为衡阳地区(六)设计内容1.吸收塔的物料衡算;2.吸收塔的工艺尺寸计算;3.填料层压降的计算;4.液体分布器简要设计5.吸收塔接管尺寸计算;6.绘制吸收塔设计条件图;7.对设计过程的评述和有关问题的讨论。

化工原理课程设计(水吸收氨填料吸收塔设计)

化工原理课程设计(水吸收氨填料吸收塔设计)

水吸收氨填料吸收塔设计1 题目含氨为5%的混合气体, 处理量为500m3/h, 尾气中含氨低于0.02%,采用清水进行吸收, 吸收剂的用量为最小用量的1.5倍. (均为体积分数).,2 设计任务和操作条件:(1)操作压力常压。

(2)操作温度 20℃(3)年工作300天,每天24小时运行.3 填料类型 聚丙烯阶梯环填料,规格自选.4 设计内容(1)吸收塔的物料衡算(2)填料层压降的计算(3)液体分布器的简单设计(4)吸收塔塔体工艺尺寸的计算(5)绘制分布器施工图(6)对本设计进行评述5 基础数据20℃下氨在水中的溶解度系数为0.725Kmol/( m3. kpa)一吸收工艺流程的确定采用常规逆流操作流程.流程如下。

二物料计算(l). 进塔混合气中各组分的量取塔平均操作压强为101.3kPa,故:混合气量= 500()×= 20.80kmol/h混合气中氨量=20.80×0.543 =1.129 kmol/h = 19.2kg/h混合气中空气量=20.80-1.129 = 19.671kmol/h=570.5kg/h (2).混合气进出塔的(物质的量)组成==0.05430;(3).混合气进出塔(物质的量比)组成Y1==0.0574Y2=(1-)=0.0574×=0.0002296(以塔顶排放气体中氨含量0.02%计)三 平衡曲线方程查表知:20℃时,氨在水中的亨利系数E=277.3Kpa;m = = = 2.737故操作线方程为:Y=2.737X.吸收剂(水)的用量Ls由操作线方程知:当Y1=0.0574时,X1*=0.021,计算最小吸收剂用量=19.671×=53.77 kmol/h取安全系数为1.5,则Ls=1.5×53.77=80.65kmol/h = 1451.7kg/h依物料衡算式塔底吸收液浓度= 19.671×= 0.014四塔径计算塔底气液负荷大,依塔底条件(混合气20℃),101.325kPa图1 通用压降关联图(1).采用Eckert通用关联图法(图1)计算泛点气速①有关数据计算塔底混合气流量V`S=570.5+19.2=589.7kg/h吸收液流量L`=1451.7kg/h进塔混合气密度=×=1.206kg/(混合气浓度低,可近似视为空气的密度)吸收液密度=998.2kg/吸收液黏度=1.005 mP a·s经比较,选DN38mm聚丙烯阶梯环。

完整版化工原理课程设计水吸收氨气填料塔设计

完整版化工原理课程设计水吸收氨气填料塔设计
《化工原理》课程设计
——水吸收氨气填料塔设计
学 院
专 业
班 级
姓 名
学 号
指导教师
年12月11日
设计任务书
水吸收氨气填料塔设计
(1)设计题目
试设计一座填料吸收塔,米用清水吸收混于空气中的氨气C
量为_32003/h,其中含氨为8%(体积分数)
温度为25C。要求:
① 塔顶排放气体中含氨低于__0.04%(体积分数)
(2)操作条件
(1)操作压力:常压
(2)操作温度:20r
(3)吸收剂用量为最小用量的倍数自己确定
(3)填料类型
聚丙烯阶梯环吸收填料塔
(4)设计内容
(1)设计方案的确定和说明
(2)吸收塔的物料衡算;
(3)吸收塔的工艺尺寸计算;
(4)填料层压降的计算;
(5)液体分布器简要设计;
(6)绘制液体分布器施工图
为了避免化学工业产生的大量的含有氨气的工业尾气直接排入大气而造成 空气污染, 需要采用一定方法对于工业尾气中的氨气进行吸收, 本次课程设计的 目的是根据设计要求采用填料吸收塔吸收的方法来净化含有氨气的工业尾气, 使 其达到排放标准。设计采用填料塔进行吸收操作是因为填料可以提供巨大的气液 传质面积而且填料表面具有良好的湍流状况,从而使吸收过程易于进行,而且, 填料塔还具有结构简单、 压降低、 填料易用耐腐蚀材料制造等优点, 从而可以使 吸收操作过程节省大量人力和物力。
1.4.1填料种类的选择4
1.4.2填料规格的选择6
1.4.3填料材质的选择6
1.5基础物性数据7
1.5.1液相物性数据7
1.5.2气相物性数据8
1.5.3气液相平衡数据8
1.5.4物料横算8

化工原理课程设计 水吸收氨气 资料

化工原理课程设计  水吸收氨气 资料

化工原理课程设计(清水吸收氨气)《化工原理》课程设计水吸收氨气填料塔设计院医药化工学院学业化学工程与工艺专班级姚姓名 090350== 号学蒋赣、严明芳指导教师日12月25年 2011化工原理课程设计(清水吸收氨气)目录前言1…………………………………………………………………………………1. 水吸收氨气填料塔工艺设计方案简介 (4)1.1任务及操作条件 (4)1.2设计案的确定 (4)1.3填料的选择 (4)2. 工艺计算 (6)2.1 基础物性数据 (6)2.1.1液相物性的数据 (6)2.1.2气相物性的数据 (6)2.1.3气液相平衡数据 (6)2.1.4 物料衡算 (7)2.2 填料塔的工艺尺寸的计算 (7)2.2.1 塔径的计算 (7)2.2.2 填料层高度计算 (9)2.2.3 填料层压降计算 (12)2.2.4 液体分布器简要设计 (13)3. 辅助设备的计算及选型 (15)3.1 填料支承设备 (15)3.2填料压紧装置 (16)3.3液体再分布装置 (16)4. 设计一览表 (17)5. 后记 (18)6. 参考文献 (10)7. 主要符号说明 (10)8. 附图(工艺流程简图、主体设备设计条件图)化工原理课程设计(清水吸收氨气)前言在炼油、石油化工、精细化工、食品、医药及环保等部门,塔设备属于使用量大应用面广的重要单元设备。

塔设备广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中。

所以塔设备的研究一直是国内外学者普遍关注的重要课题。

在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。

吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。

塔设备按其结构形式基本上可分为两类;板式塔和填料塔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《化工原理》课程设计水吸收氨气填料塔设计学院医药化工学院专业化学工程与工艺班级姓名姚学号 ******==指导教师蒋赣、严明芳2011年12月25日目录前言 (1)1. 水吸收氨气填料塔工艺设计方案简介 (4)1.1任务及操作条件 (4)1.2设计案的确定 (4)1.3填料的选择 (4)2. 工艺计算 (6)2.1 基础物性数据 (6)2.1.1液相物性的数据 (6)2.1.2气相物性的数据 (6)2.1.3气液相平衡数据 (6)2.1.4 物料衡算 (7)2.2 填料塔的工艺尺寸的计算 (7)2.2.1 塔径的计算 (7)2.2.2 填料层高度计算 (9)2.2.3 填料层压降计算 (12)2.2.4 液体分布器简要设计 (13)3. 辅助设备的计算及选型 (15)3.1 填料支承设备 (15)3.2填料压紧装置 (16)3.3液体再分布装置 (16)4. 设计一览表 (17)5. 后记 (18)6. 参考文献 (10)7. 主要符号说明 (10)8. 附图(工艺流程简图、主体设备设计条件图)前言在炼油、石油化工、精细化工、食品、医药及环保等部门,塔设备属于使用量大应用面广的重要单元设备。

塔设备广泛用于蒸馏、吸收、萃取、洗涤、传热等单元操作中。

所以塔设备的研究一直是国内外学者普遍关注的重要课题。

在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。

吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。

塔设备按其结构形式基本上可分为两类;板式塔和填料塔。

以前在工业生产中,当处理量大时多用板式塔,处理量小时采用填料塔。

近年来由于填料塔结构的改进,新型的、高负荷填料的开发,既提高了塔的通过能力和分离效能又保持了压降小、性能稳定等特点。

因此,填料塔已经被推广到大型气、液操作中,在某些场合还代替了传统的板式塔。

如今,直径几米甚至几十米的大型填料塔在工业上已非罕见。

随着对填料塔的研究和开发,性能优良的填料塔必将大量用于工业生产中。

综合考察各分离吸收设备中以填料塔为代表,填料塔技术用于各类工业物系的分离,虽然设计的重点在塔体及塔内件等核心部分,但与之相配套的外部工艺和换热系统应视具体的工程特殊性作相应的改进。

例如在DMF回收装置的扩产改造项目中,要求利用原常压塔塔顶蒸汽,工艺上可以在常压塔及新增减压塔之间采用双效蒸馏技术,达到降低能耗、提高产量的双重效果,在硝基氯苯分离项目中;改原多塔精馏、两端结晶工艺为单塔精馏、端结晶流程,并对富间硝基氯苯母液进行精馏分离,获得99%以上的间硝基氯苯,既提高产品质量,又取得了降低能耗的技术效果。

过程的优缺点:分离技术就是指在没有化学反应的情况下分离出混合物中特定组分的操作。

这种操作包括蒸馏,吸收,解吸,萃取,结晶,吸附,过滤,蒸发,干燥,离子交换和膜分离等。

利用分离技术可为社会提供大量的能源,化工产品和环保设备,对国民经济起着重要的作用。

为了使1填料塔的设计获得满足分离要1求的最佳设计参数(如理论板数、热负荷等)和最优操作工况(如进料位置、回流比等),准确地计算出全塔各处的组分浓度分布(尤其是腐蚀性组分)、温度分布、汽液流率分布等,常采用高效填料塔成套分离技术。

而且,20世纪80年代以来,以高效填料及塔内件为主要技术代表的新型填料塔成套分离工程技术在国内受到普遍重视。

由于其具有高效、低阻、大通量等优点,广泛应用于化工、石化、炼油及其它工业部门的各类物系分离。

氨是化工生产中极为重要的生产原料,但是其强烈的刺激性气味对于人体健康和大气环境都会造成破坏和污染,氨对接触的皮肤组织都有腐蚀和刺激作用,可以吸收皮肤组织中的水分,使组织蛋白变性,并使组织脂肪皂化,破坏细胞膜结构。

氨的溶解度极高,所以主要对动物或人体的上呼吸道有刺激和腐蚀作用,常被吸附在皮肤粘膜和眼结膜上,从而产生刺激和炎症。

可麻痹呼吸道纤毛和损害粘膜上皮组织,使病原微生物易于侵入,减弱人体对疾病的抵抗力。

氨通常以气体形式吸入人体,氨被吸入肺后容易通过肺泡进入血液,与血红蛋白结合,破坏运氧功能。

进入肺泡内的氨,少部分为二氧化碳所中和,余下被吸收至血液,少量的氨可随汗液、尿液或呼吸排出体外。

短期内吸入大量氨气后会出现流泪、咽痛、咳嗽、胸闷、呼吸困难、头晕、呕吐、乏力等。

若吸入的氨气过多,导致血液中氨浓度过高,就会通过三叉神经末梢的反射作用而引起心脏的停搏和呼吸停止,危及生命。

长期接触氨气,部分人可能会出现皮肤色素沉积或手指溃疡等症状;氨气被呼入肺后容易通过肺泡进入血液,与血红蛋白结合,破坏运氧功能。

短期内吸入大量氨气后可出现流泪、咽痛、声音嘶哑、咳嗽、痰带血丝、胸闷、呼吸困难,可伴有头晕、头痛、恶心、呕吐、乏力等,严重者可发生肺水肿、成人呼吸窘迫综合症,同时可能生呼吸道刺激症状。

因此,吸收空气中的氨,防止氨超标具有重要意义。

因此,为了避免化学工业产生的大量的含有氨气的工业尾气直接排入大气而造成空气污染,需要采用一定方法对于工业尾气中的氨气进行吸收,本次课程设计的目的是根据设计要求采用填料吸收塔吸收的方法来净化含有氨气的工业尾气,使2其达到排放标准。

设计采填料塔进行吸收操作是因为填料可以提供巨大的气液传质面积而且填料表面具有良好的湍流状况,从而使吸收过程易于进行,而且,填料塔还具有结构简单、压降低、填料易用耐腐蚀材料制造等优点,从而可以使吸收操作过程节省大量人力和物力。

利用混合气体中各组分在同一种液体(溶剂)中溶解度差异而实现组分分离的过程称为气体吸收气体吸收是一种重要的分离操作,它在化工生产中主要用来达到以下几种目的。

(1)分离混合气体以获得一定的组分。

(2)除去有害组分以净化气体。

(3)制备某种气体的溶液。

一个完整的吸收分离过程,包括吸收和解吸两个部分。

典型过程有单塔和多塔、逆流和并流、加压和减压等。

31.水吸收氨气填料塔工艺设计方案简介1.1任务及操作条件①混合气(空气、NH3 )处理量:26003/m h;②进塔混合气含NH3 7% (体积分数);温度:20℃;③进塔吸收剂(清水)的温度:20℃;④NH3回收率:96%;⑤操作压力为常压101.3k Pa。

1.2设计方案的确定在化学工业中,经常需要将气体混合物中的各个组分加以分离,其主要目的是回收气体混合物中的有用物质,以制取产品,或除去工艺气体中的有害成分,使气体净化,以便进一步加工处理,或除去工业放空尾气中的有害成分,以免污染空气。

吸收操作是气体混合物分离方法之一,它是根据混合物中各组分在某一种溶剂中溶解度不同而达到分离的目的。

氨是化工生产中极为重要的生产原料,但是其强烈的刺激性气味对于人体健康和大气环境都会造成破坏和污染,因此,为了避免化学工业产生的大量的含有氨气的工业尾气直接排入大气而造成空气污染,需要采用一定方法对于工业尾气中的氨气进行吸收,本次化工原理课程设计的目的是根据设计要求采用常压常温下填料吸收塔吸收的方法来净化含有氨气的工业尾气,使其达到排放标准。

设计采用填料塔进行吸收操作是因为填料可以提供巨大的气液传质面积而且填料表面具有良好的湍流状况,从而使吸收过程易于进行,而且,填料塔还具有结构简单、压降低、填料易用耐腐蚀材料制造等优点,从而可以使吸收操作过程节省大量人力和物力。

1.3填料的选择塔填料(简称为填料)是填料塔的核心构件,它提供了气、液两相相接触传质与传热的表面,其性能优劣是决定填料塔操作性能的主要因素。

填料的比表面积越大,气液分布也就越均匀,传质效率也越高,它与塔内件一起决定了填料塔的性4质。

因此,填料的选择是填料塔设计的重要环节。

塔填料的选择包括确定填料的种类、规格及材料。

填料的种类主要从传质效率、通量、填料层的压降来考虑,填料规格的选择常要符合填料的塔径与填料公称直径比值D/d。

散装填料是一个个具有一定几何形状和尺寸的颗粒体,一般以随机的方式堆积在塔内,又称为乱堆填料或颗粒填料。

散装填料根据结构特点不同,可分为环形填料、鞍形填料、环鞍形填料及球形填料等。

拉西环鲍尔环阶梯环弧鞍形填料矩鞍形填料塑料填料的材质主要包括聚丙烯、聚乙烯及聚氯乙烯等,国内一般多采用聚丙烯材质。

塑料填料的耐腐蚀性能较好,可耐一般的无机酸、碱和有机溶剂的腐蚀。

其耐温性良好,可长期在100℃以下使用。

设计选用填料塔,填料为散装聚丙烯DN50阶梯环填料。

国内阶梯环特性数据材质外径d,mm外径×高×厚d×H×δ比表面积a t,m2/m3空隙率ε,m3/m3个数n,个/m3堆积密度ρp,kg/m3干填料因子a t/ε3,m-1填料因子Φ,m-1塑料2538507625×17.5×1.438×19×150×30×1.576×37×3228132.5114.289.950.900.910.9270.92981500272009980342097.857.576.868.4313175.6143.1112240120807252. 工艺计算2.1基础物性数据2.1.1液相物性数据对低浓度吸收过程,溶液的物性数据可近似取纯水的物性数据。

由手册查的,20℃水的有关物性数据如下:密度:ρ1 =998.2Kg /m 3粘度:μL =1.005mPa ·S =0.001Pa ·S=3.6Kg /(m ·h )表面张力:σL =72.6dyn /cm=940 896Kg /h 2氨气在水中的扩散系数:D L =1.80×10-9 m 2/s=1.80×10-9×3600 m 2/h=6.480 ×10-6m 2/h2.1.2气相物性的数据混合气体平均摩尔质量:M VM =Σy i M i =0.070×17+0.930×29=28.16混合气体的平均密度:ρvm =RTPM VN =101.3×28.16/(8.314×293)=1.171Kg /m 3 混合气体的粘度可近似取为空气的粘度,查手册的20℃空气的粘度:μV =1.81×10—5Pa ·s=0.065Kg /(m ·h )查手册得氨气在20℃空气中扩散系数: D v = 0.189 cm 2/s=0.068 m 2/s2.1.3气液相平衡数据20C 下氨在水中的溶解度系数:)/(725.03kpa m kmol H ⋅=,常压下20℃时亨利系数:S LHM E ρ==998.2/(0.725×18.02)=76.40Kpa相平衡常数:62.1.4 物料衡算进塔气相摩尔比:Y 1=11y 1y —=0.070/(1—0.070)=0.075 出塔气相摩尔比:Y 2=Y 1(1—φ)=0.075×(1—0.998)=0.00015进塔惰性气相流量:V=2600/22.4×273/(273+20)×(1—0.070)=100.6Kmol /h该吸收过程属低浓度吸收,平衡关系为直线,最小液气比可按下式计算,即: (V L )min =2121m X Y Y Y —/— 对纯溶剂吸收过程,进塔液相组成为 X 2=0,则 (VL )min =(0.075—0.00015)/[0.075/(0.754—0)]=0.752 取操作液气比为最小液气比1.8倍,则VL =1.8×0.752=1.354, 因此 L=1.354×100.6=136.22Kmol /h 由全塔物料衡算得:V (Y 1—Y 2)=L (X 1—X 2), 得X 1=100.6×(0.075—0.00015) /136.22=0.055282.2 填料塔的工艺尺寸的计算2.2.1 塔径的计算混合气体的密度: 333/183.1293315.8104.28103.101m kg RT M P V =⨯⨯⨯⨯==-ρ 7塔径气相质量流量为:V ω=2600×1.183=3076Kg /h液相质量流量可近似按纯水的流量计算,即: L ω=136.22×18.02=2455㎏/h塑料阶梯环特性数据据如下用贝恩—霍根关联式计算泛点气速:⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2.0v 2t 2g u lg L L Fμρρεα =81v 41//—⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛L V L K A ρρ 查表得比表面积: t a =114.2m 2/m 3 ,A=0.204,K=1.75,ε=0.927 ,得:81v 41//—⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛L V L K A ρρ=—0.508 =0.310因此计算得: F u = 4.23m/s 取u =0.8u F =1×4.23m/s =4.23m/s由 D=u4πS V = [(4×2600/3600)/(3.14×4.23)] 0.5=0.466m 圆整塔径,取 D=0.5m (常用的标准塔径为400、500、600、700、800、1000、1200、1400、1600、2000、2200)8泛点率校核: u=2600/3600/(0.785×0.52)=3.68m /s=Fu u3.68/4.23×100%=87.00%(在允许范围内) 填料规格校核: D /d=500/50=10>8 液体喷淋密度校核:因填料为50mm×25mm×1.5mm,塔径与填料尺寸之比大于8,固取最小润湿速度为(Lw )min=0.08 m 3/(m·h),查常用散装填料的特性参数表,得at=114.2m 2/m 3 U min =(L W )min · a t =0.08×114.2=9.136m 3/m 2·h U=136.22×18.02/998.2/(0.785×0.52)=12.53>U min经以上校核可知,填料塔直径选用D= 500mm 是合理的。

相关文档
最新文档