各向同性湍流的精确统计理论

合集下载

第七章第三节均匀各向同性湍流

第七章第三节均匀各向同性湍流
7
二、两点脉动速度相关矩
以Bij表示M点脉动速度和M’点脉动速度间 的相关矩,即
Bij = u i u ′j
Bi , j (r ) = [ B LL (r ) − B NN (r )]
BLL = u f (r )
2
ξ iξ j
r
2
+ B NN (r )δ ij
若以f(r)和g(r)分布表示纵向和横向相关系数,则
∂ri ∂r ri ∂ri = = δ ij =3 ∂ri r ∂ri ∂r j
u 2 r df r df 2 Bi , j (r ) = 2 [− ri r j + ( f + )r δ ij ] 2 dr 2 dr r
r1,2,3为r在(x1,x2,x3)在直角坐标系的分量
9
三、两点速度三元相关矩
3
Keller与Friedman的思路
Keller与Friedman的思路
Reynolds平均 一点平均
N-S方程
Reynolds方程
− (u i′u ′j )
方程不封闭
怎么办?
R=0,τ=0 两点相关矩 v v v v v Bij ( x , t ; r ,τ ) = u i′ ( x , t )u ′j ( x + r , t + τ )
B p, j v r = B1 (r ) r
B p , j = pu ′j = B1 (r )
rj r
= pu ′ ρ
rj r
18
各向同性湍流场 压力速度相关矩
由各向同性的定义
⎧ puθ = − puθ ′ ⎪ ′ ⎨ ′ ⎪ puϕ = − puϕ ⎩ ′
⎧ p ′uθ = − p ′uθ ⎪ ⎨ ⎪ p ′uϕ = − p ′uϕ ⎩

各向同性湍流Karman-Howarth方程的精确解

各向同性湍流Karman-Howarth方程的精确解

a. for all of these four solutions: a1 > 0,
b. only for the secondary solution:σ > 0 ; c. only for the third solution: 0 < σ < 5 .
2
The use of these above exact solutions would be presented in our further publications.
2a1
2

when
k
=1−σ

f

)
=
− a1 ξ 2
e4
F⎜⎛σ ,2,
a1
ξ
2
⎟⎞
⎝ 4⎠
when
σ
=
1,
f

)
=
− a1 ξ 2
e4
F ⎜⎛
1
,1,
a1
ξ
2
⎟⎞
⎝2 4 ⎠
The detailed analysis could be seen in appendix 1. The convergent conditions at infinite must be satisfied
Key words: isotropic turbulence, KH equations, exact solution
Introduction
The ideas of similarity and self-preservation have played an important role in the development of turbulence theory for more than a half-century. The traditional approach to search for similarity solutions in turbulence has been to assume the existence of a single length and velocity scale, then ask whether and what conditions the averaged equations of motion admit to such solutions. In the development of this ideas, Karman (von Karman,1938) firstly gave the analysis solutions of Karman-Howarth equation for the decaying turbulence. Sedov (Sedov,1944,1951) gave anther method to obtain the special solutions of KH equations. In this paper, we found that a complete set of exact solutions exists. Following the methods adopted by Sedov, new solutions have been given, both for three-dimensional and two-dimensional isotropic turbulence.

(完整word版)湍流模型理论

(完整word版)湍流模型理论

湍流模型理论§3.1 引言自然界中的实际流动绝大部分是三维的湍流流动,如河流,血液流动等。

湍流是流体粘性运动最复杂的形式,湍流流动的核心特征是其在物理上近乎于无穷多的尺度和数学上强烈的非线性,这使得人们无论是通过理论分析、实验研究还是计算机模拟来彻底认识湍流都非常困难。

回顾计算流体力学的发展,特别是活跃的80年代,不仅提出和发展了一大批高精度、高分辨率的计算格式,从主控方程看相当成功地解决了Euler方程的数值模拟,可以说Euler方程数值模拟方法的精度已接近于它有效使用范围的极限;同时还发展了一大批有效的网格生成技术及相应的软件,具体实现了工程计算所需要的复杂外形的计算网格;且随着计算机的发展,无论从计算时间还是从计算费用考虑,Euler方程都已能适用于各种实践所需。

在此基础上,80年代还进行了求解可压缩雷诺平均方程及其三维定态粘流流动的模拟。

90年代又开始一个非定常粘流流场模拟的新局面,这里所说的粘流流场具有高雷诺数、非定常、不稳定、剧烈分离流动的特点,显然需要继续探求更高精度的计算方法和更实用可靠的网格生成技术.但更为重要的关键性的决策将是,研究湍流机理,建立相应的模式,并进行适当的模拟仍是解决湍流问题的重要途径。

要反映湍流流场的真实情况,目前数值模拟主要有三种方法:1。

平均N-S方程的求解,2。

大涡模拟(LES),3。

直接数值模拟(DNS)。

但是由于叶轮机械内部结构的复杂性以及目前计算机运算速度较慢,大涡模拟和直接数值模拟还很少用于叶轮机械内部湍流场的计算,更多的是通过求解平均N-S方程来进行数值模拟。

因为平均N-S方程的不封闭性,人们引入了湍流模型来封闭方程组,所以模拟结果的好坏很大程度上取决于湍流模型的准确度。

自70年代以来,湍流模型的研究发展迅速,建立了一系列的零方程、一方程、两方程模型和二阶矩模型,已经能够十分成功的模拟边界层和剪切层流动。

但是,对于复杂的工业流动,比如航空发动机中的压气机动静叶相互干扰问题,大曲率绕流,激波与边界层相互干扰,流动分离,高速旋转以及其他一些原因,常常会改变湍流的结构,使那些能够预测简单流动的湍流模型失效,所以完善现有湍流模型和寻找新的湍流模型在实际工作中显得尤为重要。

中国湍流研究的发展史_中国科学家早期湍流研究的回顾

中国湍流研究的发展史_中国科学家早期湍流研究的回顾

中国湍流研究的发展史I 中国科学家早期湍流研究的回顾黄永念北京大学力学与工程科学系,湍流与复杂系统国家重点实验室,北京,100871摘要总结了二十世纪三十年代到六十年代中国老一辈科学家(包括物理学家,力学家)周培源、王竹溪、张国藩、林家翘、谢毓章、张守廉、黄授书、胡宁、柏实义、陈善模、庄逢甘、陆祖荫、李政道、蔡树棠、是勋刚、李松年、谈镐生、包亦和等诸位先生的湍流研究工作。

介绍他们对流体力学中最为困难的湍流问题所作出的努力和贡献。

关键词湍流统计理论,能量衰变规律,均匀各向同性湍流,剪切湍流。

引言湍流一直被认为是物理学中最难而又久未解决的基础理论研究的一个课题。

从1883年Reynolds圆管湍流实验研究算起已经跨越了两个世纪,湍流问题仍未得到解决。

在跨入二十一世纪时,很多从事湍流研究工作的科学家都在思考这样的问题:二十世纪的湍流研究留给我们哪些宝贵财富?二十一世纪又应该如何面对这个老大难问题?Yaglom在2000年法国举行的一次湍流讲习班上回顾了二十世纪的湍流理论发展过程[1],指出了其中两个最重要的成就:一个是Kolmogorov的局部均匀各向同性湍流理论,另一个是von Karman的湍流平均速度的对数分布律。

同时又一次向世人介绍著名科学家Lamb在临终前对解决湍流问题的悲观看法。

由于中国与世界各国在文字和语言上的差异和长期缺乏国际间的交流,历次湍流研究工作的总结和回顾中,人们往往忽略了中国科学家的作用。

只有周培源教授在1995年流体力学年鉴上发表了“中国湍流研究50年”才打破了这种隔阂[2]。

但是这篇文章也只局限于周培源教授率领的北京大学研究组所做的系列研究工作。

实际上有很多中国科学家在上一世纪中做了非常出色的工作。

本文仅就半个世纪前的三十年代到六十年代他们的湍流研究工作做一个简单的介绍,目的是要引起大家关注中国科学家的湍流研究和对湍流研究所做的贡献。

中国科学家的湍流研究工作可以分成两个方面,一是在国内极其困难的条件下坚持开展的研究工作,这方面的工作国际上鲜为人知。

[理学]第七章第四节局地均匀各向同性湍流

[理学]第七章第四节局地均匀各向同性湍流

六、Ko1mogorov的修正部分
几十年来,Ko1mogorov理论已获得很大成 功,在大气中,在海洋中,在实验室中,人们 几乎到处都观测到了这个理论所预测的2/3湍 谱。它不仅有重要的理论意义,是湍流发展史 中一个具有里程碑意义的成就,而且在许多工 程应用中有直接应用价值。
人们在大量实验观测中看到了Ko1mogorov 理论所预测的结果。
υ3
(
) −α / 4
1 − 3α
=υ2 4 ε
r 1 +α
24
α
ε
α=2/3
Dll (r) = Cε 2 / 3r 2 / 3 Dnn (r) = C ′ε 2 / 3r 2 / 3
粘性子区湍流速度结构函数
对于粘性子区,r<<l0,将β(r/l0)展开得
β ( r ) = β (0) +
l0
∂β

Dpp (r) ~ ρ υx1 εx2 x3
x1=?,x2=?,x3=?
压力结构函数Dpp(r)
根据量纲理论,得到
M 2 L−2T −4 = ( ML −3 ) x1 ( L2T −1 ) x2 ( L2T −3 ) x3
⎧ ⎪⎨−
2
=
2 = x1 −3x1 + 2x2
+
2x3
⎪⎩ − 4 = −x2 − 3x3
Dln n (r)
=
(r
∂ ∂r
+ 1)Blll
(r)
结构函数的微分方程
从 Karman-Howarth 方 程 出 发 可 以 得 到 相 应的支配结构函数的微分方程
(d dr
+
4 r )[Dlll

第3章-均匀各项同性湍流

第3章-均匀各项同性湍流
脉动压强满足Poisson方程:
上面三式构成了不可压湍流的基本方程
3.3 不可压缩均匀各向同性湍流的动力学方程
下面考察不可压缩均匀湍流场中的湍动能和雷诺应力的演化。对于不 可压缩均匀湍流,一点的统计相关量的空间导数等于零,因此它的湍动能 利雷诺应力方程可以简化为:
由上式可见,均匀湍流场中湍动能总是耗散的
3.4.2 不可压缩均匀各向同性湍流的Karman-Howarth方程
脉动压强和速度相关项的作用使湍流脉动速度各向同性化, 一旦湍流场达到各向同性状态,压强—速度相关项就不再有任 何作用。
上式即为不可压缩各向同性湍流的2阶纵向速度相关方程。最早 由Karman和 Howarth(1938)导出,称为卡门--霍华斯方程。Karman-Howarth方程是线性偏微分方程,较之原始变量的N—S方程要简单 得多,不过,Karmnn--Howarth方程仍然是不封闭的。

3.3 不可压缩均匀各向同性湍流的动力学方程
3.3.4 均匀湍流中的湍动能传输链
在粘性作用下,脉动速度逐渐衰减,而且小尺度的成分衰减 得最快,于是在耗散过程中大尺度脉动成分占更多份额。
由于惯性在速度脉动的各个尺度间进行动量输运,它将大尺 度脉动的动能传输给小尺度脉动。
于是在粘性和惯性的联合作用下,湍流脉动场形成一种能量 传输链:大尺度湍流脉动通过惯性作用向小尺度湍流脉动不断输 送能量,这股能量在小尺度湍流脉动中耗散殆尽。
,或者说湍流脉
动总是衰减的,初始的湍动能在演化过程中将耗散殆尽。
3.3 不可压缩均匀各向同性湍流的动力学方程
3.3.2 不可压缩均匀湍流的谱理论 对湍流速度场和压强场进行傅立叶展开,经过一系列变换,
可以得到谱空间中湍流脉动的演化方程:

第4讲-均匀各向同性湍流讲解

第4讲-均匀各向同性湍流讲解

能谱曲线的水平段就是在有限雷诺数条件下的惯性子区。 可以看到,湍流雷诺数愈高,惯性子区愈宽。
DOSE, Zhejiang University
26
DOSE, Zhejiang University
柯尔莫果洛夫提出,湍流能量从大尺度湍涡逐级连续地输 送到小尺度湍涡,这个湍能在尺度谱上的流动,一直到最 小的内尺度,由分子粘性把它们耗散为热能。 柯尔莫果洛夫认定湍能级串过程是一个连续输送过程,大 涡从外界得到的非均匀各向同性,在一代代、一级级地往 小尺度湍涡输送过程中被消磨掉,最后可以得到均匀各向 同性的小涡。柯尔莫果洛夫从这个物理模型中得到了唯一 决定惯性子区间湍涡统计结构的物理因子──湍能耗散率 。从此出发,人们用量纲分析法就不难得到小尺度湍涡结 构函数的2/3 定律, 以及一维湍谱或标量场湍谱的-5/3 定律。
8
均匀各向同性的相关函数谱张量(1)

均匀各向同性湍流
均匀湍流
DOSE, Zhejiang University
− 如果任意 n 点空间几何构形在空间中平移时,脉动速 度的任意 n 阶统计相关函数的值不变,则称该湍流场 是均匀的
9
均匀各向同性湍流
− 如果任意 n点统计相关函数不仅和几何构形的平移无关,而且 和几何构形的刚体转动无关,则称该湍流场是均匀各向同性的
能量谱方程

17
DOSE, Zhejiang University
湍动能的分布E(k):大尺度脉动含有湍动能的绝大部分,而 小尺度脉动含有很少动能(能量的绝大部分在能谱值最大 的小波数附近)。 惯性作用的输运T(k):大尺度脉动(小波数)输出能量( T(k)<0),小尺度脉动则通过惯性输入能量 湍动能耗散vk2E(k):小尺度脉动占有湍动能耗散的绝大 部分,而大尺度脉动的耗散很少。 上述结果描述了不可压缩各向同性湍流场中湍动能输运的 图像:大尺度湍流脉动犹如一个很大的湍动能的蓄能池, 它不断地输出能量;小尺度湍流好像一个耗能机械,从大 尺度湍流输送来的动能在这里全部耗散掉;流体的惯性犹 如一个传送机械,把大尺度脉动动能输送给小尺度脉动。 流动的雷诺数愈高,蓄能的大尺度和耗能的小尺度之间的 惯性区域愈大。

(2021年整理)湍流的数值模拟综述

(2021年整理)湍流的数值模拟综述

湍流的数值模拟综述编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湍流的数值模拟综述)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湍流的数值模拟综述的全部内容。

湍流的数值模拟一、引语流体的流动形态分为湍流与层流。

而层流是流体的最简单的一种流动状态。

流体在管内流动时,其质点沿着与管轴平行的方向作平滑直线运动。

此种流动称为层流或滞流,亦有称为直线流动的.流体的流速在管中心处最大,其近壁处最小。

管内流体的平均流速与最大流速之比等于0.5,根据雷诺实验,当雷诺准数引Re<2320时,流体的流动状态为层流.当雷诺数Re〉2320时,流体流动状态开始向湍流态转变,湍流是一种很复杂的流动状态,是流体力学中公认的难题。

自从19世纪末O.Reynolds提出湍流的统计理论以来,已经有一个多世纪了,经过几代科学家的努力,湍流研究取得很大进展,但是仍然不能满足工程应用的需要,以至于经常有悲观的论调侵袭湍流研究。

为什么湍流问题没有圆满地解决会受到如此关注呢?因为湍流是自然界和工程中十分普遍的流动现豫,对于湍流问题的正确认识和模化直接影响到对自然环境的预测和工程的质量.例如,当前影响航天器气动力和气动热预测准确度的主要障碍是缺乏可靠的湍流模型。

和其他一些自然科学的准题不同,解决湍流问题具有迫切性。

湍流运动的最主要特征是不规则性,这是大家公认的。

对于湍流不规则性的深入认识,是一百多年来湍流研究的上要成就之一。

早期的科学家认为,像分子运动一样,湍流是完全不规则运动。

类似于分子运动产生黏性,湍流的耗散可以用涡黏系数来表述。

20世纪初,一些杰出的流体力学家,相继对涡黏系数提出各种流体力学的模型,如Taylor(1921年)的涡模型,Praudtl(1925年)的混合长模型和von Karman (1930年)相似模型等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Exact statistical theory ofisotropic turbulence1Ran zhengShanghai Institute of Applied Mathematics and Mechanics,Shanghai University, Shanghai 200072,P.R.ChinaAbstractSome physically significant consequences of recent advances in the theory ofself-preserved homogenous statistical solutions of the Navier-Stokes equationsare presented.Keywords: isotropic turbulence, Karman-Howarth equation, exact solution1 IntroductionHomogeneous isotropic turbulence is an idealized concept of turbulence assumed to be governed by a statistical law that is invariant under arbitrary translation (homogeneity), rotation or reflection (isotropic) of the coordinate system. This is an idealization of real turbulent motions, which are observed in nature or produced in a laboratory have much more complicated structures. This idealization was first introduced by Taylor (1935) to the theory of turbulence and used to reduce the formidable complexity of statistical expression of turbulence and thus make the subject feasible for theoretical treatment. Up to the present, a large amount of theoretical work has been devoted to this rather restricted kind of turbulence. Remarkable progress has been achieved so far in discovering the various nature of turbulence, but nevertheless our understanding of the fundamental mechanics of turbulence is still partial and unsatisfactory (Tatsumi, 1980)The assumption of self-preservation permits an analytical determination of the energy decay in isotropic turbulence. This idea of similarity and self-preservation has played an important the development of turbulence theory for more than a half-century. The traditional approach to search for similarity solutions in turbulence has been assume the existence of a single length and velocity scale, then ask whether and under what conditions the turbulent motions admit to such solutions. Excellent contributions had been given to this direction. Von Karman and Howarth (1938) firstly deduced the basic equation, also presented a particular set of solutions of Karman-Howarth equation for the final decaying turbulence. Later on, two Russian authors, Loitsiansky (1939) and Millionshtchikov (1941), have each discussed the solutions of Karman-Howarth equation which are obtained when the term describing the effect of the triple 1 National Natural Science Foundation of China (10272018, 10572083) velocity correlation is ignored. Their work is an extension of the “small Reynolds number” solution first put forward by von Karman and Howarth.H.Dryden (1943) gave a useful review on this subject. Great deep research on the solutions of Karman-Howarth equation was conducted by Sedov (1944). He showed that one could use the separability constraint to obtain the analytical solution of Karman-Howarth equation. Sedov’s solution could be expressed in terms of the confluent hypergeometric function. Batchelor (1948), who was also the first to carry out a detailed study of this problem, based his analysis on the assumption that the Loitsianskii integral is a dynamic invariant- a widely accepted hypothesis that was later discovered to be invalid. Batchelor conclude that the only complete self-preserving solution that was internally consistent existed at low turbulence Reynolds numbers where the turbulent kinetic energy consistent with the final period of turbulent decay. Batchelor (1948) also found a self-preserving solution to the Karman-Howarth equation in the limit of infinite Reynolds numbers for which Loitsiansky’s integral was an invariant. Objections were later raised to the use of Loitsiansky’s integral as a dynamic invariant: at high Reynolds numbers this integral can be shown to be a weak function of time (see Proudman & Reid 1954 and Batchelor & Proudman 1956). Saffman (1967) proposed an alternative dynamic invariant which yields another power law decayin the infinite Reynolds numbers limit (see Hinze 1975). While the results of Batchelor and Saffman formally constitute complete self-preserving solutions to the inviscid Karman-Howarth equation, it must be kept in mind that they only exhibit partial self-preservation with respect to the full viscous equation. Recently, George (1992) revived this issue concerning the existence of complete self-preserving solutions in isotropic turbulence. In an interesting paper he claimed to find a complete self-preserving solution, valid for all Reynolds numbers. George’s (1992) analysis is based on the dynamic equation for the energy spectrum rather than on the Karman-Howarth equation. Strictly speaking, the solution presented by George was an anlternative self-preserving solution to that of Karman-Howarth and Batchelor since he relaxed the constraint that the triple longitudinal velocity correlation be self-similarity in the classical sense. Speziale and Bernard (1992) reexamined this issue form a basic theoretical and computational standpoint. Several interesting conclusions had been drawn from their analysis.From the long history stories, we know that: Decaying homogeneous and isotropic turbulence is one of the most important and extensively explored problems in fluid dynamics and a central piece in the study of turbulence. Despite all the effort, a general theory describing the decay of turbulence based on the first principles has not yet been developed. (Skrbek and Steven R.Stalp, 2000). It thus appears that the theory of self-preservation in homogeneous turbulence has many interesting features that have not yet been fully understood and are worth of further study. (see Speziale and Bernard ,1992,pp.665).This paper offers a unified investigation of isotropic turbulence, based on the exact solutions of Karman-Howarth equation. Firstly, we will point out that new complete solution set may be exist if we adopt the Sedov (1944) method. Based on the above finds, new results could be obtained for the analysis on turbulencefeatures, such as the scaling behaviour, the spectrum, and also the large scale dynamics.2 Self-preservation solution under Sedov’s separability constraintFor complete self-preserving isotropic turbulence, the Karman-Howarth equation will have a solution if Reynolds number based on the Taylor microscale is constant as first noticed by Dryden (1943). However, this equation also has solutions where Reynolds number based on the Taylor microscale is time dependents when separability is invoked. The separability condition implies that each side of the equation is equal to zero individually, yielding differential equations from which explicit solution for the correlation functions may be determined depending on the choice of parameters. These solutions were first discovered by Sedov (1944) and later compared with experimental data by Korneyev & Sedov (1976). Here, we will discuss the possible new complete solutions under Sedov’s separability constraint.The two-point double longitudinal velocity correlations read as ( named Sedov equation)02242122=+⎟⎟⎠⎞⎜⎜⎝⎛++f a d df a d f d ξξξξ (1) with boundary conditions ()10=f ,()0=∞f .In the following analysis, we introduce alternative two parameters denoted by σ,1a , here122a a =σ (2) The complete new set of the solution of the equation (1) with the boundary condition could be given as following :The first kind of solution :if 25=σ,thus ()214ξξa e f −= (3)The secondary kind of solution :if 45−=σκ,thus ()⎟⎠⎞⎜⎝⎛−=−2144,25,2521ξσξξa F e f a (4) The third kind of solution :if σκ−=45,thus ()⎟⎠⎞⎜⎝⎛=−2144,25,21ξσξξa F e f a (5) The forth kind of solution :if 45=σ,thus ()⎟⎠⎞⎜⎝⎛=−2144,23,4321ξξξa F e f a (6) where (z F ,,)γαis the confluent hypergeometric function and the definition of the existing parameter κwill be given appendix. From the asymptotic expansions and the limiting forms of the confluent hypergeometric function, we could deduce the existence conditions of these solutions :For all four kind of solutions :,01>a For the secondary kind of soultions :0>σ;For the third kind of solution :250<<σ; The details could be seen in appendix .A simple comparison shows that the special solution found by Sedov (1944) is belonging to the secondary kind of our new set of solution.3 Some theoretical results based on the exact solutionsA unified investigation of isotropic turbulence, based on the above exact solutions of Karman-Howarth equation could be given. New results could be obtained for the analysis on turbulence features, such as the scaling behaviour, the spectrum, and also the large scale dynamics, some results could be seen in the following references [19,20,21,22] .References[1]Bareenblatt,G.J.& Garilov,A.A. 1974. Sov. Phys. J. Exp. Theor. Phys. 38,399-402.[2]Batchelor,G.K. 1948.Q. Appl. Maths. 6,97-116.[3]Batchelor, G.K. 1953 The Theory of Homogeneous Turbulence Turbulence. Cambrige University Press.[4]Batchelor,G.K. & Proudman,I. 1956. Phil. Trans. R. Soc. Lond. A.248,369-405. [5]Dryden,J.L. 1943. Q. Appl. Maths. 1,7-42.[6]George,W.K. 1992. Phys. Fluids A 4,1492-1509.[6]Hinze,J.O. 1975 Turbulence. McGraw-Hill.[7]Karman,T.Von & Howarth,L. 1938. Proc. R. Soc. Lond. A164,192-215.[8]Korneyev & Sedov, L.I. 1976. Fluid Mechanics-Soviet Research 5,37-48.[9]Lesieur,M. 1990 Turbulence in Fluids, 2nd Edn. Martinus Nijhoff.[10]Lin,C.C. 1948. Proc. Natl. Acad. Sci. 34,540-543.[11]Millionshtchikov, M. 1941. Dokl. Akad. Nauk SSSR 32,615-618.[12]Monin,A.S. & Yaglom,A.M. 1975 Statistical Fluid Mechanics: Mechanics of Turbulence, vol.2, MIT Press.[13]Proundman, I. & Reid, W. H. 1954. Philos. Trans. R. Soc. London, A 247,163-189.[14]Saffman,P.G. 1967. J. Fluid Mech. 27,581-594.[15]Sedov, L.I. 1944. Dokl.Akad.Nauk SSSR 42,116-119.[16]Speziale,C.G. & Bernard, P.S. 1992. J. Fluid Mech. 241,645-667.[17]Skbek,L. & Steven, R.S. 2000. Phys. Fluids 12,1997-2019.[18]Tatsumi, T. 1980. Advances in Applied Mechanics,39-133.[19]Ran zheng, Exact solutions of Karman-Howarth equation. -200510-311[20]Ran zheng, Scales and their interaction in isotropic turbulence. -200510-205.[21]Ran zheng, Dynamic of large scales in isotropic turbulence. -200509-230.[22]Ran zheng, On von Karman’s decaying turbulence theory. -200511-233.Appendix: Solutions of the correlation coefficientsThe ideas of similarity and self-preservation were firstly introduced by von Karman (1938). Following the methods adopted by Sedov (1944,1951), the two point double longitudinal velocity correlations satisfied02242122=+⎟⎟⎠⎞⎜⎜⎝⎛++f a d df a d f d ξξξξ (1) with the boundary condition()10=f()0=∞fThe complete solution are given in this paper, these are :When 25=σ,()214ξξae f −= When 45−=σκ,()⎟⎠⎞⎜⎝⎛−=−2144,25,2521ξσξξa F e f a When σκ−=45,()⎟⎠⎞⎜⎝⎛=−2144,25,21ξσξξa F e f a When 45=σ,()⎟⎠⎞⎜⎝⎛=−2144,23,4321ξξξa F e f a The detailed calculation is given as following:A lot of useful partial differential equations can be reduced to confluent hypergeometric equations. Let ()ςm k P ,is the solution of Whittaker equation as that defined by Whittaker and Waston041412222=⎥⎦⎤⎢⎣⎡−++−+W m k d W d ςςς (2) where()()()()z h P e z z y m z f ,κβ= (3)After some reduction, the equation of ()z y reads()()02222=⋅+⎥⎦⎤⎢⎣⎡′++′′′−z y g dzdy z f z h h dz y d β (4) where()()12212g f z h h z z f f f g +⎟⎠⎞⎜⎝⎛′+′′′+++′+′′−′=ββββ ⎟⎟⎠⎞⎜⎜⎝⎛−+−⎟⎠⎞⎜⎝⎛′=4412221h h m h h g κ The solutions of above equation could be deduced in terms of Whittaker function. We discussed this equation in following special case:()λaz z f = (5)()λAz z h = (6) The equation under this condition reads as()0221122=+⎥⎦⎤⎢⎣⎡−−−+−z qy dzdy z z dz y d λλαβλ (7) where()()()2222222224124z m z A z A q −+++++⎟⎟⎠⎞⎜⎜⎝⎛−=−−λλββκλαβλαλλλThe solution of this equation is()()λκαβλAz P e z z y m z ,= (8)For isotropic turbulence, the corresponding parameters satisfied421=−−βλ (9) 11=−λ (10)221a =−λα (11) 04222=⎟⎟⎠⎞⎜⎜⎝⎛−A αλ (12) ()04122=⎟⎠⎞⎜⎝⎛−++m λλββ (13) ()222a A =+κλαβλ (14) Hence, we have2=λ (15)81a −=α (16) 25−=β (17) 43±=m (18) 41a A ±= (19) ⎭⎬⎫⎩⎨⎧−±=45212a a κ (20) From above analysis, we can introduce two parameters to classification turbulence, they are: 1212,a a a =σ。

相关文档
最新文档