高中数学专题-集合的概念及其基本运算

合集下载

高中数学大单元微专题点拨32讲必修一

高中数学大单元微专题点拨32讲必修一

高中数学必修一是学生学习数学的第一个大单元,也是数学知识体系的基础。

本文将围绕这一主题,对高中数学必修一的微专题进行点拨,共32讲。

通过本文的阐述,读者将能够全面了解必修一微专题的内容和重点,为学习和教学提供参考和指导。

一、集合和函数1. 集合的概念和基本运算2. 集合的表示法与运算规律3. 集合运算 laws的应用4. 函数的概念和表示5. 函数的性质和应用6. 函数的运算及函数方程的解法二、数列7. 数列的概念和表示8. 等差数列及其性质9. 等比数列及其性质10. 数列的综合运用三、全等三角形11. 全等三角形的判定12. 全等三角形的性质13. 全等三角形的应用四、直线与圆14. 直线的方程及其应用15. 圆的基本概念和性质16. 圆的方程及其应用五、平面向量17. 平面向量的概念和表示18. 平面向量的线性运算及应用19. 平面向量的数量积及其性质20. 平面向量的数量积及其应用六、三角函数21. 角度制与弧度制22. 三角函数的概念和基本性质23. 三角函数的图像和性质24. 三角函数的综合运用七、概率25. 事件与概率26. 随机事件的计数原理27. 概率的计算及应用28. 概率的运算与应用八、导数29. 导数的概念和计算30. 导数的性质和应用31. 高阶导数及其应用32. 函数的微分和应用以上是对必修一微专题的点拨,希望能够对读者在高中数学学习过程中提供帮助。

在学习必修一微专题时,需要注重理论与实践相结合,多加练习,加深对数学知识的理解和掌握,努力提升数学素养。

教师在教学中也应根据学生的实际情况,采取不同的教学方法,激发学生对数学的兴趣,引导他们主动学习,提高学习效果。

希望通过本文的共享,能够为高中数学必修一微专题的学习和教学提供参考和帮助,促进学生的全面发展。

高中数学是学生学习中的一大重点科目,而高中数学必修一更是其基础和起点,是学生打下数学基础的关键一步。

在这篇文章中,我们列举了必修一微专题的32个教学要点,并重点强调了集合和函数、数列、全等三角形、直线与圆、平面向量、三角函数、概率以及导数等内容。

高中数学必修一 讲义 专题1.5 集合的基本运算-重难点题型精讲(学生版)

高中数学必修一 讲义 专题1.5 集合的基本运算-重难点题型精讲(学生版)

专题1.5 集合的基本运算-重难点题型精讲1.并集的概念及表示2.交集的概念及表示温馨提示:(1)两个集合的并集、交集还是一个集合.(2)对于A∪B,不能认为是由A的所有元素和B的所有元素所组成的集合.因为A与B可能有公共元素,每一个公共元素只能算一个元素.(3)A∩B是由A与B的所有公共元素组成,而非部分元素组成.3.并集、交集的运算性质4.全集(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)符号表示:全集通常记作U.5.补集温馨提示:∁U A的三层含义:(1)∁U A表示一个集合;(2)A是U的子集,即A⊆U;(3)∁U A是U中不属于A的所有元素组成的集合.【题型1 并集的运算】【例1】(2022•河南模拟)已知集合A={x|﹣2<x<3},集合B={x|1﹣x>﹣1},则集合A∪B=()A.(2,3)B.(﹣2,2)C.(﹣2,+∞)D.(﹣∞,3)【变式1-1】(2022•东城区校级三模)已知集合A={x|﹣1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|﹣1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}【变式1-2】(2022春•乐清市校级期中)设集合A={2,3},B={x|2<x<4},则A∪B=()A.{3}B.{2,3}C.(2,3)D.[2,4)【变式1-3】(2022春•平罗县校级期中)已知集合M={x|﹣1<x<1},N={x|0<x<2},则M∪N等于()A.(0,1)B.(−1,2)C.(−1,0)D.(1,2)【题型2 交集的运算】【例2】(2022•金东区校级模拟)设集合A={x|x≥2},B={x|﹣1<x<3},则A∩B=()A.{x|x≥2}B.{x|x<2}C.{x|2≤x<3}D.{x|﹣1≤x<2}【变式2-1】(2022•金凤区校级三模)已知集合A={x|1<x﹣1≤3},B={2,3,4},则A∩B=()A.{2,3,4}B.{3,4}C.{2,4}D.{2,3}【变式2-2】(2022•浙江学业考试)已知集合P={0,1,2},Q={1,2,3},则P∩Q=()A.{0}B.{0,3}C.{1,2}D.{0,1,2,3}【变式2-3】(2022•巴宜区校级二模)集合A={x∈Z|x<2},B={﹣1,0,1,2,3},则A∩B=()A.{﹣1,0,1,2}B.{﹣1,0,1}C.{0,1}D.{1}【题型3 由集合的并集、交集求参数】【例3】(2021秋•宜宾期末)已知集合A={x|2<x<4},B={x|a﹣1≤x≤2a+1,a∈R}.(1)若a=1,求A∪B;(2)若A∩B=A,求实数a的取值范围.【变式3-1】(2021秋•资阳期末)已知全集U=R,集合A={x|2a+1<x<2a+6},B={x|﹣4≤x≤2}.(1)若a=﹣1,求A∪B;(2)若A∩B≠∅,求实数a的取值范围.【变式3-2】(2021秋•伊州区校级期末)若集合A={x|2x﹣1⩾3},B={x|3x﹣2<m},C={x|x<5,x∈N}.(1)求A∩C;(2)若A∪B=R,求实数m的取值范围.【变式3-3】(2021秋•黑龙江期末)已知集合A={x|﹣2≤x≤7},B={x|m+1≤x≤2m﹣1}.(1)当用m=5时,求A∩B,A∪B;(2)若A∪B=A,求实数m的取值范围.【题型4 补集的运算】【例4】(2022•沈阳模拟)已知全集U={x∈N|﹣1<x≤3},A={1,2},∁U A=()A.{3}B.{0,3}C.{﹣1,3}D.{﹣1,0,3}【变式4-1】(2022•林州市校级开学)已知全集A={x|1≤x≤6},集合B={x|1<x<5},则∁A B=()A.{x|x≥5}B.{x|5<x≤6或x=1}C.{x|x≤1或x≥5}D.{x|5≤x≤6}∪{1}【变式4-2】(2022•乙卷)设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M【变式4-3】(2022•北京)已知全集U={x|﹣3<x<3},集合A={x|﹣2<x≤1},则∁U A=()A.(﹣2,1]B.(﹣3,﹣2)∪[1,3)C.[﹣2,1)D.(﹣3,﹣2]∪(1,3)【题型5 交集、并集、补集的综合运算】【例5】(2022•临沂三模)已知集合A=N,B={x|x≥3},A∩(∁R B)=()A.{﹣1,0}B.{1,2}C.{﹣1,0,1}D.{0,1,2}【变式5-1】(2022•柯桥区模拟)已知集合A={x∈R|x≤0},B={x∈R|﹣1≤x≤1},则∁R(A∪B)=()A.(﹣∞,0)B.[﹣1,0]C.[0,1]D.(1,+∞)【变式5-2】(2022•大通县三模)已知全集U={﹣1,0,1,2,3,4},集合A={x|x≤2,x∈N},B={﹣1,0,1,2},则A∪(∁U B)=()A.{0,1,2}B.{﹣1,0,1,2}C.{﹣1,0,1}D.{0,1,2,3,4}【变式5-3】(2022•义乌市模拟)已知全集U=R,集合P={x|﹣2<x<1},Q={x|x⩾0},则P∩(∁U Q)=()A.(﹣2,0)B.(0,1)C.(﹣∞,0)∪(0,1)D.(﹣∞,1)【题型6 利用集合间的关系求参数】【例6】(2021秋•沈阳期末)已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1},U=R.(1)若A∪∁U B=U,求实数m的取值范围;(2)若A∩B≠∅,求实数m的取值范围.【变式6-1】(2021秋•湖州期末)已知集合A={x|﹣3≤x≤2},B={x|2m﹣1≤x≤m+3}.(1)当m=0时,求∁R(A∩B);(2)若A∪B=A,求实数m的取值范围.【变式6-2】(2021秋•海东市期末)已知集合A={x|a<x<2a},B={x|x≤﹣4或x≥3}.(1)当a=2时,求A∪(∁R B);(2)若A⊆∁R B,求a的取值范围.【变式6-3】(2021秋•玉溪期末)已知集合A={x|a﹣1≤x≤a+1},B={x|x−5x+3≤0}.(1)若a=﹣3,求A∪B;(2)在①A∩B=∅,②B∪(∁R A)=R,③A∪B=B,这三个条件中任选一个作为已知条件,求实数a 的取值范围.。

高中数学集合知识总结

高中数学集合知识总结

高中数学知识总结高中数学集合知识总结集合语言是现代数学的基本语言,使用集合语言可以简洁、准确地表达数学的一些相关内容.以下是小编搜集整合了高中数学集合知识,希望可以帮助大家更好的学习这些知识。

高中数学知识总结篇1一、集合间的关系1.子集:如果集合A中所有元素都是集合B中的元素,则称集合A为集合B的子集。

2.真子集:如果集合AB,但存在元素a∈B,且a不属于A,则称集合A是集合B的真子集。

3.集合相等:集合A与集合B中元素相同那么就说集合A与集合B相等。

子集:一般地,对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作:AB(或BA),读作“A包含于B”(或“B包含A”),这时我们说集合是集合的子集,更多集合关系的知识点见集合间的基本关系二、集合的运算1.并集并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}2.交集交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}3.补集三、高中数学集合知识归纳:1.集合的有关概念。

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N*2.子集、交集、并集、补集、空集、全集等概念。

高中数学必修一习题课——集合的概念、基本关系与基本运算

高中数学必修一习题课——集合的概念、基本关系与基本运算

习题课——集合的概念、基本关系与基本运算课后训练巩固提升1.设集合A={x|x≤4},m=1,则下列关系中正确的是()B.m∉AC.{m}∈AD.m∈A1<4,所以m∈A,故选D.M={x|-3<x≤5},N={x|x<-5,或x>5},则M∪N=()A.{x|x<-5,或x>-3}B.{x|-5<x<5}<x<5} D.{x|x<-3,或x>5}集合M={x|-3<x≤5},N={x|x<-5,或x>5},N={x|x<-5,或x>-3},故选A.U=Z,A={1,3,5,7,9},B={1,2,3,4,5},则图中阴影部分表示的集合是()A.{1,3,5}B.{1,2,3,4,5}D.{2,4}(∁U A)∩B={2,4}.U={x|-2≤x≤1},A={x|-2<x<1},B={x|x2+x-2=0},C={x|-2≤x<1},则()B.C⊆∁U AC.∁U B=CD.∁U A=BB={-2,1},∴∁U A=B.A={x|-1≤x<2},B={x|x<a},若A∩B≠⌀,则a的取值范围是()B.a>-2C.a>-1D.-1<a≤2解析:在数轴上画出集合A={x|-1≤x<2},要使A∩B≠⌀,借助数轴可知a>-1.答案:C6.设P,Q为两个非空实数集合,定义集合P*Q={z|z=ab,a∈P,b∈Q},若P={-1,0,1},Q={-2,2},则集合P*Q中元素的个数是()B.3C.4D.5a=0时,无论b取何值,z=ab=0;当a=-1,b=-2时,z=12;当a=-1,b=2时,z=-12;当a=1,b=-2时,z=-12;当a=1,b=2时,z=12.故P*Q={0,12,-12},该集合中共有3个元素.A={-2,2,3,4},B={x|x=t2,t∈A},则用列举法表示B=.B={x|x=t2,t∈A},当t=-2和2时,x=4;当t=3时,x=9;当t=4时,x=16,用列举法表示.A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁U A)∩B=⌀,则实数m的取值范围为.A={x|x≥-m},得∁U A={x|x<-m}.∵B={x|-2<x<4},(∁U A )∩B=⌀, -2,即m ≥2,∴m 的取值范围是m ≥2.m|m ≥2}U={n|n 是小于9的正整数},A={n ∈U|n 是奇数},B={n ∈U|n 是3的倍数},则∁U (A ∪{1,2,3,4,5,6,7,8},.B={1,3,5,6,7},∴∁U (A ∪B )={2,4,8}.A={x|-2≤x ≤7},B={x|m+1<x<2m-1},若B ⊆A ,则实数m 的取值范围是 .B=⌀时,有m+1≥2m-1,则m ≤2.时,若B ⊆A ,如图,则{m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.的取值范围为m ≤4.≤4 A={-4,2a-1,a 2},B={a-5,1-a ,9},分别求适合下列条件的a 的值.(1)9∈(A ∩B );=A ∩B.∵9∈(A ∩B ),∴9∈A ,且9∈B.1=9或a 2=9.∴a=5或a=-3或a=3.经检验a=5或a=-3符合题意.∴a=5或a=-3.(2)∵{9}=A ∩B ,∴9∈A ,且9∈B ,由(1)知a=5或a=-3.当a=-3时,A={-4,-7,9},B={-8,4,9},此时A ∩B={9};当a=5时,A={-4,9,25},B={0,-4,9},此时A ∩B={-4,9},不合题意.∴a=-3.12.已知全集为R ,集合A={x|2≤x ≤6},B={x|3x-7≥8-2x }.(1)求A ∪B ;(2)求∁R (A ∩B );C={x|a-4≤x ≤a+4},且A ⊆∁R C ,求a 的取值范围.∵B={x|3x-7≥8-2x }={x|x ≥3},∪B={x|x ≥2}.(2)∵A ∩B={x|3≤x ≤6},∴∁R (A ∩B )={x|x<3,或x>6}.(3)由题意知C ≠⌀,则∁R C={x|x<a-4,或x>a+4}.∵A={x|2≤x ≤6},A ⊆∁R C ,∴a-4>6或a+4<2,解得a>10或a<-2.故a 的取值范围为a<-2或a>10.13.已知集合A={x|x 2+ax+12b=0}和B={x|x 2-ax+b=0},满足B ∩(∁U A )={2},A ∩(∁U B )={4},U=R ,求实数.B ∩(∁U A )={2},∴2∈B ,且2∉A.∩(∁U B )={4},∴4∈A ,且4∉B.∴{42+4a +12b =0,22-2a +b =0,解得{a =87,b =-127. ∴a ,b 的值为87,-127.。

高中数学集合的基本概念和运算

高中数学集合的基本概念和运算

内容 基本要求集合的含义 会使用符号“∈”或“∉”表示元素与集合之间的关系;集合的表示能选择自然语言、图形语言、集合语言描述不同的具体问题; 理解集合的特征性质,会用集合的特征性质描述一些集合,如常用数集,方程或不等式的解集等集合间的基本关系理解集合之间包含与相等的含义,及子集的概念.在具体情景中,了解空集和全集的含义;理解两个集合的交集和并集的含义,会求两个简单集合的交集与并集.理解在给定集合中一个子集的补集的含义,会求给定子集的补集集合的基本运算 掌握有关的术语和符号,会用它们表达集合之间的关系和运算.能使用维恩图表达集合之间的关系和运算.(一)知识内容举例:⑴ 120-的所有合数 ⑵ 北京在户人口⑶ 学而思学员 ⑷ 所有的正方形这些小例中有哪些共同特征? 1.集合的相关定义⑴ 集合的含义:一般地把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对例题精讲高考要求知识框架集合的基本概念和运算象的全体构成的集合(或集).构成集合的每个对象叫做这个集合的元素(或成员). ⑵ 元素用小写字母,,,a b c 表示;集合用大写字母,,,A B C 表示.⑶ 不含任何元素的集合叫做空集,记作∅. 2.元素与集合间关系:属于∈;不属于∉. 3.集合表示法⑴ 列举法:把集合的所有元素都列举出来或列出几个元素作为代表,其它元素用省略号表示,并写在大括号“{ }”内的表示集合的方法. 例如:{1,2,3,4,5},{1,2,3,4,5,}⑵描述法:用集合所含元素的共同特征表示集合的方法称为描述法,形如{x |描述特点} 例如:大于3的所有整数表示为:{Z |3}x x ∈>方程2250x x --=的所有实数根表示为:{R x ∈|2250x x --=}(二)典例分析:【例1】用“∈”或“∉”填空:⑴ 若2{|340}A x x x =--=,则1-___A ;4-___A ; ⑵ 0___∅;⑶ 0___{0}.【例2】用符号“∈”或“∉”填空⑴0______N , 5______N 16N⑵1______,π_______,e ______2-R Q Q Q (e 是个无理数)2323-+{}|6,,x x a b a b =+∈∈Q Q【例3】用列举法表示下列集合⑴ 方程2260x x +-=的根;⑵ 不大于8且大于3的所有整数;⑶ 函数32y x =+与1y x=的交点组成的集合.【例4】已知集合8|6A x x ⎧⎫=∈∈⎨⎬-⎭⎩N N ,试用列举法表示集合A .板块一:集合的概念与表示【例5】下列命题正确的有( )⑴很小的实数可以构成集合;⑵集合{}2|1y y x =-与集合(){}2,|1x y y x =-是同一个集合; ⑶3611,,,,0.5242-这些数组成的集合有5个元素;⑷集合(){},|0,,x y xy x y ∈R ≤是指第二和第四象限内的点集. A .0个 B .1个 C .2个 D .3个【例6】用列举法表示集合:10,1M mm m ⎧⎫=∈∈=⎨⎬+⎩⎭Z Z 【例7】直角坐标平面除去两点(1,1)A 、(2,2)B -可用集合表示为( )A .{}(,)|1,1,2,2x y x y x y ≠≠≠≠B .1(,)|1x x y y ⎧≠⎧⎪⎨⎨≠⎪⎩⎩或22x y ⎫≠⎧⎪⎨⎬≠⎪⎩⎭C .1(,)|1x x y y ⎧≠⎧⎪⎨⎨≠⎪⎩⎩且22x y ⎫≠⎧⎪⎨⎬≠-⎪⎩⎭D .{}2222(,)|[(1)(1)][(2)(2)]0x y x y x y -+--++≠ 【例8】下面有四个命题:⑴集合N 中最小的数是1;⑵若a -不属于N ,则a 属于N ;⑶若,a b ∈∈N N ,则a b +的最小值为2;⑷212x x +=的解可表示为{}1,1; 其中正确命题的个数为( )A .0个B .1个C .2个D .3个【例9】方程组2219x y x y +=⎧⎨-=⎩的解集是( )A .()5,4B .()5,4-C .(){}5,4-D .(){}5,4-.【例10】已知2()(R ,R)f x x ax b a b =++∈∈,{|(),R}A x x f x x ==∈,{|[()],R}B x x f f x x ==∈.当{1,3}A =-时,用列举法表示集合B .(一) 知识内容1.子集:对于两个集合,A B ,如果集合A 中的任意一个元素都是集合B 的元素,我们就说集合A 为集合B 的子集,记作A B ⊆(或B A ⊇),读作 “A 包含于B ”(或“B 包含A ”). 规定:∅是任意集合的子集. 2.真子集:如果集合A B ⊆,但存在元素x B ∈,但x A ∉,我们称集合A 是集合B 的真子集, 记作AB (或BA ).∅是任意非空集合的真子集.3.相等:如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊇),此时,集合A 与集合中的元素是一样的,我们说集合A 与集合B 相等,记作A =B .(二)典例分析【例11】用适当的符号填空⑴ {1}___2{|320}x x x -+= ⑵ {1,2}___2{|320}x x x -+=⑶ {|2,}x x k k =∈N ___{|6,}x x ττ=∈N ⑷ ∅___2{R |20}x x ∈+=【例12】用适当的符号填空:⑴ ___{0}∅⑵ 2___{(1,2)}⑶ 0___2{|250}x x x -+= ⑷ {3,5}____2{|8150}x x x -+= ⑸ {3,5}___N⑹ {|21,}___{|41,}x x n n x x k k =+∈=±∈Z Z ⑺ {(2,3)}___{(3,2)}【例13】若集合{|1}X x x =>-,下列关系式中成立的为( )A .0X ⊆B .{}0X ∈C .X ∅∈D .{}0X ⊆【例14】用适当的符号填空{}()(){}3|2,1,2____,|1x x x y y x =+≤ {}25|23x x ≤+, ⑶{}31|,_______|0x x x x x x x ⎧⎫=∈-=⎨⎬⎩⎭R 【例15】下列说法中,正确的是( )板块二:集合间的基本关系A.任何一个集合必有两个子集;B.若,A B=∅则,A B中至少有一个为∅C.任何集合必有一个真子集;D.若S为全集,且,=则A B SA B S==【例16】已知集合2=++=,其中0A a a d a dB a aq aq{,,2},{,,}a≠,且A B=,则q等于___.【例17】求集合{,}a b的子集的个数,真子集的个数,非空真子集的个数,并推导出{1,2,3,4,5,,100}的子集和真子集的个数.【例18】若全集{}A=,则集合A的真子集共有.U=且{}20,1,2,3UA.3个B.5个C.7个D.8个【例19】{,,}a b c d e f,求满足条件的A的个数.a b c A{,,,,,}【例20】若集合{}=∈N≤,{|A x x x|6,=,则C的非空子集的个数B x x=是非质数},C A B为.【例21】求满足条件{1,2}A⊆{1,2,3,4,5}的集合A的个数【例22】设{|13},{|}=-<<=>,若A B,则a的取值范围是______A x xB x x a【例23】已知{25}=+≤≤-,B AA x xB x m x m=-≤≤,{121}⊆,求m的取值范围.【例24】求集合{1,2,3,,100}M =的所有子集的元素之和的和(规定空集的元素和为零).帮助学生分析此题时,可按以下步骤:① 集合M 的所有子集的情况 ② 所有子集的元素之和 ③ 元素之和的和 ④ 空集的元素和为零 此题可适当拓展:如果{1,2,3,,}M n =(+N n ∈),则M 的子集共有2n 个.所有子集的元素和之和为221(1)2(12...)22(1)22n nn n n n n n -+⨯⨯+++=⋅=⋅+(可作为公式熟记),可由此让学生注意到补集的情形.(一)知识内容1.相关概念:⑴ 并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与B 的并集, 记作A B (读作“A 并B ”),即{|,A B x x A =∈或}x B ∈.⑵ 交集:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集, 记作A B (读作“A 交B ”),即{|,A B x x A =∈且}x B ∈.⑶ 全集:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U .补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,记作UA ,即{|,UA x x U =∈且}x A ∉.(二)典例分析【例25】已知全集{1,2,3,,10}U =,{1,2,3,4,5}A =,{4,5,6,7,8}B =,{3,5,7,9}C =求:A B ,A B ,()U A B ,UA B ,()A B C【例26】若集合{}{}22(,)0,(,)0,,M x y x y N x y x y x y =+==+=∈∈R R ,则有( )A .MN M = B .MN N = C .MN M = D .MN =∅【例27】已知全集{(,)|R ,R}I x y x y =∈∈,{(1,1)}P =,表示I P .【例28】已知集合{}{}22,1,3,3,21,1A a a B a a a =+-=--+,若{}3A B =-,求实数a 的值.板块三:集合的基本运算【例29】设集合{|(3)()0,R}A x x x a a =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B .【例30】若集合{1,1}A =-,{|1}B x mx ==,且A B A =,则m 的值为( )A .1B .1-C .1或1-D .1或1-或0【例31】下列表述中错误的是( )A .若AB ⊆,则A B A = B .若A B B =,则A B ⊆C .()()A B AAB D .()()()UUUA B A B =【例32】若{}{}21,4,,1,A x B x ==且A B B =,则x = . 【例33】若U 为全集,下面三个命题中真命题的个数是( )⑴若A B =∅,则()()U U A B U = ⑵若AB U =,则()()UUA B =∅⑶若A B =∅,则A B ==∅A .0个B .1个C .2个D .3个【例34】设集合22{|0},{|0}A x x x B x x x =-==+=,则集合A B =( )A .0B .{}0C .∅D .{}1,0,1-【例35】已知全集是R ,{|37},{|210}A x x B x x =<=<<≤,求R()AB ,R ()A B【例36】设全集U R =,{}2|10M m mx x =--=方程有实数根,{}2|0N n x x n =-+=方程有实数根,求()UM N .【例37】已知{}2|43,M y y x x x ==-+∈R ,{}2|28,N y y x x x ==-++∈R ,则__________MN =.【例38】若{}|1,I x x x =-∈Z ≥,则I N = .【例39】设集合{}{}{}1,2,1,2,3,2,3,4A B C ===,则A B =()C【例40】已知2{|43,}A y y x x x ==-+∈R ,2{|22,}B y y x x x ==--+∈R ,则A B 等于( )A .∅B .{1,3}-C .RD .[1,3]-【例41】若集合{}{}22(,)0,(,)0,,M x y x y N x y x y x y =+==+=∈∈R R ,则有.A .MN M = B .MN N = C .MN M = D .MN =∅【例42】集合{}22|190A x x ax a =-+-=,{}2|560B x x x =-+=,{}2|280C x x x =+-=满足A B ≠∅,A C =∅,求实数a 的值.【例43】已知{(,)|,}I x y x y =∈R ,3(,)|12y A x y x -⎧⎫==⎨⎬-⎩⎭,{}(,)|1B x y y x =≠+,则()I A B 等于( ) A .∅ B .{(2,3)} C .(2,3) D .{2,3}【例44】设2{|20}A x x ax b =-+=,2{|6(2)50}B x x a x b =++++=,若12A B ⎧⎫=⎨⎬⎩⎭,求A B .【例45】设U R =,集合{}2|320A x x x =++=,{}2|(1)0B x x m x m =+++=;若()U A B =∅,求m 的值.【例46】设全集{}(,),U x y x y R =∈,集合2(,)12y M x y x ⎧+⎫==⎨⎬-⎩⎭,{}(,)4N x y y x =≠-, 那么()()U U M N 等于________________.【例47】设全集{|20I x x =≤且x 为质数}.若{3,5},{7,19}IIAB AB ==,且{2,17}I IAB =,求集合,A B .结合集合的运算性质:⑴ 交换律:,A B B A A B BA ==;⑵ 结合律:()()A B C A B C =;()()A B C A B C =;⑶ 分配律:()()()A B C A B A C =;()()()A B C A B A C =; ⑷ 吸收律:();()A A B A A A B A ==; ⑸ 对偶律:();()I I II I IA B AB A B AB ==(德·摩根定律). 【例48】若{}{}{},,|,A a b B x x A M A ==⊆=,求B M .【例49】已知全集I 中有15个元素,集合MN 中有3个元素,I IMN 中有5个元素,IMN 中有4个元素.则集合N 中元素的个数( )A .3B .4C .5D .615453INM【例50】50名同学参加跳远和铅球测验,跳远和铅球测验成绩分别为及格40人和31人,2项测验成绩均不及格的有4人,2项测验成绩都及格的人数是( ) A .35 B .25 C .28 D .15【例51】某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为 人.【例52】已知{|2820,,}A x x m n m n ==+∈Z ,{|1218,,}B x x m n m n ==+∈Z ,则A B 中最小的正整数是 _________.【例53】设I =R ,集合2{|4430}A x x ax a =+-+=,22{|(1)0}B x x a x a =+-+=,2{|220}C x x ax a =+-=.若,,A B C 中至少有一个不是空集,求实数a 的取值范围.1-1集合的基本概念和运算 page 11 of 11 【例54】若集合2{|20}M x x x =-->,{|10}T x mx =+<,且M T ⊇.求实数m 的取值范围.<教师备案>1.对于集合需要注意:①集合本身是一个不加定义的概念;空集虽空,但空有所为;②元素的三个特性:确定性:集合中的元素是确定的,不能模棱两可互异性:集合中的元素是互不相同的,相同的元素在集合中只能算作一个 无序性:集合中的元素是无次序关系的.数学中一些常用的数集及其记法:全体非负整数组成的集合称为非负整数集(或自然数集),记作N ; 所有正整数组成的集合称为正整数集,记作*N 或+N ;全体整数组成的集合称为整数集,记作Z ;全体有理数组成的集合称为有理数集,记作Q ;全体实数组成的集合称为实数集,记作R .2.拓展讲解:⑴由于()(())I A B C A B I =,记集合A 的元素个数为Card(A ),则Card()Card()Card()Card()A B A B A B =+-Card()Card()Card(())I A B I A B =-如果推广到三个有限集,,A B C ,则有Card()Card()Card()Card()Card()Card()Card()A B C A B C A B B C CA =++---Card()A B C + ⑵ 利用以上的结论还可解决与自然数相关的计数问题,比如:从1到100的所有自然数中,能被2整除但不能被5整除的自然数有多少个? 记A ={1~100中能被2整除的自然数},B ={1~100中能被5整除的自然数},则 A B ={1~100中能被5整除且又能被2整除的自然数},I A B ={1~100中只能被2整除不能被5整除的自然数}, I A B ={1~100中不能被2整除但能被5整除的自然数}. 经计算发现:Card()50A =,Card()20B =,Card()10A B =;∴Card()50201060A B =+-=.因此Card()Card()Card()501040I AB A A B =-=-=. 即1到100的所有自然数中,能被2整除但不能被5整除的自然数有40个.。

(完整版)高中数学中集合的概念与运算的解题归纳,推荐文档

(完整版)高中数学中集合的概念与运算的解题归纳,推荐文档

§1.1 集合的概念与运算一、知识导学1.集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.2.元素:集合中的每一个对象称为该集合的元素,简称元.3.子集:如果集合A 的任意一个元素都是集合B 的元素(若则),则称A a ∉B a ∈集合A 为集合B 的子集,记为A B 或B A ;如果A B ,并且A B ,这时集合A 称为集⊆⊇⊆≠合B 的真子集,记为A B 或B A.4.集合的相等:如果集合A 、B 同时满足A B 、B A ,则A=B.⊆⊇5.补集:设A S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,⊆记为 .A C s 6.全集:如果集合S 包含所要研究的各个集合,这时S 可以看做一个全集,全集通常记作U.7.交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作A B.⋂8.并集:一般地,由所有属于集合A 或者属于B 的元素构成的集合,称为A 与B 的并集,记作A B.⋃9.空集:不含任何元素的集合称为空集,记作.Φ10.有限集:含有有限个元素的集合称为有限集.11.无限集:含有无限个元素的集合称为无限集.12.集合的常用表示方法:列举法、描述法、图示法(Venn 图).13.常用数集的记法:自然数集记作N ,正整数集记作N +或N ,整数集记作Z ,有理*数集记作Q ,实数集记作R .二、疑难知识导析1.符号,,,,=,表示集合与集合之间的关系,其中“”包括“”和⊆⊇⊆“=”两种情况,同样“”包括“”和“=”两种情况.符号,表示元素与集合之间⊇∈∉的关系.要注意两类不同符号的区别.2.在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”、“无序性”.3.在集合运算中必须注意组成集合的元素应具备的性质.4.对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围.用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或文氏图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用文氏图形表示,容易被忽视,如在关系式中,B =易漏掉的情况.Φ5.若集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图形是什么,用数形结合法解之.6.若集合中含有参数,须对参数进行分类讨论,讨论时既不重复又不遗漏.7.在集合运算过程中要借助数轴、直角坐标平面、Venn 图等将有关集合直观地表示出来.8.要注意集合与方程、函数、不等式、三角、几何等知识的密切联系与综合使用.9.含有n 个元素的集合的所有子集个数为:,所有真子集个数为:-1n 2n2三、经典例题导讲[例1] 已知集合M={y |y =x 2+1,x∈R },N={y|y =x +1,x∈R },则M∩N=( )A .(0,1),(1,2)B .{(0,1),(1,2)}C .{y|y=1,或y=2}D .{y|y≥1}错解:求M∩N 及解方程组 得 或 ∴选B⎩⎨⎧+=+=112x y x y ⎩⎨⎧==10y x ⎩⎨⎧==21y x 错因:在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M 、N 的元素是数而不是实数对(x,y ),因此M 、N 是数集而不是点集,M 、N 分别表示函数y =x 2+1(x∈R ),y =x +1(x∈R )的值域,求M∩N 即求两函数值域的交集.正解:M={y |y =x 2+1,x∈R }={y |y ≥1}, N={y|y=x +1,x∈R }={y|y∈R }.∴M∩N={y |y ≥1}∩{y|(y∈R)}={y |y ≥1}, ∴应选D .注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x |y =x 2+1}、{y |y =x 2+1,x ∈R }、{(x ,y )|y =x 2+1,x ∈R },这三个集合是不同的.[例2] 已知A={x |x 2-3x +2=0},B={x |ax -2=0}且A∪B=A,求实数a 组成的集合C .错解:由x 2-3x +2=0得x =1或2.当x =1时,a =2, 当x =2时,a=1.错因:上述解答只注意了B 为非空集合,实际上,B=时,仍满足A∪B=A.当a =0时,B=,符合题设,应补上,故正确答案为C={0,1,2}.正解:∵A∪B=A ∴B A 又A={x |x 2-3x +2=0}={1,2}∴B=或 ∴C={0,1,2}{}{}21或[例3]已知m A,n B, 且集合A=,B=,又∈∈{}Z a a x x ∈=,2|{}Z a a x x ∈+=,12|C=,则有: ( ){}Z a a x x ∈+=,14|A .m +n A B. m +n B C.m +n C D. m +n 不属于A ,B ,C 中任意一个∈∈∈错解:∵m A ,∴m =2a ,a ,同理n =2a +1,a Z, ∴m +n =4a +1,故选C∈Z ∈∈错因是上述解法缩小了m +n 的取值范围.正解:∵m A, ∴设m =2a 1,a 1Z , 又∵n ,∴n =2a 2+1,a 2 Z ,∈∈B ∈∈∴m +n =2(a 1+a 2)+1,而a 1+a 2 Z , ∴m +n B, 故选B.∈∈[例4] 已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x≤2p-1}.若BA ,求实数p 的取值范围.错解:由x 2-3x -10≤0得-2≤x≤5.欲使B A ,只须 3351212≤≤-⇒⎩⎨⎧≤-+≤-p p p ∴ p 的取值范围是-3≤p≤3.错因:上述解答忽略了"空集是任何集合的子集"这一结论,即B=时,符合题设. 正解:①当B≠时,即p +1≤2p-1p≥2.由B A 得:-2≤p+1且2p -1≤5.由-3≤p≤3.∴ 2≤p≤3②当B=时,即p +1>2p -1p <2.由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A∪B=,A B 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.[例5] 已知集合A={a,a +b,a +2b},B={a,ac,ac 2}.若A=B ,求c 的值.分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.解:分两种情况进行讨论.(1)若a +b=ac 且a +2b=ac 2,消去b 得:a +ac 2-2ac=0,a=0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c 2-2c +1=0,即c=1,但c=1时,B 中的三元素又相同,此时无解.(2)若a +b=ac 2且a +2b=ac ,消去b 得:2ac 2-ac -a=0,∵a≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0,又c≠1,故c=-.21点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验.[例6] 设A 是实数集,满足若a∈A,则A ,且1∉A.a -11∈1≠a ⑴若2∈A,则A 中至少还有几个元素?求出这几个元素.⑵A 能否为单元素集合?请说明理由.⑶若a∈A,证明:1-∈A.a1⑷求证:集合A 中至少含有三个不同的元素.解:⑴2∈A ⇒ -1∈A ⇒∈A ⇒ 2∈A 21∴ A 中至少还有两个元素:-1和21⑵如果A 为单元素集合,则a =a -11即=012+-a a该方程无实数解,故在实数范围内,A 不可能是单元素集⑶a∈A ⇒ ∈A ⇒ ∈A ⇒A ,即1-∈A a -11a --1111111---a a ∈a 1⑷由⑶知a∈A 时,∈A, 1-∈A .现在证明a,1-, 三数互不相等.a-11a 1a 1a -11①若a=,即a2-a+1=0 ,方程无解,∴a≠a -11a-11②若a=1-,即a 2-a+1=0,方程无解∴a≠1- a 1a1 ③若1- =,即a2-a+1=0,方程无解∴1-≠.a 1a -11a 1a -11综上所述,集合A 中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨.[例7] 设集合A={|=,∈N +},集合B={|=,∈N +},试证:a a 12+n n b b 542+-k k k A B .证明:任设∈A,a 则==(+2)2-4(+2)+5 (∈N +),a 12+n n n n ∵ n∈N*,∴ n +2∈N*∴ a∈B 故 ①显然,1,而由{}*2,1|Nn n a a A ∈+==∈B={|=,∈N +}={|=,∈N +}知1∈B,于是A≠B b b 542+-k k k b b 1)2(2+-k k ②由①、② 得A B .点评:(1)判定集合间的关系,其基本方法是归结为判定元素与集合之间关系.(2)判定两集合相等,主要是根据集合相等的定义.四、典型习题导练1.集合A={x|x 2-3x -10≤0,x∈Z},B={x|2x 2-x -6>0, x∈ Z},则A∩B 的非空真子集的个数为( )A .16B .14C .15D .322.数集{1,2,x 2-3}中的x 不能取的数值的集合是( )A .{2,-2 }B .{-2,- }C .{±2,± }D .{,-}55553. 若P={y|y=x 2,x∈R},Q={y|y=x 2+1,x∈R},则P∩Q 等于( )A .PB .QC .D .不知道4. 若P={y|y=x 2,x∈R},Q={(x ,y)|y=x 2,x∈R},则必有( )A .P∩Q=B .P QC .P=QD .P Q5.若集合M ={},N ={|≤},则M N =( )11|<xx x 2x x A . B .}11|{<<-x x }10|{<<x x C . D .}01|{<<-x x ∅6.已知集合A={x|x 2+(m +2)x +1=0,x∈R },若A∩R +=,则实数m 的取值范围是_________.7.(06高考全国II 卷)设,函数若的解集为A ,a R ∈2()22.f x ax x a =--()0f x >,求实数的取值范围。

高中数学集合的知识点总结归纳

高中数学集合的知识点总结归纳

高中数学集合的知识点总结归纳高中集合知识点总结一、知识归纳:1、集合的有关概念。

1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。

②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。

③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。

4)常用数集:N,Z,Q,R,N_2、子集、交集、并集、补集、空集、全集等概念。

1)子集:若对x∈A都有x∈B,则A B(或A B);2)真子集:A B且存在x0∈B但x0 A;记为A B(或,且)3)交集:A∩B={x| x∈A且x∈B}4)并集:A∪B={x| x∈A或x∈B}5)补集:CUA={x| x A但x∈U}注意:①? A,若A≠?,则? A ;②若,,则;③若且,则A=B(等集)3、弄清集合与元素、集合与集合的关系,掌握有关的.术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与的区别;(3) 与的区别。

4、有关子集的几个等价关系①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;④A∩CuB = 空集CuA B;⑤CuA∪B=I A B。

5、交、并集运算的性质①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B ∪A;③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;6、有限子集的个数:设集合A的元素个数是n,则A有2n个子集,2n-1个非空子集,2n-2个非空真子集。

二、例题讲解:【例1】已知集合M={x|x=m+ ,m∈Z},N={x|x= ,n∈Z},P={x|x= ,p∈Z},则M,N,P满足关系A) M=N P B) M N=P C) M N P D) N P M分析一:从判断元素的共性与区别入手。

高中数学集合知识点

高中数学集合知识点

高中知识点之集合一、集合的有关概念⒈定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。

2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

3.集合相等:构成两个集合的元素完全一样。

4.元素与集合的关系:(元素与集合的关系有“属于∈〞及“不属于∉两种)⑴假设a是集合A中的元素,那么称a属于集合A,记作a∈A;⑵假设a不是集合A的元素,那么称a不属于集合A,记作a∉A。

5.常用的数集及记法:非负整数集〔或自然数集〕,记作N;正整数集,记作N*或N+;N内排除0的集.整数集,记作Z;有理数集,记作Q;实数集,记作R;6.关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。

如:“地球上的四大洋〞〔太平洋,大西洋,印度洋,北冰洋〕。

“中国古代四大创造〞〔造纸,印刷,火药,指南针〕可以构成集合,其元素具有确定性;而“比拟大的数〞,“平面点P周围的点〞一般不构成集合,因为组成它的元素是不确定的.⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。

.如:方程(x-2)(x-1)2=0的解集表示为{1,-2},而不是{1,1,-2}⑶无序性:即集合中的元素无顺序,可以任意排列、调换。

7.元素与集合的关系:(元素与集合的关系有“属于∈〞及“不属于∉〞两种)⑴假设a是集合A中的元素,那么称a属于集合A,记作a∈A;⑵假设a不是集合A的元素,那么称a不属于集合A,记作a∉A。

二、集合的表示方法⒈列举法:把集合中的元素一一列举出来, 并用花括号“{}〞括起来表示集合的方法叫列举法。

如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;说明:⑴书写时,元素与元素之间用逗号分开;⑵一般不必考虑元素之间的顺序;⑶在表示数列之类的特殊集合时,通常仍按惯用的次序;⑷集合中的元素可以为数,点,代数式等;⑸列举法可表示有限集,也可以表示无限集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学专题-集合的概念及其基本运算【考纲考点剖析】考 点考纲内容5年统计分析预测 1.集合间的基本关系1.了解集合、元素的含义及其关系。

2.理解全集、空集、子集的含义,及集合之间的包含、相等关系。

3.掌握集合的表示法 (列举法、描述法、Venn 图)。

1.集合交、并、补的运算是考查的热点;2.集合间的基本关系很少涉及; 3.题型:选择题 4.备考重点: (1) 集合的交并补的混合运算; (2) 以其他知识为载体考查集合之间的关系;(3) 简单不等式的解法.2.集合的基本运算1.会求简单集合的并集、交集。

2.理解补集的含义,且会求补集。

【知识清单】1.元素与集合(1)集合元素的特性:确定性、互异性、无序性.(2)集合与元素的关系:若a 属于集合A ,记作a A ∈;若b 不属于集合A ,记作b A ∉. (3)集合的表示方法:列举法、描述法、图示法. (4)常见数集及其符号表示数集自然数集正整数集 整数集有理数集 实数集符号NN *或N +ZQR2.集合间的基本关系(1)子集:对于两个集合A 与B ,如果集合A 的任何一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A ,也说集合A 是集合B 的子集。

记为A B ⊆或B A ⊇. (2)真子集:对于两个集合A 与B ,如果A B ⊆,且集合B 中至少有一个元素不属于集合A ,则称集合A 是集合B 的真子集。

记为A B ⊂≠.(3)空集是任何集合的子集, 空集是任何非空集合的真子集.(4)若一个集合含有n 个元素,则子集个数为2n 个,真子集个数为21n -. 3.集合的运算(1)三种基本运算的概念及表示名称交集并集补集数学 语言 A∩B={x|x ∈A,且x ∈B} A ∪B={x|x∈A,或x ∈B} C U A={x|x ∈U,且x ∉A}图形 语言(2)三种运算的常见性质A A A =, A ∅=∅ , AB BA = , A A A =, A A ∅=, AB B A =.(C A)A U U C =,U C U =∅,U C U ∅=.A B A A B =⇔⊆, A B A B A =⇔⊆, ()U U U C A B C A C B =,()U U U C A B C A C B =.【重点难点突破】考点1 集合的概念【1-1】【全国卷II 理】已知集合,则中元素的个数为A. 9B. 8C. 5D. 4 【答案】A【1-2】若集合{}1A x x =-,则( )A. 3A -∈B. 2A -∈C. 1A -∈D. 0A ∈ 【答案】D 【解析】{}1A x x =-∴集合A 就是由全体大于1-的数构成的集合,显然01>-,故0A ∈故选D 【领悟技法】与集合元素有关问题的思路:(1)确定集合的元素是什么,即确定这个集合是数集还是点集. (2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合元素的个数,但要注意检验集合是否满足元素的互异性. 【触类旁通】【变式一】【浙江嘉兴一中模拟】若集合{}1,2,3A =, (){},40,,B x y x y x y A =+-∈,则集合B 中的元素个数为( ) A. 9 B. 6 C. 4 D. 3 【答案】D【解析】,x y A ∈的数对共9对,其中()()()2,3,3,2,3,3满足40x y +->,所以集合B 中的元素个数共3个. 【变式二】设,,集合,那么与集合的关系是( ) A. B. C. D.【答案】B 【解析】,即,,即a =3,b =π,故x ∈M ,y M ,故选:B.考点2 集合间的基本关系【2-1】【浙江省杭州市第二中学5月仿真】若集合{}2| 2,A x x x x R ==-∈, {}1,B m =,若A B ⊆,则m 的值为( )A. 2B. -2C. -1或2D. 2或2 【答案】A【解析】{}2A =,由A B ⊆可知, 2m =,故选A 。

【2-2】【浙江省教育绿色评价联盟5月适应性】已知集合,,若,则( )A. B. C. D.【答案】B【领悟技法】1.判断两集合的关系常用两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系.2.已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常运用数轴、Venn 图帮助分析. 【触类旁通】【变式1】设集合10{|}P m m <<=-,24{4|0Q m mx mx <=+-对任意实数x 恒成立,且}m R ∈,则下列关系中成立的是( )A .P Q ⊂≠B .Q P ⊂≠C .P Q =D .PQ ∅=【答案】A【解析】10{|}P m m <<=-,20,:16160,m Q m m <⎧⎨∆=+<⎩或0m =.∴10m <≤-.∴10{|}Q m m <≤=-.∴P Q ⊂≠.【变式2】【辽宁锦州质检(一)】集合{|3,}nM x x n N ==∈,集合{|3,}N x x n n N ==∈,则集合M 与集合N 的关系( )A. M N ⊆B. N M ⊆C. M N φ⋂=D. M ⊆N 且N ⊆M 【答案】D【解析】因为1,1;6,6M N N M ∈∉∈∉ ,所以M ⊆N 且N ⊆M ,选D. 考点3 集合的基本运算【3-1】【浙江卷】已知全集U ={1,2,3,4,5},A ={1,3},则( )A. B. {1,3} C. {2,4,5} D. {1,2,3,4,5} 【答案】C【解析】分析:根据补集的定义可得结果. 详解:因为全集,,所以根据补集的定义得,故选C.【3-2】【浙江卷】已知}11|{<<-=x x P ,}20{<<=x Q ,则=Q PA .)2,1(-B .)1,0(C .)0,1(-D .)2,1(【答案】A【解析】利用数轴,取Q P ,所有元素,得=Q P )2,1(-.【3-3】【新课标1】已知集合A ={}|2x x <,B ={}|320x x ->,则( )A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R【答案】A【解析】由320x ->得32x <,所以33{|2}{|}{|}22A B x x x x x x ⋂=<⋂<=<,选A . 【领悟技法】1. 集合的运算要注意灵活运用韦恩图和数轴,一般情况下,有限集的运算用维恩图分析,无限集的运算用数轴,这实际上是数形结合的思想的具体运用。

2. 涉及集合(交、并、补)运算,不要遗忘了空集这个特殊的集合。

空集是任何集合的子集,是任何非空集合的真子集。

3. 有些集合是可以化简的,如果先化简再研究 其关系并进行运算,可使问题变得简单明了,易于解决. 【触类旁通】【变式一】【天津卷理】设全集为R ,集合,,则A. B.C.D.【答案】B【变式2】【浙江杭州二模】设{}1,0,1,2U =-,集合2{|1,}A x x x U =<∈,则U C A =( )A. {}0,1,2B. {}1,1,2-C. {}1,0,2-D. {}1,0,1- 【答案】B【解析】由21x < 得: 11x -<< ,所以{}0A = ,因此{}1,1,2UA =- ,故选择B.【易错试题常警惕】易错典例1:设集合{|}1||A x x a x R <∈=-,,1{}5|B x x x R <<∈=,,若A B ⊂≠,则a 的取值范围为________. 易错分析:忽视端点.正确解析:由||1x a <-得11x a <<--,∴11a x a <<-+,由A B ⊂≠得1115a a ->⎧⎨+<⎩,∴24a <<.又当2a =时,{}13|x x <<=满足A B ⊂≠,4a =时,{}35|A x x <<=也满足A B ⊂≠,∴24a ≤≤.温馨提示:利用数轴处理集合的交集、并集、补集运算时,要注意端点是实心还是空心,在含有参数时,要注意验证区间端点是否符合题意.易错典例2:设集合{}{}2|,|2A x x a B x x =<=<,若A B A =,则实数a 的取值范围是_______.易错分析:遗忘空集.正确解析:由A B A ⋂=⇔A B ⊆,所以当A φ=时,满足A B ⊆,此时不等式2x a <无解,所以0a ≤,当A φ≠即0a >时,{}|,0A x a x a a =-<<>,由A B ⊆可知204a a ≤⇒<≤,综上可知实数a 的取值范围是4a ≤.温馨提示:在A B AB B A B A A B ?⊆,=,=,=中容易忽视集合A φ≠这一情况,预防出现错误的方法是要注意分类讨论.【学科素养提升之思想方法篇】化抽象为具体——数形结合思想数形结合思想,其实质是将抽象的数学语言与直观的图形结合起来,使抽象思维与形象思维相结合,使问题化难为易、化抽象为具体.数形结合思想在集合中的应用具体体现在以下三个方面:(1)利用Venn 图,直观地判断集合的包含或相等关系. (2)利用Venn 图,求解有限集合的交、并、补运算.(3)借助数轴,分析无限集合的包含或相等关系或求解集合的交、并、补运算结果及所含参变量的取值范围问题.【典例】已知集合{||3|}2Ax x ∈R =+<,集合{|()()}20B x x m x ∈R =--<,且)1(A B n =-,,则m =________,n =________.【答案】 -1,1.【解析】 由题意,知51{|}A x x =-<<.因为)1(AB n =-,,{|()()}20B x x m x R =--<,结合数轴,如图.所以11m n =-,=.。

相关文档
最新文档