2021届高考数学核按钮【新高考广东版】3.1 函数的概念及其表示
2021届高考数学核按钮【新高考广东版】考点一 命题及其关系

考点一命题及其关系1.命题的概念(1)一般地,在数学中,我们把用语言、符号或式子表达的,可以__________的陈述句叫做命题,其中__________的语句叫做真命题,____________的语句叫做假命题.(2)在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,我们称这两个命题为____________.(3)在两个命题中,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,这样的两个命题称为________________.(4)在两个命题中,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,这样的两个命题称为________________.(5)一般地,设“若p,则q”为原命题,那么__________就叫做原命题的逆命题;__________就叫做原命题的否命题;________________就叫做原命题的逆否命题.2.四种命题间的相互关系(1)四种命题间的相互关系图(请你补全)(2)真假关系①两个命题互为逆否命题,它们具有________的真假性,即等价;②两个命题为互逆命题或互否命题,它们的真假性________.自查自纠1.(1)判断真假判断为真判断为假(2)互逆命题(3)互否命题(4)互为逆否命题(5)若q,则p若p,则q若q,则p2.(1)(2)①相同②没有关系类型一四种命题及其相互关系例1写出下列命题的逆命题、否命题及逆否命题,并分别判断四种命题的真假.(1)若a>b,则ac2>bc2;(2)在△ABC中,若AB>AC,则∠C>∠B;(3)若x2-2x-3>0,则x<-1或x>3.解:(1)因为当c=0时,ac2=bc2,所以原命题为假命题.逆命题:若ac2>bc2,则a>b.它为真命题.否命题:若a≤b,则ac2≤bc2.它为真命题.逆否命题:若ac2≤bc2,则a≤b.它为假命题.(2)逆命题:在△ABC中,若∠C>∠B,则AB>AC.否命题:在△ABC中,若AB≤AC,则∠C≤∠B.逆否命题:在△ABC中,若∠C≤∠B,则AB≤AC.这里,四种命题都是真命题.(3)逆命题:若x<-1或x>3,则x2-2x-3>0.否命题:若x2-2x-3≤0,则-1≤x≤3.逆否命题:若-1≤x≤3,则x2-2x-3≤0.这里,四种命题都是真命题.评析写出一个命题的逆命题、否命题和逆否命题,关键是找出原命题的条件p与结论q,将原命题写成“若p,则q”的形式.在题(2)中,原命题有大前提“在△ABC中”,在写出它的逆命题、否命题和逆否命题时,应当保留这个大前提.题(3)中“x <-1或x>3”的否定形式是“x≥-1且x≤3”,即“-1≤x≤3”.变式1(1) (2018·长春质检二)命题“若x2<1,则-1<x<1”的逆否命题是()A.若x2≥1,则x≥1或x≤-1B.若-1<x<1,则x2<1C.若x>1或x<-1,则x2>1D.若x≥1或x≤-1,则x2≥1解:对原命题的条件进行否定作为逆否命题的结论,对原命题的结论进行否定作为逆否命题的条件,由此知命题“若x2<1,则-1<x<1”的逆否命题是“若x≥1或x≤-1,则x2≥1”.故选D.(2)下列四个命题中,其中所有假命题的序号是()①命题“若m+n>2t,则m>t且n>t”的逆命题;②命题“相似三角形的面积相等”的否命题;③命题“末位数字不为零的整数能被3整除”的逆否命题;④命题“若c>1,则方程x2-2x+c=0没有实数根”的否命题.A.②③B.①④C.①②D.③④解:因为①中所给命题的逆命题“若m>t且n>t,则m+n>2t”成立,所以①为真命题.因为②中所给命题的否命题“如果两个三角形不相似,那么它们的面积不相等”不成立,所以②为假命题.因为③中所给命题的逆否命题“如果一个整数不能被3整除,那么它的末位数字为零”不成立,所以③为假命题.也可由原命题为假知其逆否命题为假.因为④中所给命题的否命题为“若c≤1,则方程x2-2x+c=0有实数根”,而c≤1时,Δ=4-4c ≥0,所以④为真命题.综上知,②③为假命题.故选A.1.命题“若xy=0,则x=0”的逆否命题是()A.若x=0,则xy≠0B.若xy≠0,则x≠0C.若xy≠0,则y≠0D.若x≠0,则xy≠0解:“若xy=0,则x=0”的逆否命题为“若x ≠0,则xy≠0”.故选D.2.下列命题:①“若a2<b2,则a<b”的否命题;②“全等三角形面积相等”的逆命题;③“若a>1,则ax2-2ax+a+3>0的解集为R”的逆否命题;④“若3x(x≠0)为有理数,则x为无理数”的逆否命题.其中所有正确命题的序号是()A.③④B.①③C.①②D.②④解:对于①,否命题为“若a2≥b2,则a≥b”,为假命题;对于②,逆命题为“面积相等的三角形是全等三角形”,是假命题;对于③,当a>1时,Δ=-12a<0,原命题正确,从而其逆否命题正确,故③正确;对于④,原命题正确,从而其逆否命题正确,故④正确.故选A.3.命题“f(x),g(x)是定义在R上的函数,h(x)=f(x)·g(x),若f(x),g(x)均为奇函数,则h(x)为偶函数”的逆命题、否命题、逆否命题中真命题的个数是()A.0B.1C.2D.3解:由f(x),g(x)均为奇函数可得h(x)=f(x)·g(x)为偶函数,这是因为h(-x)=f(-x)·g(-x)=(-f(x))·(-g(x))=f(x)·g(x)=h(x),反之则不成立,如h(x)=x2,f(x)=x2x2+1,g(x)=x2+1,h(x)是偶函数,但f(x),g(x)都不是奇函数,故原命题的逆命题是假命题,其否命题也是假命题,只有其逆否命题是真命题.故选B.4.(2019·河北正定中学月考)已知条件p:|5x-1|>a(a>0)和条件q:12x2-3x+1>0,请选取适当的实数a的值,分别利用所给出的两个条件作为A,B构造命题:“若A则B”,并使得构造的原命题为真命题,而其逆命题为假命题,并说明理由.解:已知条件p即5x-1<-a或5x-1>a,所以x<1-a5或x>1+a5.已知条件q即2x2-3x+1>0,所以x<12或x>1;令a=4,则p即x<-35或x>1,此时必有p⇒q成立,反之不然.故可以选取一个实数a=4,A为p,B为q,对应的命题是若A则B.由以上过程可知这一命题的原命题为真命题,而它的逆命题为假命题.。
2021高考数学一轮复习第1讲函数及其表示学案含解析.doc

第二章函数、导数及其应用第1讲函数及其表示[考纲解读] 1.了解构成函数的要素,会求一些简单函数的定义域和值域.(重点)2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.(重点)3.了解简单的分段函数,并能简单应用(函数分段不超过三段).(难点)[考向预测]从近三年高考情况来看,本讲是高考中的一个热点.预测2021年会考查函数的解析式与分段函数的应用,可能涉及函数的求值、函数图象的判断及最值的求解.1.函数及有关概念(1)函数的概念设A,B是□01非空的数集,如果按照某种确定的对应关系f,使对于集合A中的□02任意一个数x,在集合B中都有□03唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function),记作□04y=f(x),x∈A.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的□05定义域;与x的值相对应的y值叫做□06函数值,函数值的集合{f(x)|x∈A}叫做函数的□07值域.(3)函数的三要素:□08定义域、□09对应关系和□10值域.(4)相等函数:如果两个函数的□11定义域和□12对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的表示法表示函数的常用方法有□01解析法、□02图象法和□03列表法.3.分段函数(1)定义:若函数在其定义域内,对于定义域内的不同取值区间,有着不同的□01对应关系,这样的函数通常叫做分段函数.(2)分段函数的相关结论①分段函数虽由几个部分组成,但它表示的是一个函数.②分段函数的定义域等于各段函数的定义域的□02并集,值域等于各段函数的值域的□03并集.1.概念辨析(1)对于函数f :A →B ,其值域就是集合B .( ) (2)分段函数是由两个或几个函数组成的.( )(3)与x 轴垂直的直线和一个函数的图象至多有一个交点.( ) (4)函数y =1与y =x 0是同一个函数.( ) 答案 (1)× (2)× (3)√ (4)×2.小题热身 (1)函数y =2x -3+1x -3的定义域为( ) A.⎣⎡⎭⎫32,+∞ B .(-∞,3)∪(3,+∞) C.⎣⎡⎭⎫32,3∪(3,+∞) D .(3,+∞)答案 C解析 由⎩⎨⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3,所以已知函数的定义域为⎣⎡⎭⎫32,3∪(3,+∞). (2)下列函数中,与函数y =x +1是相等函数的是( ) A .y =(x +1)2 B .y =3x 3+1 C .y =x 2x +1D .y =x 2+1答案 B解析 对于A ,函数y =(x +1)2的定义域为{x |x ≥-1},与函数y =x +1的定义域不同,不是相等函数;对于B ,定义域和对应关系都相同,是相等函数;对于C ,函数y =x 2x +1的定义域为{x |x ≠0},与函数y =x +1的定义域不同,不是相等函数;对于D ,定义域相同,但对应关系不同,不是相等函数.(3)若函数f (x )=⎩⎨⎧2x +2,x ≤0,2x -4,x >0,则f [f (1)]的值为( )A .-10B .10C .-2D .2 答案 C解析 f (1)=21-4=-2,f [f (1)]=f (-2)=2×(-2)+2=-2.(4)函数y =f (x )的图象如图所示,那么,f (x )的定义域是________,值域是________,其中只有唯一的x 值与之对应的y 值的范围是________.(图中,曲线l 与直线m 无限接近,但永不相交)答案 [-3,0]∪[1,4) [1,+∞) [1,2)∪(5,+∞)解析 观察函数y =f (x )的图象可知,f (x )的定义域为[-3,0]∪[1,4),值域是[1,+∞),当y ∈[1,2)∪(5,+∞)时,只有唯一的x 值与之对应.(5)已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=________. 答案5x +1x 2(x ≠0) 解析 令t =1x ,则t ≠0,x =1t ,f (t )=⎝⎛⎭⎫1t 2+5·1t =5t +1t 2.所以f (x )=5x +1x 2(x ≠0).题型一 函数的定义域1.函数y =lg (2-x )12+x -x 2+(x -1)0的定义域是( )A .{x |-3<x <1}B .{x |-3<x <2且x ≠1}C .{x |0<x <2}D .{x |1<x <2}答案 B解析要使函数解析式有意义,须有⎩⎨⎧2-x >0,12+x -x 2>0,x -1≠0,解得⎩⎨⎧x <2,-3<x <4,x ≠1,所以-3<x <2且x ≠1.故已知函数的定义域为{x |-3<x <2且x ≠1}.2.函数f (x )的定义域是[2,+∞),则函数y =f (2x )x -2的定义域是( )A .[1,+∞)B .(-∞,1]C .[1,2)∪(2,+∞)D .[2,+∞)答案 C解析 依题意得⎩⎨⎧2x ≥2,x -2≠0,解得x ≥1且x ≠2,所以函数y =f (2x )x -2的定义域是[1,2)∪(2,+∞).3.(2020·安阳三校联考)若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是( )A .[0,4)B .(0,4)C .[4,+∞)D .[0,4]答案 D解析 由题意可得mx 2+mx +1≥0恒成立.当m =0时,1≥0恒成立;当m ≠0时,则⎩⎨⎧m >0,m 2-4m ≤0,解得0<m ≤4.综上可得,0≤m ≤4.1.函数y =f (x )的定义域2.抽象函数的定义域的求法(1)若已知函数f (x )的定义域为[a ,b ],则复合函数f [g (x )]的定义域由a ≤g (x )≤b 求出.如举例说明2中f (x )的定义域是[2,+∞),f (2x )中x 应满足2x ≥2.(2)若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 3.已知函数的定义域求参数问题的解题步骤(1)调整思维方向,根据已知函数,将给出的定义域问题转化为方程或不等式的解集问题.如举例说明3.(2)根据方程或不等式的解集情况确定参数的取值或范围.1.函数f (x )=-x 2+9x +10-2ln (x -1)的定义域为( )A.[1,10] B .[1,2)∪(2,10] C.(1,10] D .(1,2)∪(2,10]答案 D解析要使原函数有意义,则⎩⎨⎧-x 2+9x +10≥0,x -1>0,x -1≠1,解得1<x ≤10且x ≠2,所以函数f (x )=-x 2+9x +10-2ln (x -1)的定义域为(1,2)∪(2,10],故选D.2.(2020·东北师大附中摸底)已知函数f (x )的定义域是[0,2],则函数g (x )=f ⎝⎛⎭⎫x +12+f ⎝⎛⎭⎫x -12的定义域是( )A.⎣⎡⎦⎤12,1 B.⎣⎡⎦⎤12,2 C.⎣⎡⎦⎤12,32 D.⎣⎡⎦⎤1,32 答案 C解析由题意得⎩⎨⎧0≤x +12≤2,0≤x -12≤2,解得12≤x ≤32,所以函数g (x )的定义域是⎣⎡⎦⎤12,32. 3.已知函数y =1kx 2+2kx +3的定义域为R ,则实数k 的取值范围是________.答案 [0,3)解析 当k =0时,y =13,满足条件;当k ≠0时,由⎩⎨⎧ k >0,4k 2-12k <0,得0<k <3.⎩⎨⎧k <0,4k 2-12k <0,无解.综上,0≤k <3.题型二 求函数的解析式1.已知f ⎝⎛⎭⎫2x -1=lg x ,则f (x )=________. 答案 lg2x +1(x >-1) 解析 令t =2x -1,则由x >0知2x -1>-1,x =2t +1,所以由f ⎝⎛⎭⎫2x -1=lg x ,得f (t )=lg 2t +1(t >-1),所以f (x )=lg2x +1(x >-1). 2.已知f ⎝⎛⎭⎫x +1x =x 2+x -2,则f (x )=________. 答案 x 2-2(x ≥2或x ≤-2)解析 因为f ⎝⎛⎭⎫x +1x =x 2+x -2=⎝⎛⎭⎫x +1x 2-2, 且当x >0时,x +1x ≥2;当x <0时,x +1x ≤-2,所以f (x )=x 2-2(x ≥2或x ≤-2).3.已知f (x )是二次函数且f (0)=5,f (x +1)-f (x )=x -1,则f (x )=________. 答案12x 2-32x +5 解析 因为f (x )是二次函数且f (0)=5, 所以设f (x )=ax 2+bx +5(a ≠0). 又因为f (x +1)-f (x )=x -1,所以a (x +1)2+b (x +1)+5-(ax 2+bx +5)=x -1,整理得(2a -1)x +a +b +1=0,所以⎩⎨⎧2a -1=0,a +b +1=0,解得a =12,b =-32,所以f (x )=12x 2-32x +5.4.已知f (x )满足2f (x )+f ⎝⎛⎭⎫1x =3x ,则f (x )=________. 答案 2x -1x(x ≠0)解析 因为2f (x )+f ⎝⎛⎭⎫1x =3x ,①所以将x 用1x 替换,得2f ⎝⎛⎭⎫1x +f (x )=3x ,② 由①②解得f (x )=2x -1x (x ≠0),即f (x )的解析式是f (x )=2x -1x (x ≠0).求函数解析式的四种方法1.若函数f (x )是一次函数,且f [f (x )]=4x +3,则函数f (x )的解析式为________. 答案 f (x )=2x +1或f (x )=-2x -3解析 设f (x )=ax +b (a ≠0),则f [f (x )]=af (x )+b =a 2x +ab +b =4x +3,∴⎩⎨⎧a 2=4,ab +b =3,解得⎩⎨⎧ a =2,b =1或⎩⎨⎧a =-2,b =-3,∴f (x )=2x +1或f (x )=-2x -3.2.已知f (x +1)=x +2x ,则函数f (x )的解析式为________. 答案 f (x )=x 2-1(x ≥1)解析 解法一:∵f (x +1)=x +2x =(x )2+2x +1-1=(x +1)2-1,且x +1≥1.∴f (x )=x 2-1(x ≥1).解法二:设t =x +1,则x =(t -1)2(t ≥1).代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1.故f (x )=x 2-1(x ≥1).题型三 分段函数角度1 求分段函数的函数值1.已知函数f (x )=⎩⎨⎧log 5x ,x >0,2x ,x ≤0,则f ⎣⎡⎦⎤f ⎝⎛⎭⎫125等于( ) A.4 B.14 C .-4 D .-14答案 B解析 f ⎝⎛⎭⎫125=log 5125=-2,f ⎣⎡⎦⎤f ⎝⎛⎭⎫125=f (-2)=14. 角度2 分段函数与方程、不等式的综合问题2.设函数f (x )=⎩⎨⎧4x +a ,x <1,2x ,x ≥1,若f ⎣⎡⎦⎤f ⎝⎛⎭⎫23=4,则实数a =( ) A.-23B .-43C.-43或-23D .-2或-23答案 A解析 因为23<1,所以f ⎝⎛⎭⎫23=4×23+a =a +83. 若a +83≥1,即a ≥-53时,2a +83 =4,即a +83=2⇒a =-23>-53(成立);若a +83<1,即a <-53时,则4a +323+a =4,即a =-43>-53(舍去),综上a =-23.3.(2018·全国卷Ⅰ)设函数f (x )=⎩⎨⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A.(-∞,-1] B .(0,+∞) C.(-1,0) D .(-∞,0)答案 D解析 将函数f (x )的图象画出来,观察图象可知⎩⎨⎧2x <0,2x <x +1,解得x <0,所以满足f (x +1)<f (2x )的x 的取值范围是(-∞,0).故选D.1.求分段函数的函数值 (1)基本步骤①确定要求值的自变量属于哪一区间. ②代入该区间对应的解析式求值. (2)两种特殊情况①当出现f [f (a )]的形式时,应从内到外依次求值.如举例说明1.②当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点.如举例说明2,求出f ⎝⎛⎭⎫23后再求f ⎣⎡⎦⎤f ⎝⎛⎭⎫23要分类讨论. 2.解分段函数与方程或不等式综合问题的策略求解与分段函数有关的方程或不等式问题,主要表现为解方程或不等式.应根据每一段的解析式分别求解.若自变量取值不确定,则要分类讨论求解;若自变量取值确定,则只需依据自变量的情况直接代入相应的解析式求解.解得值(范围)后一定要检验是否符合相应段的自变量的取值范围.1.设函数f (x )=⎩⎨⎧x 2+x -2,x ≤1,-lg x ,x >1,则f [f (-4)]=________.答案 -1解析 f [f (-4)]=f (16-4-2)=f (10)=-1.2.函数f (x )=⎩⎨⎧12x -1,x ≥0,1x ,x <0,若f (a )≤a ,则实数a 的取值范围是________.答案 [-1,+∞)解析 当a ≥0时,由f (a )=12a -1≤a ,解得a ≥-2,所以a ≥0;当a <0时,由f (a )=1a ≤a ,解得-1≤a ≤1且a ≠0,所以-1≤a <0.综上所述,实数a 的取值范围是[-1,+∞).3.已知实数a ≠0,函数f (x )=⎩⎨⎧2x +a ,x <1,-x -2a ,x ≥1.若f (1-a )=f (1+a ),则a 的值为________.答案 -34解析 当a >0时,1-a <1,1+a >1,由f (1-a )=f (1+a ),可得2(1-a )+a =-(1+a )-2a ,解得a =-32,不符合题意.当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a ),可得-(1-a )-2a =2(1+a )+a ,解得a =-34,符合题意.。
广东省2021高考数学学业水平合格考试总复习第1章集合与函数概念教师用书教案

第1章集合与函数概念考纲展示考情汇总备考指导函数①了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.③了解简单的分段函数,并能简单应用.④理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.⑤会运用函数图象理解和研究函数的性质.2017年1月T2,2017年1月T14,2018年1月T32018年1月T142019年1月T32019年1月T192020年1月T52020年1月T7集合的基本运算1.集合的概念与性质集合是指定的某些对象的全体.集合中元素的特性有:确定性(集合中的元素应该是确定的,不能模棱两可)、互异性(集合中的元素应该是互不相同的)、无序性(集合中元素的排列是无序的).元素和集合的关系是属于或不属于关系.表示集合的方法要掌握字母表示法、列举法、描述法及Venn图法.根据元素个数的多少集合可分为:有限集、无限集.2.集合间的基本关系及基本运算关系或运算自然语言符号语言图形语言A⊆B(或B⊇A)集合A中任意一个元素都是集合B中的元素.A⊆B(或B⊇A) ⇔(x∈A⇒x∈B)A∩B由所有属于集合A且属于集合B的所有元素所组成的集合.A∩B={x|x∈A且x∈B}A∪B由所有属于集合A或属于集合B的元素组成的集合.A∪B={x|x∈A或x∈B}∁U A已知全集U,集合A⊆U,由U中所有不属于A的元素组成的集合,叫做A相对于U的补集.∁U A={x|x∈U,且x∉A}1.(2018·1月广东学考)已知集合M={-1,0,1,2},N={x|-1≤x<2},则M∩N=( ) A.{0,1,2} B.{-1,0,1}C.M D.NB[M∩N={-1,0,1},故选B.]2.(2019·1月广东学考)已知集合A={0,2,4},B={-2,0,2},则A∪B=( ) A.{0,2} B.{-2,4}C.[0,2] D.{-2,0,2,4}D[A∪B={-2,0,2,4}.]3.(2020·1月广东学考)已知集合M={-1,0,1,2},N={1,2,3},则M∪N=( ) A.M B.NC.{-1,0,1,2,3} D.{1,2}C[∵M={-1,0,1,2},N={1,2,3},∴M∪N={-1,0,1,2,3}.故选C.]集合基本运算的方法技巧(1)当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算,也可借助Venn图运算.(2)当集合是用不等式表示时,可运用数轴求解.对于端点处的取舍,可以单独检验.(3)集合的交、并、补运算口诀如下:交集元素仔细找,属于A且属于B;并集元素勿遗漏,切记重复仅取一;全集U是大范围,去掉U中A元素,剩余元素成补集.[最新模拟快练]1.(2020·广东学考模拟)设集合A={1,2,3},B={2,3,4},则A∪B=( )A.{1,2,3,4} B.{1,2,3}C.{2,3,4} D.{1,3,4}A[∵A={1,2,3},B={2,3,4},∴A∪B={1,2,3,4},故选A.]2.(2019·深圳学考模拟题)已知A={2,4,5},B={3,5,7},则A∪B=( )A.{5} B.{2,4,5}C.{3,5,7} D.{2,3,4,5,7}D[A∪B={2,3,4,5,7},故选D.]3.(2019·佛山高一期中) 设集合A={x|-2<x<7 },B={x|x>1,x∈N},则A∩B 的元素的个数为( )A.3 B.4C.5 D.6C[A∩B={x|-2<x<7,且x>1,x∈N} ,即A∩B={2,3,4,5,6},因此,A与B的交集中含有5个元素.]4.(2018·深圳市高一月考)若集合A={y|y=2x,x∈R},B={y|y=x2,x∈R},则( ) A.A B B.A BC.A=B D.A∩B=∅A[因2x>0,而x2≥0,∴B A.]5.(2018·东莞市高一期末)若集合A={x||x|≤1,x∈R},B={y|y=x2,x∈R},则A∩B 等于( )A.{x|-1≤x≤1} B.{x|x≥0}C.{x|0≤x≤1} D.∅C[A={x|-1≤x≤1},B={y|y≥0},所以A∩B={x|0≤x≤1}.]6.(2018·佛山市高一期末)已知全集U=R,则正确表示集合A={-1,0,1}和B={x|x2=x}关系的韦恩图是( )B[∵集合B={x|x2=x},∴集合B={0,1},∵集合A={-1,0,1},∴B⊆A.]7.(2019·广州高一月考)已知集合A={x|-2<x<3},集合B={x|x<1},则A∪B=( ) A.(-2,1) B.(-2,3)C.(-∞,1) D.(-∞,3)D[∵A={x|-2<x<3},B={x|x<1},∴A∪B={x|x<3}=(-∞,3).选D.]8.(2019·潮州高一期末)已知集合A={3,4,5,6},B={a},若A∩B={6},则a=( )A .3B .4C .5D .6D [∵A ∩B ={6},∴6∈B ,∴a =6.]函数及其表示1.函数的概念设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.2.函数的三要素定义域、值域和对应关系. 3.函数的表示解析法、列表法、图象法.[学考真题对练]1.(2018·1月广东学考)已知函数f (x )=⎩⎪⎨⎪⎧x 3-1,x ≥02x,x <0,设f (0)=a ,则f (a )=( )A .-2B .-1C .12D .0C [∵a =f (0)=03-1=-1,∴f (a )=f (-1)=2-1=12,故选C .]2.(2019·1月广东学考)函数y =log 3(x +2)的定义域为( ) A .(-2,+∞) B .(2,+∞) C .[-2,+∞) D .[2,+∞)A [x +2>0,x >-2.]3.(2020·1月广东学考)函数f (x )=x 2-4x 的定义域是( ) A .(0,4)B .[0,4]C .(-∞,0)∪(4,+∞)D .(-∞,0]∪ [4,+∞)D [要使f (x )有意义,则x 2-4x ≥0,解得x ≤0或x ≥4, ∴f (x )的定义域是(-∞,0]∪ [4,+∞).故选D .]1.常见基本初等函数定义域的基本要求 (1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R . (4)y =x 0的定义域是{x |x ≠0}.(5)y =a x (a >0且a ≠1),y =sin x ,y =cos x 的定义域均为R . (6)y =log a x (a >0且a ≠1)的定义域为(0,+∞).(7)y =tan x 的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π2,k ∈Z .2.分段函数两种题型的求解策略 (1)根据分段函数的解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值(或范围)求自变量的值(或范围)应根据每一段的解析式分别求解,但要注意检验所求自变量的值(或范围)是否符合相应段的自变量的取值范围.1.(2019·揭阳学考模拟题)函数f (x )=ln(x 2-x )的定义域为( ) A .(-∞,0)∪(1,+∞) B .(-∞,0]∪[1,+∞) C .(0,1)D .[0,1]A [由题意得:x 2-x >0,解得:x >1或x <0,故函数的定义域是(-∞,0)∪(1,+∞).]2.(2019·汕头学考模拟题)已知函数f (x )=⎩⎪⎨⎪⎧x 2-1,x ≤02x +1,x >0,则f (-2)+f (1)=( )A .3B .6C .7D .10B [f (-2)+f (1)=3+3=6.]3.(2019·深圳高一月考)下列图象中,不可能成为函数y =f (x )图象的是( )A [A 选项中,当x =0时,有两个y 与之对应,与定义矛盾.]4.(2018·东莞市高一月考)若函数f (x )满足f (3x +2)=9x +8,则f (x )的解析式是( )A .f (x )=9x +8B .f (x )=3x +2C .f (x )=-3x -4D .f (x )=3x +2或f (x )=-3x -4 B [设t =3x +2,∴x =t -23,所以函数式转化为f (t )=3(t -2)+8=3t +2,所以函数式为f (x )=3x +2.]5.(2018·汕头市高一期中)下列各组函数中,表示同一函数的是( ) A .y =1,y =xxB .y =x -1×x +1,y =x 2-1 C .y =x ,y =3x 3D .y =|x |,y =(x )2C [A 选项y =1,y =x x定义域不同,不表示同一函数;B .y =x -1×x +1,y =x 2-1定义域不同,不表示同一函数;D .y =|x |,y =(x )2定义域不同,不表示同一函数,选C .]6.(2019·广州高一期末)函数y =x |x |的图象大致是( )C [y =⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以选C .]函数的基本性质1.函数的最值函数最大(小)值首先应该是某一个函数值,即存在x 0∈I ,使得f (x 0)=M ;其次函数最大(小)值应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f (x )≤M (f (x )≥M ).2.函数的单调性如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<(>)f (x 2),那么就说f (x )在区间D 上是增(减)函数,函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质.3.函数的奇偶性如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x )[f (-x )=-f (x )],那么函数f (x )就称为偶(奇)函数.偶函数的图象关于y 轴对称,奇函数的图象关于原点对称.函数的奇偶性是一个整体的概念.函数具有奇偶性的一个前提条件是定义域关于原点对称.[学考真题对练]1.(2018·1月广东学考)设函数f (x )是定义在R 上的减函数,且f (x )为奇函数,若x 1<0,x 2>0,则下列结论不正确的是( )A .f (0)=0B .f (x 1)>0C .f ⎝ ⎛⎭⎪⎫x 2+1x 2≤f (2)D .f ⎝ ⎛⎭⎪⎫x 1+1x 1≤f (2)D [对于A 项,∵f (x )为R 上的奇函数,∴f (0)=0,正确; 对于B 项,∵f (x )为R 上的减函数,∴x 1<0⇒f (x 1)>f (0)=0,正确; 对于C 项,∵x 2>0,∴x 2+1x 2≥2x 2·1x 2=2(当且仅当x 2=1x 2,即x 2=1时等号成立),∴f ⎝ ⎛⎭⎪⎫x 2+1x 2≤f (2),正确;对于D 项,∵x 1<0,∴x 1+1x 1=-⎝ ⎛⎭⎪⎫-x 1+1-x 1≤-2-x 1·1-x 1=-2,∴f ⎝ ⎛⎭⎪⎫x 1+1x 1≥f (-2)=-f (2),错误.故选D .]2.(2020·1月广东学考)下列函数为偶函数的是( ) A .f (x )=x +3 B .f (x )=x 2-2 C .f (x )=x 3D .f (x )=1xB [对于A ,f (x )=x +3,为一次函数,不是偶函数,不符合题意;对于B ,f (x )=x 2-2,为二次函数且其对称轴为y 轴,是偶函数,符合题意, 对于C ,f (x )=x 3,是奇函数不是偶函数,不符合题意;对于D ,f (x )=1x,为反比例函数,不是偶函数,不符合题意;故选B .]3.(2019·1月广东学考)已知函数f (x )是定义在(-∞,+∞)上的奇函数,当x ∈[0,+∞)时,f (x )=x 2-4x ,则当x ∈(-∞,0)时,f (x )= .-x 2-4x [∵x >0时,f (x )=x 2-4x , ∴当x <0时,-x >0,f (-x )=x 2+4x ,又∵y =f (x )是定义在(-∞,+∞)上的奇函数, ∴f (-x )=-f (x ),∴f (x )=-f (-x )=-x 2-4x .](1)关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.(2)掌握以下两个结论,会给解题带来方便:①f (x )为偶函数⇔f (x )=f (|x |).②若奇函数在x =0处有意义,则f (0)=0.[最新模拟快练]1.(2019·佛山高一月考)定义域为R 的四个函数y =x 3,y =2x ,y =x 2+1,y =2sin x 中,奇函数的个数是( )A .4B .3C .2D .1C [函数y =x 3,y =2sin x 为奇函数,y =2x为非奇非偶函数,y =x 2+1为偶函数,故奇函数的个数是2,故选C .]2.(2020·广东学考模拟)已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f (1)的x 取值范围是( )A .(-1,0)B .(0,1)C .(1,2)D .(-1,1)B [根据题意,f (x )为偶函数,则f (2x -1)<f (1)⇒f (|2x -1|)<f (1), 又由函数在区间[0,+∞)上单调递增, 则f (|2x -1|)<f (1)⇒|2x -1|<1, 解得:0<x <1,故选B .]3.(2018·东莞市高一月考)已知函数f (x )=1x在区间[1,2]上的最大值为A ,最小值为B ,则A -B 等于( )A .12B .-12C .1D .-1A [∵函数f (x )=1x 在区间[1,2]上单调递减,∴A =1,B =12,∴A -B =12,故选A .]4.(2019·揭阳高一期末)f (x )为奇函数,当x <0时,f (x )=log 2(1-x ),则f (3)= .-2 [f (3)=-f (-3)=-log 24=-2.]5.(2019·中山学考模拟题)若函数y =3x 2-ax +5在[-1,1]上是单调函数,则实数a 的取值范围是 .(-∞,-6]∪[6,+∞) [因为函数y =3x 2-ax +5在[-1,1]上是单调函数,所以a6≤-1或a6≥1,解得a ≤-6或a ≥6.∴实数a 的取值范围是(-∞,-6]∪[6,+∞).]6.(2018·广州市学考模拟题)已知指数函数y =g (x )满足:g (2)=4,定义域为R 的函数f (x )=-g x +n2g x +m是奇函数.(1)确定y =g (x )的解析式;(2)求m ,n 的值;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求实数k 的取值范围.[解] (1)由题意设g (x )=a x ,a >0且a ≠1,则g (2)=a 2=4,解得a =2,所以y =g (x )=2x .(2)由(1)知:f (x )=-2x +n 2x +1+m ,因为f (x )是奇函数,所以f (0)=0,即n -12+m=0⇒n =1,∴f (x )=1-2x 2x +1+m ,又由f (1)=-f (-1)知1-24+m =-1-12m +1⇒m =2. (3)由(2)知f (x )=1-2x 2+2x +1=-12+12x +1, 易知f (x )在(-∞,+∞)上为减函数.又因f (x )是奇函数,从而不等式: f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因f (x )为减函数,由上式推得:t 2-2t >k -2t 2,即对一切t ∈R 有:3t 2-2t -k >0,从而判别式Δ=4+12k <0⇒k <-13.。
2021届高考数学核按钮【新高考广东版】微专题一 聚焦新题型之结构不良试题

所以 c1+c2+…+cn=12[13-15+15-17+…+2n1+1-2n1+3]=1213-2n1+3,
假设存在整数 t,使对任意 n∈N*,1213-2n1+3>6t0恒成立, 则需6t0<1213-2n1+3min=115,即 t<4,故存在整数 t 满足条件,且 t 的最大值为 3.
点拨 本题考查等差数列和等比数列基本量的运算,是高考 必考内容,无论选择哪个条件,目的都是为了找到数列{an}的通 项公式,由于每个学生的视角不同,所以题目虽然基础,但需要 学生能迅速作出选择.本题是新高考模拟卷中一道典型的是“结 构不良型”试题,具有一定的开放性、探究性.选择计算量更小 的关系完善方程(组),从而求出相关数列,再进行探究.此题型 是新高考题型探索中比较成熟的成果之一,应给予一定的关注.
若选③:S99-S55=a5-a3=2,即 2d=2,d=1,又 a3=7,故 an=n+4, 所以 cn=ana1n+1=(n+4)1(n+5)=n+1 4-n+1 5,
c1+c2+…+cn=15-16+16-17+…+n+1 4-n+1 5=15-n+1 5,
解:根据题意,因为 b2=3,b5=-81,{bn}是等比数列, 所以 b1=-1,q=-3,所以 bn=-(-3)n-1,由 b1=a5, 得 a5=-1, 方法一:选①,b1+b3=a2 时,a2=-10,又 a5=-1,所 以 d=3,a1=-13, Sk=-13k+k(k-2 1)×3=32k2-229k,
例 1 (2020 届山东新高考模拟考)在①b1+b3=a2, ②a4=b4,③S5=-25 这三个条件中任选一个,补充在 下面问题中,若问题中的 k 存在,求 k 的值;若 k 不存 在,说明理由.
新高考函数知识点总结大全

新高考函数知识点总结大全引言:近年来,新高考已经成为了我们每个学生必须面对的一个重要考试。
其中,数学作为一门基础科目,对于考生来说尤为重要。
而在数学中,函数作为一种重要的数学概念和工具,在高考中占据了相当大的比重。
因此,掌握函数的基本概念和相关知识点,对于顺利通过高考具有重要的意义。
本文将对新高考中的函数知识点进行详细的总结和解析,以帮助考生更全面、深入地掌握函数知识。
一、函数的基本概念1. 函数的定义:函数是一种特殊的关系,它将一个集合的元素对应到另一个集合的元素上,并且对于集合中的每个元素,有且只有一个对应的元素。
2. 定义域和值域:函数的定义域表示自变量的取值范围,值域表示函数的所有可能取值的集合。
3. 函数的表示方法:函数可以用各种不同的表示方法来表示,包括显式表示、隐式表示和参数表示等。
4. 函数的特性:函数可以是奇函数或偶函数,也可以是周期函数或单调函数等。
二、函数的分类和性质1. 基本初等函数:常见的函数包括常函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。
它们构成了函数的基本分类。
2. 函数的运算:函数之间可以进行加减乘除、复合、反函数等运算,通过运算可以得到新的函数。
3. 函数的性质:函数可以有极限、导数和积分等性质,这些性质在研究函数的变化规律和相关问题时发挥着重要作用。
三、函数的图像和特征1. 函数的图像:函数可以通过绘制它的图像来帮助我们理解和分析函数的特征。
图像可以反映函数的增减性、单调性和对称性等。
2. 函数的拐点和极值:函数的拐点是函数图像曲线由凹转凸或由凸转凹的点,而函数的极值是函数在定义域内取得的最大值或最小值。
3. 函数的奇点和间断点:函数的奇点是指函数在某些点上无定义或不连续的点,而间断点是函数图像上出现断裂的点。
四、函数的应用领域1. 函数在几何中的应用:函数可以帮助我们研究图形的性质和变化规律,如直线、曲线、圆等。
2. 函数在物理中的应用:函数可以用来描述物理量之间的关系,如速度、加速度、功率等。
核按钮(新课标)高考数学一轮复习 第二章 函数的概念、基本初等函数(Ⅰ)及函数的应用 2.5 基本初

§2.5 基本初等函数(Ⅰ)(一)指数函数 1.根式(1)n 次方根:如果x n=a ,那么x 叫做a 的 ,其中n >1,且n ∈N *.①当n 为奇数时,正数的n 次方根是一个 数,负数的n 次方根是一个 数,这时a 的n 次方根用符号 表示.②当n 为偶数时,正数的n 次方根有 个,这两个数互为 .这时,正数a 的正的n 次方根用符号 表示,负的n 次方根用符号 表示.正的n 次方根与负的n 次方根可以合并写成 .③负数没有偶次方根.④0的n (n ∈N *)次方根是 ,记作 .(2)根式:式子na 叫做根式,这里n 叫做 ,a 叫做 . (3)根式的性质:n 为奇数时,na n= ;n 为偶数时,na n = .2.幂的有关概念及运算(1)零指数幂:a 0= .这里a 0. (2)负整数指数幂:a -n= (a ≠0,n ∈N *).(3)正分数指数幂:a mn = (a >0,m ,n ∈N *,且n >1).(4)负分数指数幂:a -m n = (a >0,m ,n ∈N *,且n >1).(5)0的正分数指数幂等于,0的负分数指数幂. (6)有理指数幂的运算性质 ⎩⎪⎨⎪⎧a r a s=________(a >0,r ,s ∈Q ),(a r )s=________(a >0,r ,s ∈Q ),(ab )r =________(a >0,b >0,r ∈Q ).(二)对数函数 1.对数(1)对数:如果a x=N (a >0,且a ≠1),那么x 叫做以a 为底N 的 ,记作x = .其中a 叫做对数的 ,N 叫做 .(2)两类重要的对数①常用对数:以 为底的对数叫做常用对数,并把log 10N 记作 ; ②自然对数:以 为底的对数称为自然对数,并把log e N 记作 . 注:(i)无理数e =2.718 28…; (ii)负数和零没有对数;(iii)log a 1= ,log a a = . (3)对数与指数之间的关系当a >0,a ≠1时,a x =N x =log a N . (4)对数运算的性质如果a >0,且a ≠1,M >0,N >0,那么: ①log a (MN )= ; ②log a M N= ; ③log a M n= ;一般地,na M m log = ; (5)换底公式及对数恒等式 ①对数恒等式:Na alog = ;②换底公式:log a b =_________ (a >0且a ≠1;c >0且c ≠1;b >0).特别地,log a b=_________.3.对数函数与指数函数的关系对数函数y=log a x(a>0,且a≠1)与指数函数y=a x(a>0且a≠1)互为反函数;它们的图象关于直线________对称.(三)幂函数1.幂函数的定义一般地,函数叫做幂函数,其中x是自变量,α是常数.2.几个常用的幂函数的图象与性质自查自纠(一)1.(1)n 次方根 ①正 负 na②两 相反数 na -n a ±na④0n0=0(2)根指数 被开方数 (3)a |a | 2.(1)1 ≠ (2)1an (3)n a m(4)1na m(5)0 没有意义 (6)a r +sa rs a rb r3.R (0,+∞) (0,1) 增函数 减函数 (二)1.(1)对数 log a N 底数 真数 (2)①10 lg N ②e ln N (iii)0 1 (3)⇔(4)①log a M +log a N ②log a M -log a N ③n log a M nmlog a M (5)①N ②log c b log c a 1log b a2.(0,+∞) R (1,0) 增函数 减函数 3.y =x(三)1.y =x α2.(1)(0,0)和(1,1) (1,1) (2)增函数 减函数log 29×log 34=( ) A.14 B.12C .2D .4解:log 29×log 34=lg9lg2×lg4lg3=2lg3lg2×2lg2lg3=4.故选D .(2015·四川)设a ,b 都是不等于1的正数,则“3a >3b>3”是“log a 3<log b 3”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解:由3a >3b>3知,a >b >1,则log a 3<log b 3;反过来,设0<a <1,b >1,依然有log a 3<log b 3,但此时3a <3b.故选B .设函数f (x )=⎩⎪⎨⎪⎧21-x ,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)解:当x ≤1时,21-x≤2⇔1-x ≤1⇔x ≥0,∴0≤x ≤1;当x >1时,1-log 2x ≤2⇔log 2x ≥-1⇔x ≥12,∴x >1.综上可知x 的取值范围是[0,+∞).故选D .函数f (x )=1-2log 6x 的定义域为____________. 解:根据二次根式和对数函数有意义的条件,得⎩⎪⎨⎪⎧x >0,1-2log 6x ≥0 ⇒⎩⎪⎨⎪⎧x >0,log 6x ≤12⇒⎩⎨⎧x >0,x ≤6 ⇒0<x ≤ 6. 故填(0,6].(2015·浙江)已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (f (-3))=________,f (x )的最小值是________.解:由题知,f (-3)=1,f (1)=0,即f (f (-3))=0.又f (x )在(-∞,0)上单调递减,在(0,1)上单调递增,在(1,2)上单调递减,在(2,+∞)上单调递增,所以f (x )min =min{f (0),f (2)}=22-3.故填0;22-3.类型一 指数幂的运算(2013·济宁测试)化简下列各式: (1)[(0.06415)-2.5]23-3338-π0;(2)a 43-8a 13b 4b 23+23ab +a 23÷⎪⎪⎭⎫ ⎝⎛--a b a 3322×a ×3a 25a ×3a. 解:(1)原式=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫64100015-5223-⎝ ⎛⎭⎪⎫27813-1=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫410315×⎝ ⎛⎭⎪⎫-52×23-⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32313-1=52-32-1 =0.(2)原式=a 13[(a 13)3-(2b 13)3](a 13)2+a 13×(2b 13)+(2b 13)2÷a 13-2b 13a ×(a ×a 23)12(a 12×a 13)15=a 13(a 13-2b 13)×a a 13-2b 13×a 56a 16=a 13×a ×a 23 =a 2.【点拨】指数幂的运算应注意:(1)运算的先后顺序;(2)化负数指数幂为正数指数幂;(3)化根式为分数指数幂;(4)化小数为分数.计算:(1)823×100-12×⎝ ⎛⎭⎪⎫14-3×⎝ ⎛⎭⎪⎫1681-34;(2)0.75-1×⎝ ⎛⎭⎪⎫3212×⎝ ⎛⎭⎪⎫63414+10(3-2)-1+⎝ ⎛⎭⎪⎫1300-12+1614.解:(1)原式=(23)23×(102)-12×(2-2)-3×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫234-34 =22×10-1×26×⎝ ⎛⎭⎪⎫23-3=28×110×⎝ ⎛⎭⎪⎫323=8625.(2)原式=⎝ ⎛⎭⎪⎫34-1×⎝ ⎛⎭⎪⎪⎫312212×⎝ ⎛⎭⎪⎫27414+10×13-2+30012+(24)14=43×314212×334212-10(3+2)+103+2 =43×32-103-20+103+2=-16. 类型二 指数型复合函数的定义域和值域求下列函数的定义域和值域.(1)y =⎝ ⎛⎭⎪⎫23-|x +1|; (2)y =2x2x +1;(3)y =4322+--x x .解:(1)定义域为R .因为-|x +1|≤0,所以y =⎝ ⎛⎭⎪⎫23-|x +1|≥⎝ ⎛⎭⎪⎫230=1,所以值域为[1,+∞). (2)定义域为R .又因为y =2x 2x +1=1-12x +1,而0<12x +1<1,所以-1<-12x +1<0,则0<y <1,所以值域为(0,1).(3)令-x 2-3x +4≥0,解得-4≤x ≤1,所以函数y =4322+--x x 的定义域为[-4,1].设u =-x 2-3x +4(-4≤x ≤1),易得u 在x =-32时取得最大值52,在x =-4或1时取得最小值0,即0≤u ≤52.所以函数y =2u 的值域为⎣⎢⎡⎦⎥⎤20,252,即函数y =4322+--x x 的值域为[1,42].【点拨】指数函数y =a x(a >0,a ≠1)的定义域为R ,所以y =a f (x )的定义域与f (x )的定义域相同;值域则要用其单调性来求,复合函数的单调性要注意“同增异减”的原则.求下列函数的定义域和值域.(1)y =812x -1; (2)y =4x +2x +1+1;(3)y =⎝ ⎛⎭⎪⎫12x 2-6x +17. 解:(1)因为2x -1≠0,所以x ≠12,所以原函数的定义域是⎩⎨⎧⎭⎬⎫x|x ≠12.令t =12x -1,则t ∈R 且t ≠0,所以由y =8t(t ∈R ,t ≠0)得y >0且y ≠1.所以,原函数的值域是{y |y >0且y ≠1}. (2)定义域为R ,因为y =4x+2x +1+1=(2x )2+2·2x +1=(2x +1)2,且2x>0.所以y =4x+2x +1+1的值域为{y |y >1}.(3)设u =x 2-6x +17,由于函数u =x 2-6x +17的定义域是(-∞,+∞),故y =⎝ ⎛⎭⎪⎫12x 2-6x +17的定义域为(-∞,+∞).又函数u =x 2-6x +17=(x -3)2+8≥8,所以⎝ ⎛⎭⎪⎫12u ≤⎝ ⎛⎭⎪⎫128,又⎝ ⎛⎭⎪⎫12u>0,故原函数的值域为⎝ ⎛⎦⎥⎤0,1256. 类型三 指数函数的图象及其应用已知实数a ,b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b,下列五个关系:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b =0.其中不可能...成立的关系有( ) A .1个 B .2个 C .3个D .4个解:作出函数y =⎝ ⎛⎭⎪⎫12x 与y =⎝ ⎛⎭⎪⎫13x的图象,然后作直线y =m ,y =n (0<m <1<n ).我们很容易得到a <b <0或0<b <a 或a =b =0,即可能成立的为①②⑤,不可能成立的为③④.故选B .【点拨】与指数函数有关的比较大小问题,除了应用函数的单调性外,还用到指数函数图象的“陡峭”程度,也就是函数f (x )增(减)的快慢.(2013·合肥模拟)函数f (x )=a x -b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0解:由图象知f (x )是减函数,∴0<a <1,又由图象在y 轴的截距小于1可知a -b<1,即-b >0,∴b <0.故选D .类型四 指数函数的综合问题(2015·北京)设函数f (x )=⎩⎪⎨⎪⎧2x-a ,x <1,4(x -a )(x -2a ),x ≥1.(1)若a =1,则f (x )的最小值为________;(2)若f (x )恰有2个零点,则实数a 的取值范围是________.解:(1)a =1时,f (x )=⎩⎪⎨⎪⎧2x -1, x <1,4(x -1)(x -2),x ≥1.当x <1时,f (x )∈(-1,1),f (x )无最小值;当x ≥1时,f (x )在⎣⎢⎡⎦⎥⎤1,32为减函数,在⎣⎢⎡⎭⎪⎫32,+∞为增函数,当x =32时,f (x )取得最小值为-1.(2)①若函数g (x )=2x-a 在x <1时与x 轴有一个交点,则a >0,并且当x =1时,g (1)=2-a >0,则0<a <2;此时函数h (x )=4(x -a )(x -2a )与x 轴只有一个交点,所以2a ≥1且a <1,则12≤a <1.综合得12≤a <1.②若函数g (x )=2x-a 与x 轴有无交点,则函数h (x )=4(x -a )(x -2a )与x 轴有两个交点.当a ≤0时,g (x )与x 轴无交点,h (x )=4(x -a )(x -2a )在[1,+∞)与x 轴也无交点,不合题意;当g (1)=2-a ≤0时,a ≥2,h (x )与x 轴有两个交点,其横坐标为x =a 和x =2a ,由于a ≥2,两交点横坐标均满足x ≥1,符合题意.综合①②可得a 的取值范围为12≤a <1或a ≥2.故填-1;⎣⎢⎡⎭⎪⎫12,1∪[2,+∞). 【点拨】解决指数函数的综合问题,首先要熟练掌握指数函数的基本性质,如函数值恒正,在R 上单调,过定点等.本题是指数函数与二次函数的综合问题,由于涉及分段函数的零点个数,故以分段函数在各段上的零点个数为标准,借助函数图象,分类讨论求解.已知函数f (x )=2x-12|x |.(1)若f (x )=2,求x 的值;(2)若2tf (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围.解:(1)当x <0时,f (x )=0;当x ≥0时,f (x )=2x-12x .由条件可知2x -12x =2,即22x -2·2x -1=0,解得2x=1± 2.∵2x >0,∴2x=1+2,即x =log 2(1+2).(2)当t ∈[1,2]时,2t ⎝ ⎛⎭⎪⎫22t-122t +m ⎝ ⎛⎭⎪⎫2t -12t ≥0,∵2t >0,两边同乘以2t ,即得m (22t -1)≥-(24t-1). ∵22t-1>0,∴m ≥-(22t+1).∵t ∈[1,2],∴-(1+22t)∈[-17,-5], 故m 的取值范围是[-5,+∞).类型五 对数的化简与求值(1)计算log 535+2log 122-log 5150-log 514的值.(2)计算(log 2125+log 425+log 85)(log 1258+log 254+log 52)的值.(3)(2015·江苏模拟)设x ,y ,z 均为大于1的实数,且z 为x 和y 的等比中项,则lg z4lg x+lg zlg y的最小值为________. 解:(1)原式=log 535×5014+2log 12212=log 553-1=2.(2)原式=⎝ ⎛⎭⎪⎫3log 25+log 25+13log 25(log 52+log 52+log 52)=133log 25×3log 52=13. (3)因为x ,y ,z 均为大于1的实数,所以lg x >0,lg y >0,lg z >0,又由z 为x 和y 的等比中项,可得z 2=xy .lg z 4lg x +lg z lg y =lg z ×4lg x +lg y 4lg x ×lg y =12lg xy ×4lg x +lg y 4lg x ×lg y=()lg x +lg y ()4lg x +lg y 8lg x ×lg y =4()lg x 2+5lg x ×lg y +()lg y 28lg x ×lg y ≥9lg x ×lg y 8lg x ×lg y =98.故填98.【点拨】对数式的化简、求值问题,要注意对数运算性质的逆向运用,但无论是正向还是逆向运用都要注意对数的底数须相同.(1)计算(lg2)2+lg2·lg50+lg25的值;(2)计算(log 32+log 92)(log 43+log 83)的值;(3)(2015·河南模拟)设函数f 1(x )=x ,f 2(x )=log 2015x ,a i =i2015(i =1,2,…,2015),记I k =|f k (a 2)-f k (a 1)|+|f k (a 3)-f k (a 2)|+…+|f k (a 2015)-f k (a 2014)|,k =1,2,则( )A .I 1<I 2B .I 1=I 2C .I 1>I 2D .I 1与I 2的大小关系无法确定解:(1)原式=(lg2)2+(1+lg5)lg2+lg52=(lg2+lg5+1)lg2+2lg5=(1+1)lg2+2lg5=2(lg2+lg5)=2.(2)原式=⎝ ⎛⎭⎪⎫lg2lg3+lg2lg9⎝ ⎛⎭⎪⎫lg3lg4+lg3lg8 =⎝ ⎛⎭⎪⎫lg2lg3+lg22lg3⎝ ⎛⎭⎪⎫lg32lg2+lg33lg2 =3lg22lg3×5lg36lg2=54. (3)∵f 1(a i +1)-f 1(a i )=i +12015-i 2015=12015,∴I 1=|f 1(a 2)-f 1(a 1)|+|f 1(a 3)-f 1(a 2)|+…+|f 1(a 2015)-f 1(a 2014)|=⎪⎪⎪⎪⎪⎪12015×2014=20142015.∵f 2(a i +1)-f 2(a i )=log 2015i +12015-log 2015i 2015=log 2015i +1i>0,∴I 2=|f 2(a 2)-f 2(a 1)|+|f 2(a 3)-f 2(a 2)|+…+|f 2(a 2015)-f 2(a 2014)| =log 2015⎝ ⎛⎭⎪⎫21×32×…×20152014=log 20152015=1.∴I 1<I 2.故选A .类型六 对数函数图象的应用(2015·河北模拟)已知函数f (x )=|log 2x |,0<m <n ,且f (m )=f (n ),若函数f (x )在区间[m 2,n ]上的最大值为2,则m 2=( )A.14B. 2C.32D.12解:作出函数f (x )=|log 2x |的图象如图.由题意可得0<m <1<n ,∴0<m 2<m ,结合图象可知函数f (x )在[m 2,n ]上的最大值为f (m 2),则有-log 2m 2=2,m 2=2-2=14.故选A .【点拨】先画出对数函数y =log 2x 的图象,再利用图象变换得到函数f (x )=|log 2x |的图象,通过分析函数图象对应的函数性质,比较函数值大小.当0<x ≤12时,4x<log a x ,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,22 B.⎝⎛⎭⎪⎫22,1 C .(1,2)D .(2,2)解:构造函数f (x )=4x和g (x )=log a x ,画出两个函数在⎝ ⎛⎦⎥⎤0,12上的大致图象(易判断0<a <1).由图可知,若g (x )经过点⎝ ⎛⎭⎪⎫12,2,则a =22,所以在⎝ ⎛⎦⎥⎤0,12上log a x >log 22x (0<a <1)即可,易得22<a <1,所以a 的取值范围为⎝ ⎛⎭⎪⎫22,1.故选B . 类型七 对数函数性质的应用(2013·全国课标Ⅱ)设a =log 36,b =log 510,c =log 714,则( ) A .c >b >a B .b >c >a C .a >c >bD .a >b >c解:a =1+log 32,b =1+log 52,c =1+log 72,所以a -1=1log 23,b -1=1log 25,c -1=1log 27,∵y =log 2x 在区间(0,+∞)上是增函数.∴0<log 23<log 25<log 27,∴1log 23>1log 25>1log 27,∴a -1>b -1>c -1>0,故a >b >c >1.故选D . 【点拨】比较大小问题是高考的常考题型,应熟练掌握比较大小的基本方法:①作差(商)法;②函数单调性法;③介值法(特别是以0和1为媒介值).利用对数函数单调性比较大小的基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决.设a =⎝ ⎛⎭⎪⎫340.5,b =⎝ ⎛⎭⎪⎫430.4,c =log 34(log 34),则( )A .c <b <aB .a <b <cC .c <a <bD .a <c <b解:∵0<⎝ ⎛⎭⎪⎫340.5<⎝ ⎛⎭⎪⎫340=1,⎝ ⎛⎭⎪⎫430.4>⎝ ⎛⎭⎪⎫430=1, log 34(log 34)<log 34(log 33)=0,即0<a <1,b >1,c <0, ∴c <a <b .故选C .类型八 对数型复合函数的有关问题已知函数f (x )=log 12(x 2-2ax +3).(1)若f (x )的定义域为R ,求实数a 的取值范围; (2)若函数f (x )的值域为R ,求实数a 的取值范围;(3)若函数f (x )在[-1,+∞)内有意义,求实数a 的取值范围; (4)若函数f (x )的值域为(-∞,-1],求实数a 的值. 解:(1)由f (x )的定义域为R , 知x 2-2ax +3>0的解集为R ,则Δ=4a 2-12<0,解得-3<a < 3. ∴a 的取值范围为(-3,3).(2)函数f (x )的值域为R 等价于u =x 2-2ax +3取(0,+∞)上的一切值,所以只要u min=3-a 2≤0⇒a ≤-3或a ≥ 3.所以实数a 的取值范围是(-∞,-3]∪[3,+∞). (3)由f (x )在[-1,+∞)内有意义,知u (x )=x 2-2ax +3>0对x ∈[-1,+∞)恒成立, 因为y =u (x )图象的对称轴为x =a , 所以当a <-1时,u (x )min =u (-1)>0, 即⎩⎪⎨⎪⎧a <-1,2a +4>0, 解得-2<a <-1; 当a ≥-1时,u (x )min =u (a )=3-a 2>0,即-3<a <3,所以-1≤a < 3. 综上可知,a 的取值范围为(-2,3).(4)因为y =f (x )≤-1,所以u (x )=x 2-2ax +3的值域为[2,+∞), 又u (x )=(x -a )2+3-a 2≥3-a 2, 则有u (x )min =3-a 2=2, 解得a =±1.【点拨】(1)首先要在函数定义域内研究函数的单调性;(2)此题中定义域为R 的问题实质上与值域为R 的问题正好相反,都是利用对数函数的定义域和值域进行分析.(2013·济南模拟)已知函数f (x )=log 4(ax 2+2x +3).(1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.解:(1)∵f (1)=1,∴log 4(a +5)=1,因此a +5=4,∴a =-1, 这时f (x )=log 4(-x 2+2x +3). 由-x 2+2x +3>0得-1<x <3, ∴函数f (x )的定义域为(-1,3). 令u (x )=-x 2+2x +3.则u (x )在(-1,1)上单调递增,在(1,3)上单调递减, 又y =log 4u 在(0,+∞)上单调递增,所以f (x )的单调递增区间是(-1,1),单调递减区间是(1,3). (2)假设存在实数a ,使f (x )的最小值是0, 则h (x )=ax 2+2x +3应有最小值1,显然a ≠0,因此应有⎩⎪⎨⎪⎧a >0,4a ×3-224a=3a -1a =1, 解得a =12.故存在实数a =12使f (x )的最小值等于0.类型九 对数函数的综合问题已知函数f (x )=log a 1-mxx -1是奇函数(a >0,a ≠1).(1)求m 的值;(2)判断f (x )在区间(1,+∞)上的单调性;(3)当a =12时,若对于[3,4]上的每一个x 的值,不等式f (x )>⎝ ⎛⎭⎪⎫12x +b 恒成立,求实数b 的取值范围.解:(1)∵f (x )是奇函数,∴f (-x )=-f (x )在其定义域内恒成立, 即log a 1+mx -x -1=-log a 1-mxx -1,∴1-m 2x 2=1-x 2恒成立,∴m =-1或m =1(舍去),即m =-1.(2)由(1)得f (x )=log a x +1x -1(a >0,a ≠1),令u =x +1x -1=1+2x -1,则u 在(1,+∞)上为减函数.∴当a >1时,f (x )在(1,+∞)上是减函数; 当0<a <1时,f (x )在(1,+∞)上是增函数.(3)对于[3,4]上的每一个x 的值,不等式f (x )>⎝ ⎛⎭⎪⎫12x +b 恒成立⇔f (x )-⎝ ⎛⎭⎪⎫12x>b 在[3,4]上恒成立.令g (x )=f (x )-⎝ ⎛⎭⎪⎫12x,由(2)知,g (x )在[3,4]上是单调递增函数,所以b <g (x )min =g (3)=-98,即b 的取值范围是⎝⎛⎭⎪⎫-∞,-98. 【点拨】解第(1)问时要特别注意“脱去”对数符号后恒成立的等式只是f (x )为奇函数的必要条件,而不是充要条件,所以要检验;第(2)问也可用单调函数的定义来判断,但很复杂;第(3)问利用函数与方程思想对恒成立问题进行了等价转化.已知f (x )=lg 2x ax +b ,f (1)=0,当x >0时,恒有f (x )-f ⎝ ⎛⎭⎪⎫1x =lg x . (1)求f (x )的解析式;(2)若方程f (x )=lg(m +x )的解集是∅,求实数m 的取值范围.解:(1)∵当x >0时,f (x )-f ⎝ ⎛⎭⎪⎫1x =lg x 恒成立,∴lg2x ax +b -lg 2bx +a=lg x ,即(a -b )x 2-(a -b )x =0. ∵x ≠0,∴上式若恒成立,则只能有a =b ,又f (1)=0,即a +b =2,从而a =b =1,∴f (x )=lg 2x 1+x.(2)由lg 2xx +1=lg(m +x )知⎩⎪⎨⎪⎧2xx +1=m +x ,2xx +1>0,即⎩⎪⎨⎪⎧x 2+(m -1)x +m =0,x <-1或x >0,由于方程的解集为∅,故有如下两种情况: ①方程x 2+(m -1)x +m =0无解,即Δ<0, 解得3-22<m <3+22;②方程x 2+(m -1)x +m =0有解,两根均在区间[-1,0]内,令g (x )=x 2+(m -1)x +m ,则有⎩⎪⎨⎪⎧Δ≥0,g (-1)≥0,g (0)≥0,-1≤1-m2≤0,即⎩⎨⎧m ≤3-22或m ≥3+22,1≤m ≤3,无解. 综合①②知,实数m 的取值范围是{m |3-22<m <3+22}.类型十 幂函数的图象与性质如图,曲线是幂函数y =x n在第一象限的图象,已知n 取2,3,12,-1四个值,则相应于曲线C 1,C 2,C 3,C 4的n 依次为 .解法一(数形结合法):如图,作直线x =t (t >1),由于函数y =x n的图象与直线x =t 的交点为(t ,t n),可见指数n 的大小与图象交点的“高低”是一致的,结合图象,可得答案.解法二(特殊值法):当x =2时,y 1=23=8,y 2=22=4,y 3=20.5=2,y 4=2-1=12,∵8>4>2>12,∴y 1>y 2>y 3>y 4,故填3,2,12,-1.【点拨】(1)利用幂函数的性质比较大小,往往伴随着指数函数单调性的应用,此题应用了y =a x(a >1)的单调递增的性质.当然在利用指数函数的单调性比较大小时,也会伴随着幂函数单调性质的应用.(2)当两个幂的底数和指数都不相同时,可以寻找一个中间量,以它作为桥梁,分别构造指数函数和幂函数,通过比较它们和这个中间量的大小解决问题.(2014·天门、仙桃、潜江期末)在下列直角坐标系的第一象限内分别画出了函数y =x ,y =x ,y =x 2,y =x 3,y =x -1的部分图象,则函数y =2x的图象通过的阴影区域是( )解:函数y =2x 的图象位于函数y =x 与y =x 2的图象之间,对比各选项中的阴影区域,知C 正确.故选C .1.指数函数的图象、性质在应用时,如果底数a 的取值范围不确定,则要对其进行分类讨论.2.比较两个幂的大小,首先要分清是底数相同还是指数相同.如果底数相同,可利用指数函数的单调性;如果指数相同,可转化为底数相同,或利用幂函数的单调性,也可借助函数图象;如果指数不同,底数也不同,则要利用中间量.3.熟练掌握指数式与对数式的互化,它不仅体现了两者之间的相互关系,而且为对数的计算、化简、证明等问题提供了更多的解题途径.4.作指数函数y =a x(a >0,且a ≠1)和对数函数y =log a x (a >0,且a ≠1)的图象应分别抓住三个点⎝ ⎛⎭⎪⎫-1,1a ,(0,1),(1,a )和⎝ ⎛⎭⎪⎫1a ,-1,(1,0),(a ,1).5.比较两个对数的大小的基本方法(1)若底数为同一常数,则由对数函数的单调性直接进行判断;若底数为同一字母,则需对这一字母进行分类讨论.(2)若底数不同真数相同,则可先换底再进行比较.(3)若底数与真数都不同,则常借助1,0等中间量进行比较.6.幂函数的图象特征与指数的大小关系,大都可通过幂函数的图象与直线x =2或x =12的交点纵坐标的大小反映.一般地,在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大、图低”),在区间(1,+∞)上,幂函数中指数越大,图象越远离x 轴(不包括幂函数y =x 0).7.幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,则要看函数的定义域和奇偶性.函数的图象最多只能同时出现在两个象限内,如果幂函数的图象与坐标轴相交,则交点一定是原点.8.判断一个函数是否为指数函数或对数函数或幂函数,一定要根据三种函数定义给出的“标准”形式.如f (x )=2x 2不是指数函数,而f (x )=23x是指数函数,因为f (x )=23x=8x,此时a =8,同样f (x )=2x +1也不是指数函数,因为f (x )=2x +1=2·2x ,不是f (x )=a x(a>0,且a ≠1)的形式.1.(2013·江西九校联考)若点(a ,9)在函数y =3x的图象上,则tana π6的值为( )A .0 B.33C .1 D. 3解 :由题意知3a=9,解得a =2,则tana π6=tan π3= 3.故选D . 2.(2014·浙江)在同一直角坐标系中,函数f (x )=x a(x >0),g (x )=log a x 的图象可能是( )解:两图象均不可能过点(0,1),A 错;B 选项中f (x )=x a中a 满足a >1,而g (x )=log a x 中a 满足0<a <1,矛盾,B 错;类似B 选项的判断方法知C 错;D 正确.故选D .3.(2015·广东模拟)已知log 2a >log 2b ,则下列不等式一定成立的是( ) A.1a >1bB .log 2(a -b )>0C.⎝ ⎛⎭⎪⎫13a <⎝ ⎛⎭⎪⎫12b D .2a -b<1解:因为log 2a >log 2b ,所以a >b >0,所以⎝ ⎛⎭⎪⎫13a <⎝ ⎛⎭⎪⎫13b <⎝ ⎛⎭⎪⎫12b.故选C .4.(2013·北京)函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x关于y 轴对称,则f (x )=( )A .e x +1B .e x -1C .e-x +1D .e-x -1解:图象与曲线y =e x 关于y 轴对称的函数是y =e -x,再向左平移一个单位,即得到函数y =f (x )=e-(x +1)=e-x -1.故选D .5.(2015·山东模拟)已知函数f (x )=a x -2,g (x )=log a |x |(其中a >0且a ≠1),若f (4)·g (-4)<0,则f (x ),g (x )在同一坐标系内的大致图象是( )解:因为f (4)·g (-4)=a 2×log a 4<0,所以0<a <1,则根据函数g (x )在(0,+∞)上为减函数可否定C ,D ,根据f (x )为减函数可否定A.故选B .6.(2013·全国Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0. 若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]解:数形结合:作出函数y =|f (x )|的图象,如图.当|f (x )|≥ax 恒成立时,必有k ≤a ≤0,其中k 是y =x 2-2x (x ≤0)在原点处的切线斜率,因为y ′=2x -2,所以y ′|x =0=-2,k =-2.所以a 的取值范围是[-2,0].故选D .7.(2015·福建)若函数f (x )=⎩⎪⎨⎪⎧-x +6, x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.解:当x ≤2时,-x +6≥4,要使得函数f (x )的值域为[4,+∞),则⎩⎪⎨⎪⎧a >1,3+log a 2≥4,解得1<a ≤2.故填(1,2].8.(2015·湖南模拟)给机器人输入一个指令(m ,2m+48)(m >0),则机器人在坐标平面上先面向x 轴正方向行走距离m ,接着原地逆时针旋转90°再面向y 轴正方向行走距离2m+48,这样就完成一次操作.机器人的安全活动区域是:⎩⎪⎨⎪⎧x ≤6,y ∈R .开始时机器人在函数f (x )=2x图象上的点P 处且面向x 轴正方向,经过一次操作后机器人落在安全区域内的一点Q 处,且点Q 恰好也在函数f (x )图象上,则向量PQ →的坐标是________.解:设P (x 0,2x 0),则Q 为(x 0+m ,2x 0+m )在安全区域, ∴x 0+m ≤6,∴x 0≤6-m ,∴2x 0≤26-m,2x 0+m =2x 0+2m+48,∴2x 0(2m-1)=2m+48,则26-m (2m -1)≥2m +48.整理可得:2m+642m ≤16.又因为2m +642m ≥264=16,当且仅当2m =642m 成立时取等号,此时22m=64,m =3,PQ →=(x 0+m ,2x 0+2m+48)-(x 0,2x 0)=(3,56).故填(3,56).9.解答下列各题:(1)若2.4a >2.5a,求a 的取值范围; (2)若a -2>3-2,求a 的取值范围.解:(1)2.4a和2.5a可视为幂函数y =x a的两个函数值,由于2.5>2.4>0,且f (2.5)<f (2.4).所以y =x a 在(0,+∞)上为减函数,因此a 的取值范围为{a |a <0}.另解:也可由⎝ ⎛⎭⎪⎫2.42.5a>1及0<2.42.5<1得a <0. (2)由a -2>3-2,得1a 2>132,所以0<a 2<32,由于幂函数y =x 2是偶函数,且在(0,+∞)上是增函数,在(-∞,0)上是减函数,又|a |2<32,∴0<|a |<3,解得-3<a <3且a ≠0.因此a 的取值范围是{a |-3<a <0或0<a <3}.另解:由⎝ ⎛⎭⎪⎫3a 2>1得3a >1或3a<-1,可获解.10.已知f (x )=lg 1+2x +4x·a3,其中a ∈R ,若x ∈(-∞,1]时,f (x )有意义,求a的取值范围.解:原题等价于当x ∈(-∞,1]时,1+2x +4x·a 3>0恒成立,即a >-⎝ ⎛⎭⎪⎫122x -⎝ ⎛⎭⎪⎫12x 在x ≤1时恒成立.设⎝ ⎛⎭⎪⎫12x =t ,∵x ≤1,∴t ≥12,∴-⎝ ⎛⎭⎪⎫122x -⎝ ⎛⎭⎪⎫12x =-t 2-t =-⎝ ⎛⎭⎪⎫t +122+14,在t ≥-12时递减,而⎣⎢⎡⎭⎪⎫12,+∞⎣⎢⎡⎭⎪⎫-12,+∞, ∴当t =12,即x =1时,函数-⎝ ⎛⎭⎪⎫122x -⎝ ⎛⎭⎪⎫12x 在(-∞,1]上取得最大值-34,故a >-34.故a 的取值范围为⎩⎨⎧⎭⎬⎫aa >-34. 11.设a >1,若仅有一个常数c 使得对于任意的x ∈[a ,2a ],都有y ∈[a ,a 2]满足方程log a x +log a y =c ,求a 的值.解:∵log a x +log a y =log a (xy )=c (a >1),∴y =a cx.∵a >1,∴y =a cx 在x ∈[a ,2a ]上单调递减,∴y max =a c a =a c -1,y min =a c 2a =12a c -1,⎩⎪⎨⎪⎧a c -1≤a 2⇒c ≤3,12a c -1≥a ⇒a c -2≥2⇒c ≥log a 2+2. ∵log a 2+2≤c ≤3且c 值只有1个, ∴log a 2+2=c =3,即log a 2=1,故a =2.已知函数f (x )=⎝ ⎛⎭⎪⎫13x,x ∈[-1,1],函数g (x )=f 2(x )-2af (x )+3的最小值为h (a ).(1)求h (a );(2)是否存在实数m ,n ,同时满足以下条件: ①m >n >3;②当h (a )的定义域为[n ,m ]时,值域为[n 2,m 2]. 若存在,求出m ,n 的值;若不存在,说明理由.解:(1)因为x ∈[-1,1],所以⎝ ⎛⎭⎪⎫13x∈⎣⎢⎡⎦⎥⎤13,3. 设⎝ ⎛⎭⎪⎫13x=t ,t ∈⎣⎢⎡⎦⎥⎤13,3,则g (x )=φ(t )=t 2-2at +3=(t -a )2+3-a 2. 当a <13时,h (a )=φ⎝ ⎛⎭⎪⎫13=289-2a 3;当13≤a ≤3时,h (a )=φ(a )=3-a 2; 当a >3时,h (a )=φ(3)=12-6a .所以h (a )=⎩⎪⎨⎪⎧289-2a 3,a <13,3-a 2, 13≤a ≤3,12-6a , a >3.(2)假设存在满足条件的实数m ,n .因为m >n >3,a ∈[n ,m ],所以h (a )=12-6a .因为h (a )的定义域为[n ,m ],值域为[n 2,m 2],且h (a )为减函数,所以⎩⎪⎨⎪⎧12-6m =n 2,12-6n =m 2, 两式相减得6(m -n )=(m -n )(m +n ),因为m >n ,所以m -n ≠0,得m +n =6,但这与“m >n >3”矛盾,故不存在满足条件的实数m ,n .。
核按钮(新课标)高考数学一轮复习第三章导数及其应用3.1导数的概念及运算课件文
第十四页,共27页。
航天飞机发射后的一段时间内,第 t s 时的高度 h(t)=5t3+30t2
+45t+4(单位:m).
(1)求航天飞机在第 1 s 内的平均速度;
(2)用定义方法求航天飞机在第 1 s 末的瞬时速度.
解:(1)航天飞机在第 1 s 内的平均速度为 h(1)-1 h(0)=5+30+145+4-4=80 m/s. (2)航天飞机第 1 s 末高度的平均变化率为 h(1+Δt)-h(1)
6.了解函数在某点取得极值的必要条件和充分条件;会用导数求函
数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的
最大值、最小值(其中多项式函数不超过三次). 7.会用导数解决实际问题.
第二页,共27页。
• 3.1 导数的概念(gàiniàn) 及运算
第三页,共27页。
1.导数的概念 (1)定义 如果函数 y=f(x)的自变量 x 在 x0 处有增量 Δx,那么函数 y 相应地有增量 Δy= f(x0+Δx)-f(x0),比值ΔΔyx就叫函数 y=f(x)从 x0 到 x0+Δx 之间的平均变化率,即ΔΔyx= f(x0+ΔxΔ)x-f(x0).如果当 Δx→0 时,ΔΔyx有极限,我们就说函数 y=f(x)在点 x0
f(x+Δx)-f(x)
Δx
.
第四页,共27页。
(3)用定义求函数 y=f(x)在点 x0 处导数的方法
①求函数的增量 Δy=
;
②求平均变化率ΔΔyx=
;
③取极限,得导数 f′(x0)= lim x 0
Δy Δx.
2.导数的几何意义
函数 y=f(x)在点 x0 处的导数的几何意义,就是曲线 y=
核按钮(新课标)高考数学一轮复习 第二章 函数的概念、
某汽车运输公司购买了一批豪华大客车投入营运,据市场分析,每辆 客车营运的总利润 y(单位:10 万元)与营运年数 x(x∈N)满足如图所示的二次函 数关系,则每辆客车营运________年,其营运的年平均利润yx最大.
解:由图象知,营运总利润 y=-(x-6)2+11. ∴营运的年平均利润yx=-x-2x5+12.
(2013·南京模拟)有一个受到污染的湖泊,其湖水的容积为 V m3,每天流出湖泊的水量等于流入湖泊的水量,都为 r m3.现假设下雨和蒸发
(2014·湖南)某市生产总值连续两年持续增加,第一年的增长率为
p,第二年的增长率为 q,则该市这两年生产总值的年平均增长率为( )
p+q A. 2
(p+1)(q+1)-1
B.
2
C. pq
D. (p+1)(q+1)-1
解:设年平均增长率为 x,则有(1+p)(1+q)=(1+x)2,解得 x = (1+p)(1+q)-1.故选 D.
规定从甲地到乙地通话 m 分钟的电话费由 f(m)= 1.06(0.50×[m]+1)(单位:元)给出,其中 m>0,记[m]为大于 或等于 m 的最小整数,如[4]=4,[2.7]=3,[3.8]=4,则从
甲地到乙地通话时间为 5.5 分钟的话费为________元.
解:∵f(5.5)=1.06(0.50×[5.5]+1)=1.06(0.50×6+1)= 4.24.故填 4.24.
接近平行 接近平行
y=xn(n> 0)
单调____ 函数
相对平稳
随 n 值变 化而不同
2.函数建模
(1)函数模型应用的两个方面:
①利用已知函数模型解决问题;
②建立恰当的函数模型,并利用所得函数模型解释有关现象,对某些发展趋
新高考函数知识点归纳总结
新高考函数知识点归纳总结函数是数学中的重要概念,也是高中数学中的核心内容之一。
在新高考中,函数知识点的掌握程度将直接影响学生的数学成绩。
本文将对新高考中函数相关的知识点进行归纳总结,以帮助学生更好地理解和掌握这些内容。
一、函数的概念及性质函数是一种特殊的关系,它将一个集合中的每个元素都对应到另一个集合中的唯一元素。
函数可以通过数学表达式、图像、映射关系等形式进行表示。
函数的性质包括定义域、值域、单调性、奇偶性、周期性等。
学生需要掌握函数的基本定义及其性质,并能够应用这些知识进行问题求解。
二、函数的图像与性质分析函数的图像是对函数关系进行可视化的表达方式。
学生需要熟练掌握通过函数表达式来确定函数图像的方法,并能够分析函数图像的性质。
例如,学生需要能够判断图像是否关于某个轴对称,是否具有最值点,是否具有拐点等。
这些性质的分析对于解题是非常重要的。
三、函数的运算函数可以进行加减乘除的运算,学生需要熟练掌握函数的加减乘除规则,并能够应用这些规则进行函数的化简和运算。
此外,学生还需要了解复合函数的概念及其运算规则,能够解决涉及复合函数的问题。
四、函数的初等函数和基本图像初等函数是一类常见的函数,包括常数函数、幂函数、指数函数、对数函数、三角函数等。
学生需要对初等函数的性质有所了解,掌握它们的图像及其变换规律。
基本图像是指初等函数的基本形态,学生需要能够根据图像的变换规律来绘制和分析初等函数的图像。
五、函数方程的解法函数方程是指含有未知函数的方程,解函数方程是解决函数问题的关键一步。
学生需要熟练掌握函数方程的解法,包括韦达定理、因式分解、配方法、换元法等,并能够应用这些解法解决各类函数方程。
六、函数的应用函数在实际问题中有广泛的应用,学生需要能够将实际问题转化为数学函数问题,并能够利用函数的性质和运算方法解决实际问题。
例如,学生需要能够应用函数图像来分析物体的运动规律,应用函数方程解决实际工程问题等。
总结:函数是新高考数学中的重要内容,对于高中生来说掌握函数知识点是提高数学成绩的关键。
高考数学核按钮 新高考 第二章 函数的概念与基本初等函数 2
(2)性质法 ①当常数 c>0 时,y=c·f(x)与 y=f(x)的单调性相同;当常数 c<0 时,y=c·f(x)与 y=f(x)的单调性相反,
特别地,函数 y=-f(x)与 y=f(x)的单调性相反.
必备知识
基础自测
核心考点
2022高考数学核按钮 · 专点突破
第二章 函数的概念与基本初等函数Ⅰ
第二章 函数的概念与基本初等函数Ⅰ
判断下列命题是否正确,正确的在括号内画“√”,错误的画“×”.
(1)若定义在 R 上的函数 f(x),有 f(-1)<f(3),则函数 f(x)在 R 上为增函数. ( )
(2)函数 y=1x的单调递减区间是(-∞,0)∪(0,+∞). ( )
(4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是
增函数.
()
(5)闭区间上的单调函数,其最值一定在区间端点取得. ( )
解:(1)×; (2)×; (3)×; (4)×; (5)√.
必备知识
基础自测
核心考点
必备知识
基础自测
核心考点
2022高考数学核按钮 · 专点突破
第二章 函数的概念与基本初等函数Ⅰ
【自查自纠】
1.(1)①任意两个 增函数 ②任意两个
(2)单调性 单调区间
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章函数的概念与基本初等函数Ⅰ1.函数的概念与性质(1)了解构成函数的要素,能求简单函数的定义域和值域.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用.(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解奇偶性的含义.(5)会运用函数图象理解和研究函数的性质.2.指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握指数幂的运算性质.(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点.(4)知道指数函数是一类重要的函数模型.3.对数函数(1)理解对数的概念和运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)了解对数函数的概念,了解对数函数的单调性,了解对数函数图象通过的特殊点.(3)知道对数函数是一类重要的函数模型.(4)知道指数函数y=a x与对数函数y=log a x互为反函数(a>0,且a≠1).4.幂函数(1)了解幂函数的概念.(2)结合函数y=x,y=1x,y=x2,y=x,y=x3的图象,理解它们的变化规律.5.函数与方程(1)结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.(2)结合具体连续函数及其图象的特点,能够用二分法求相应方程的近似解.6.函数模型及其应用(1)了解指数函数、对数函数以及幂函数的增长特征,知道“对数增长”“直线上升”“指数爆炸”等不同函数类型增长的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.3.1函数的概念及其表示1.函数的概念一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个________,记作y=f(x),x∈A,其中,x叫做,x的取值范围A叫做函数的;与x的值相对应的y值叫做,其集合{f(x)|x∈A}叫做函数的.2.函数的表示方法(1)解析法:就是用表示两个变量之间的对应关系的方法.(2)图象法:就是用表示两个变量之间的对应关系的方法.(3)列表法:就是来表示两个变量之间的对应关系的方法.3.构成函数的三要素(1)函数的三要素是:,,.(2)两个函数相等:如果两个函数的相同,并且完全一致,则称这两个函数相等.4.分段函数若函数在定义域的不同子集上的对应关系也不同,这种形式的函数叫做分段函数,它是一类重要的函数.5.补充几个常用概念常数函数:也称常值函数,即值域是只含一个元素的集合的函数.有界函数、无界函数:值域是有界集的函数称为有界函数,否则称为无界函数.抽象函数:没有给出具体解析式的一类函数.复合函数:指按一定次序把有限个函数合成得到的函数.一般地,对于两个函数y=f(u)和u=g(x),如果通过变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)和u=g(x)的复合函数,记作y =f(g(x)),其中y=f(u)叫做复合函数y=f(g(x))的外层函数,u=g(x)叫做复合函数y=f(g(x))的内层函数,u称为中间变量.函数的复合是研究函数的一种工具.一方面它提供了构造各式各样新函数的方法;另一方面,为研究复杂的函数,常将它们看成一些简单函数的复合.代数函数、超越函数:如果函数与其自变量的关系能用有限次加、减、乘、除、乘方、开方运算表示,就称这样的函数为代数函数,否则称为超越函数.函数方程:未知量是函数的方程称为函数方程.使函数方程中的等号能够成立的函数,叫做这一函数方程的解.自查自纠1.唯一确定的数函数自变量定义域函数值值域2.(1)数学表达式(2)图象(3)列出表格3.(1)定义域对应关系值域(2)定义域对应关系1.(2019·湖南雅礼中学月考)下列函数为同一函数的是()A.y=x2-2x和y=t2-2tB.y=x0和y=1C.y=(x+1)2和y=x+1D.y=lg x2和y=2lg x解:对于A,y=x2-2x和y=t2-2t的定义域都是R,对应关系也相同,所以是同一函数;对于B,y=x0的定义域是{x|x≠0},而y=1的定义域是R,两函数的定义域不同,所以不是同一函数;对于C,y=(x+1)2=|x+1|和y=x+1的定义域都是R,但对应关系不相同,所以不是同一函数;对于D,y=lg x2的定义域是{x|x≠0},而y=2lg x 的定义域是{x|x>0},两函数的定义域不同,所以不是同一函数.故选A.2.函数y=1log2x-2的定义域为() A.(0,4) B.(4,+∞)C.(0,4)∪(4,+∞)D.(0,+∞)解:由题意得log2x-2≠0且x>0,解得x∈(0,4)∪(4,+∞).故选C.3.(2018·河南商丘第二次模拟)设函数f(x)=⎩⎨⎧x2-1,x≥2,log2x,0<x<2,若f(m)=3,则实数m的值为()A.-2B.8C.1D.2解:当m≥2时,由m2-1=3,得m2=4,解得m=2;当0<m<2时,由log2m=3,解得m=23=8(舍去).综上所述,m=2.故选D.4.函数f(x)=x-1x+1的值域为________.解:由题意得f(x)=x-1x+1=1-2x+1,因为x ≥0,所以0<2x+1≤2,所以-2≤-2x+1<0,所以-1≤1-2x+1<1,故所求函数的值域为[-1,1).故填[-1,1).5.(2018·定远县期末)已知函数f(x)=⎩⎨⎧9,x≥3,-x2+6x,x<3,则不等式f(x2-2x)<f(3x-4)的解集是________.解:当x<3时,f(x)=-x2+6x,在(-∞,3)上单调递增,故f(x)<9.由f(x2-2x)<f(3x-4),可得⎩⎪⎨⎪⎧x2-2x<3x-4,3x-4<3或⎩⎪⎨⎪⎧x2-2x<3,3x-4≥3,解得1<x<73或73≤x<3,即有解集为(1,3).故填(1,3).类型一求函数的定义域例1(1)(2019·合肥八中期中)函数f(x)=ln(x+3)1-2x的定义域是()A.(-3,0)B.(-3,0]C.(-∞,-3)∪(0,+∞)D.(-∞,-3)∪(-3,0)解:要使函数f (x )有意义,则⎩⎪⎨⎪⎧x +3>0,1-2x>0,解得-3<x <0,即函数的定义域为(-3,0).故选A.(2)(2018·江苏常州期中)若函数f (x +1)的定义域是[-1,1],则函数f log 12x 的定义域为________.解:因为f (x +1)的定义域是[-1,1],所以f (x )的定义域是[0,2],则由0≤log 12x ≤2得,f log 12x 的定义域为⎣⎡⎦⎤14,1.故填⎣⎡⎦⎤14,1. (3)(广西南宁三中2019-2020学年高一10月月考)若函数f (x )=mx 2+mx +1的定义域为一切实数,则实数m 的取值范围是 ( )A.[0,4)B.(0,4)C.[4,+∞)D.[0,4] 解:由题意可得mx 2+mx +1≥0恒成立.当m=0时,1≥0恒成立;当m ≠0时,则⎩⎨⎧m >0,m 2-4m ≤0,解得0<m ≤4.综上可得0≤m ≤4.故选D.点拨 ①求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助数轴,要特别注意端点值的取舍.②求抽象函数的定义域:若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f (g (x ))的定义域;若y =f (g (x ))的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得f (x )的定义域.③已知函数定义域求参数范围,可将问题转化成含参数的不等式,然后求解.变式1 (1)(2019·衡水调研模拟二)函数f (x )=14-x2+ln(2x +1)的定义域为________. 解:要使函数f (x )有意义,须满足⎩⎪⎨⎪⎧4-x 2>0,2x +1>0,解得-12<x <2,即函数f (x )的定义域为⎝⎛⎭⎫-12,2.故填⎝⎛⎭⎫-12,2. (2)(2019·东北师大附中摸底)已知函数f (x )的定义域是[0,2],则函数g (x )=f ⎝⎛⎭⎫x +12+f ⎝⎛⎭⎫x -12的定义域是( )A.⎣⎡⎦⎤12,1B.⎣⎡⎦⎤12,2 C.⎣⎡⎦⎤12,32 D.⎣⎡⎦⎤1,32 解:由题意得⎩⎨⎧0≤x +12≤2,0≤x -12≤2,所以⎩⎨⎧-12≤x ≤32,12≤x ≤52,所以12≤x ≤32.故选C.(3)若函数y =kx 2-6x +k +8的定义域为R ,则实数k 的取值范围是 ( )A.(-∞,-9]∪[0,+∞)B.[1,+∞)C.[-9,1]D.(0,1]解:由题意知,kx 2-6x +k +8≥0对于x ∈R 恒成立,当k ≤0时显然不符合,所以⎩⎨⎧k >0,Δ=36-4k (k +8)≤0,解得k ≥1.故选B.类型二 求函数的值域例2 求下列函数的值域: (1)y =1-x 21+x 2;(2)y =2x +1-x ; (3)y =2x +1-x 2;(4)y =x 2-2x +5x -1;(5)f (x )=||2x +1-||x -4;(6)y =sin x +1x -1,x ∈⎣⎡⎦⎤π2,π.解:(1)方法一:(反解) 由y =1-x 21+x 2,解得x 2=1-y 1+y,因为x 2≥0,所以1-y 1+y ≥0,解得-1<y ≤1,所以函数值域为(-1,1]. 方法二:(分离常数法)因为y =1-x 21+x 2=-1+21+x 2,又因为1+x 2≥1,所以0<21+x 2≤2,所以-1<-1+2x 2+1≤1,所以函数的值域为(-1,1]. (2)(代数换元法) 令t =1-x (t ≥0),所以x =1-t 2,所以y =2(1-t 2)+t =-2t 2+t +2=-2⎝⎛⎭⎫t -142+178. 因为t ≥0,所以y ≤178,故函数的值域为⎝⎛⎦⎤-∞,178.(3)(三角换元法) 令x =cos t (0≤t ≤π),所以y =2cos t +sin t =5sin(t +φ)(其中cos φ=15,sin φ=25). 因为0≤t ≤π,所以φ≤t +φ≤π+φ, 所以sin(π+φ)≤sin(t +φ)≤1. 故函数的值域为[-2,5]. (4)方法一:(不等式法) 因为y =x 2-2x +5x -1=(x -1)2+4x -1=(x -1)+4x -1, 又因为x >1时,x -1>0,x <1时,x -1<0,所以当x >1时,y =(x -1)+4x -1≥24=4,且当x =3,等号成立;当x <1时,y =-⎣⎢⎡⎦⎥⎤-(x -1)+4-(x -1)≤-4,且当x =-1,等号成立.所以函数的值域为(-∞,-4]∪[4,+∞). 方法二:(判别式法)因为y =x 2-2x +5x -1,所以x 2-(y +2)x +(y +5)=0,又因为函数的定义域为(-∞,1)∪(1,+∞), 所以方程x 2-(y +2)x +(y +5)=0有不等于1的实根.所以Δ=(y +2)2-4(y +5)=y 2-16≥0,解得y ≤-4或y ≥4.当y =-4时,x =-1;y =4时,x =3. 故所求函数的值域为(-∞,-4]∪[4,+∞).(5)(图象法)f (x )=⎩⎨⎧-x -5,x <-12,3x -3,-12≤x ≤4,x +5,x >4,作出其图象,可知函数f (x )的值域是⎣⎡⎭⎫-92,+∞.(6)方法一:(数形结合法)函数y =sin x +1x -1的值域可看作点A (x ,sin x ),B (1,-1)两点连线的斜率,B (1,-1)是定点,A (x ,sin x )在曲线y =sin x ,x ∈⎣⎢⎡⎦⎥⎤π2,π上.如图所示,P (π,0),Q ⎝ ⎛⎭⎪⎫π2,1.所以k BP ≤y ≤k BQ ,即1π-1≤y ≤4π-2.故函数的值域为⎣⎢⎡⎦⎥⎤1π-1,4π-2.方法二:(单调性法)因为函数y =sin x +1在x ∈⎣⎢⎡⎦⎥⎤π2,π上单调递减,y =x -1在x ∈⎣⎢⎡⎦⎥⎤π2,π上单调递增,且均非负,所以函数y =sin x +1x -1在x ∈⎣⎢⎡⎦⎥⎤π2,π上单调递减.当x=π2时,取最大值为4π-2;当x =π时,取最小值为1π-1.故所求函数的值域为⎣⎢⎡⎦⎥⎤1π-1,4π-2.点拨 求函数值域的常用方法:①单调性法,如题(6);②配方法;③分离常数法,如题(1);④数形结合法,如题(6);⑤换元法(包括代数换元与三角换元),如题(2)与(3);⑥判别式法,如题(4);⑦不等式法,如题(4);⑧导数法,主要是针对在某区间内可导的函数(详见本书4.3节);⑨图象法,求分段函数的值域通常先作出函数的图象,然后由函数的图象写出函数的值域,如题(5).对于二元函数的值域问题,其解法要针对具体题目的条件而定,有些题目可以将二元函数化为一元函数求值域,有些题目也可用不等式法求值域.求函数的值域是个较复杂的问题,它比求函数的定义域难度要大,而单调性法,即根据函数在定义域内的单调性求函数的值域是较为简单且常用的方法,应重点掌握.变式2 (1)函数f (x )=5x -14x +2,x ∈[-3,-1]的值域为________.解:由y =5x -14x +2=54-74(2x +1),又因为-3≤x ≤-1,所以720≤-74(2x +1)≤74,所以85≤y ≤3,即y ∈⎣⎡⎦⎤85,3.故填⎣⎡⎦⎤85,3. (2)函数f (x )=x +1-2x 的值域为________.解:函数的定义域为⎝⎛⎦⎤-∞,12, 令t =1-2x (t ≥0),则x =1-t 22.所以y =1-t 22+t =-12(t -1)2+1(t ≥0),故当t =1(即x =0)时,y 有最大值1,故函数f (x )的值域为(-∞,1].故填(-∞,1]. (3)函数y =2x 2-x +2x 2+x +1的值域是________.解:因为x 2+x +1>0恒成立,所以函数的定义域为R .由y =2x 2-x +2x 2+x +1,得(y -2)x 2+(y +1)x +y -2=0.当y -2=0,即y =2时,上式化为3x +0=0,所以x =0∈R .当y -2≠0,即y ≠2时,因为当x ∈R 时,方程(y -2)x 2+(y +1)x +y -2=0恒有实根,所以Δ=(y +1)2-4×(y -2)2≥0,所以1≤y ≤5且y ≠2.故函数的值域为[1,5].故填[1,5]. (4)(广东省深圳市宝安区2020届高三上期中)设函数y =e x +1ex -a 的值域为A ,若A ⊆[0,+∞),则实数a 的取值范围是________.解:因为e x >0,所以e x +1ex ≥2(当且仅当e x =1e x ,即x =0时取等号),所以y =e x+1e x -a ≥2-a ,即A =[2-a ,+∞),因为A ⊆[0,+∞),所以2-a ≥0,即a ≤2.故填(-∞,2].(5)函数y =(x +3)2+16+(x -5)2+4的值域是________.解:如图,函数y =(x +3)2+16+(x -5)2+4的几何意义为平面内x 轴上一点P (x ,0)到点A (-3,4)和点B (5,2)的距离之和.由平面解析几何知识,找出点B 关于x 轴的对称点B ′(5,-2),连接AB ′交x 轴于一点P ,此时距离之和最小,所以y min =|AB ′|=82+62=10,又y无最大值,所以y ∈[10,+∞).故填[10,+∞).类型三 求函数的解析式例3 (1)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,则f (x )=________.解:(待定系数法)设f (x )=ax 2+bx +c (a ≠0),由f (0)=0,得c =0,由f (x +1)=f (x )+x +1,得a (x+1)2+b (x +1)=ax 2+bx +x +1,得a =b =12.所以f (x )=12x 2+12x.故填12x 2+12x .(2)已知f ⎝⎛⎭⎫x +1x =x 2+1x2,则f (x )=________. 解:(配凑法)f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x 2+2+1x 2-2=⎝⎛⎭⎫x +1x 2-2,所以f (x )=x 2-2(|x |≥2).故填x 2-2(|x |≥2).(3)已知f ⎝⎛⎭⎫2x +1=lg x ,则f (x )=________.解:(换元法)令2x+1=t ,由于x >0,所以t >1且x =2t -1,所以f (t )=lg 2t -1,即f (x )=lg2x -1(x >1).故填lg 2x -1(x >1).(4)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x ·x -1,则f (x )=________.解:(消去法)在f (x )=2f ⎝⎛⎭⎫1x ·x -1中,将x 换成1x ,则1x 换成x ,得f ⎝⎛⎭⎫1x =2f (x )·1x-1, 由⎩⎨⎧f (x )=2f ⎝⎛⎭⎫1x ·x -1,f ⎝⎛⎭⎫1x =2f (x )·1x-1,解得f (x )=23x +13.故填23x +13.(5)已知函数f (x )在R 上是单调函数,且满足对任意x ∈R ,都有f (f (x )-3x )=4,则f (2)的值是( )A.4B.8C.10D.12 解:根据题意,f (x )是单调函数,且f (f (x )-3x )=4,则f (x )-3x 为定值.设f (x )-3x =t ,t 为常数,则f (x )=3x+t 且f (t )=4,即有3t+t =4,得t =1,则f (x )=3x +1,故f (2)=10.故选C.点拨 函数解析式的求法:①待定系数法:已知函数的类型(如一次函数、二次函数等),可用待定系数法.②配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式.③换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围.④消去法(即函数方程法):已知f (x )与f ⎝⎛⎭⎫1x 或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式,两等式组成方程组,通过解方程组求出f (x ).变式3 (1)已知一次函数f (x )满足f (f (x ))=4x -1,则f (x )=________.解:设f (x )=kx +b (k ≠0),则f (f (x ))=k 2x +kb+b ,所以⎩⎪⎨⎪⎧k 2=4,kb +b =-1,所以⎩⎪⎨⎪⎧k =2,b =-13或⎩⎪⎨⎪⎧k =-2,b =1.故f (x )=2x -13或f (x )=-2x +1.故填2x -13或-2x +1.(2)已知f ⎝⎛⎭⎫x -1x =x 2+1x2,则f (x )=________. 解:f ⎝⎛⎭⎫x -1x =x 2+1x 2=⎝⎛⎭⎫x -1x 2+2,所以f (x )=x 2+2.故填x 2+2.(3)已知f (x +1)=x +2x ,则f (x )=________. 解:令x +1=t ,则x =(t -1)2(t ≥1),代入原式得f (t )=(t -1)2+2(t -1)=t 2-1,所以f (x )=x 2-1(x ≥1).故填x 2-1(x ≥1).(4)已知f (x )+3f (-x )=2x +1,则f (x )=________.解:以-x 代替x 得f (-x )+3f (x )=-2x +1,所以f (-x )=-3f (x )-2x +1,代入f (x )+3f (-x )=2x +1可得f (x )=-x +14.故填-x +14.(5)(2018·衢州期末)已知f (x )是(0,+∞)上的增函数,若f (f (x )-ln x )=1,则f (e)=________.解:根据题意,f (x )是(0,+∞)上的增函数,且f (f (x )-ln x )=1,则f (x )-ln x 为定值.设f (x )-ln x =t ,t 为常数,则f (x )=ln x +t 且f (t )=1,即有ln t +t =1,得t =1,则f (x )=ln x +1,故f (e)=ln e +1=2.故填2.类型四 分段函数例4 (1)(贵州省铜仁一中2020届高三二模)函数f (x )=⎩⎨⎧x 2+x ,0<x <2,-2x +8,x ≥2,若f (a )=f (a +2),则f ⎝⎛⎭⎫1a =________.解:由x ≥2时f (x )=-2x +8是减函数可知,若a ≥2,则f (a )≠f (a +2),所以0<a <2,由f (a )=f (a +2)得a 2+a =-2(a +2)+8,解得a =1,则f ⎝⎛⎭⎫1a =f (1)=12+1=2.故填2.(2)设函数f (x )=⎩⎪⎨⎪⎧e x -1,x <1,x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是________.解:当x <1时,e x -1≤2,解得x ≤1+ln2,所以x <1.当x ≥1时,x 13≤2,解得x ≤8,所以1≤x ≤8.综上可知x 的取值范围是(-∞,8].故填(-∞,8].(3)(2019·河南八市第一次测评)设函数f (x )=⎩⎨⎧-x +λ,x <1,λ∈R ,2x,x ≥1,若对任意的a ∈R 都有f (f (a ))=2f (a )成立,则λ的取值范围是 ( )A.(0,2]B.[0,2]C.[2,+∞)D.(-∞,2)解:当a ≥1时,2a ≥2,所以f (f (a ))=f (2a )=22a =2f (a ),所以λ∈R ; 当a <1时,f (f (a ))=f (λ-a )=2λ-a ,所以λ-a ≥1,即λ≥a +1,由题意知λ≥(a +1)max ,所以λ≥2.综上,λ的取值范围是[2,+∞).故选C.点拨 ①求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现形如f (f (x 0))的求值问题时,应从内到外依次求值.②求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.变式4(1)函数f (x )=⎩⎨⎧sin (πx 2),-1<x <0,e x -1,x ≥0满足f (1)+f (a )=2,则a 所有可能的值为 ( )A.1或-22B.-22C.1D.1或22解:因为f (1)=e 1-1=1且f (1)+f (a )=2,所以f (a )=1.当-1<a <0时,f (a )=sin(πa 2)=1,因为0<a 2<1,所以0<πa 2<π,所以πa 2=π2⇒a =-22;当a ≥0时,f (a )=e a -1=1⇒a =1.故选A.(2)(2017·全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x ,x >0,则满足f (x )+f ⎝⎛⎭⎫x -12>1的x 的取值范围是________. 解:当x >12时,恒成立;当0<x ≤12时,恒成立,当x ≤0时,-14<x ≤0,故x >-14.故填⎝⎛⎭⎫-14,+∞. (3)已知f (x )=⎩⎨⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么实数a 的取值范围是 ( )A.(-∞,-1]B.⎝⎛⎭⎫-1,12 C.⎣⎡⎭⎫-1,12 D.⎝⎛⎭⎫0,12 解:当x ≥1时,ln x ≥0,故要使函数f (x )的值域为R ,如图所示,需使⎩⎪⎨⎪⎧1-2a >0,ln1≤1-2a +3a ,所以-1≤a <12,即实数a 的取值范围是⎣⎡⎭⎫-1,12.故选C.1.判断两个函数是否相等 判断两个函数是否相等,即是否为同一函数,只需判断它们的定义域与对应关系是否完全相同即可,与表示函数自变量的字母和函数的字母无关;当两个函数的定义域与对应关系完全相同时,它们的值域也一定相同. 2.函数的表示法函数的三种表示方法在一定条件下可以相互转化,且各有优点,一般情况下,研究函数的性质需求出函数的解析式,在通过解析式解决问题时,又需借助图象的直观性. 3.函数的定义域给出函数定义域的方式有两种,一种是只给定了函数的解析式(对应关系)而没有注明定义域,此时,函数定义域是指使该解析式有意义的自变量的取值范围(称为自然定义域);另一种是由实际问题确定的或预先限定了自变量的取值范围(称为实际定义域).需要注意的是:(1)若函数是由一些基本初等函数通过四则运算而成的,则它的定义域是各基本初等函数定义域的交集. (2)对于含有参数的函数求定义域,或已知其定义域求参数的取值范围,一般需要对参数进行分类讨论.(3)若函数是由一些基本初等函数复合而成,则求函数定义域时应注意内层函数的值域为外层函数的定义域的子域(集). 4.求函数解析式的主要方法待定系数法、换元法、方程(组)法等.如果已知函数解析式的类型,可用待定系数法;若已知复合函数f (g (x ))的表达式时,可用换元法;若已知抽象函数的表达式时,常用解方程(组)法. 5.函数的值域 求函数的值域,不但要注意对应关系的作用,而且要特别注意定义域对值域的制约作用.常用方法有:图象法、单调性法、配方法、换元法、分离常数法、不等式法、判别式法、导数法、数形结合法等.求函数值域的基本原则有: (1)当函数y =f (x )用表格给出时,函数的值域是指表格中实数y 的集合.(2)当函数y =f (x )用图象给出时,函数的值域是指图象在y 轴上的投影所对应的实数y 的集合.(3)当函数y =f (x )用解析式给出时,函数的值域由函数的定义域及其对应关系唯一确定.(4)当函数由实际问题给出时,函数的值域由问题的实际意义确定.1.(2019·邵阳检测)设函数f (x )=log 2(x -1)+2-x ,则函数f ⎝⎛⎭⎫x 2的定义域为 ( ) A.[1,2] B.(2,4] C.[1,2) D.[2,4)解:因为函数f (x )=log 2(x -1)+2-x 有意义,所以⎩⎪⎨⎪⎧x -1>0,2-x ≥0,解得1<x ≤2,所以函数f (x )的定义域为(1,2],所以1<x 2≤2,解得x ∈(2,4],则函数f ⎝⎛⎭⎫x 2的定义域为(2,4].故选B.2.函数y =16-4x 的值域是 ( )A.[0,+∞)B.[0,4]C.[0,4)D.(0,4) 解:由已知得0≤16-4x <16,则0≤16-4x<4,即函数y =16-4x 的值域是[0,4).故选C. 3.(2019·郑州外国语学校月考)已知函数f (x )=⎩⎨⎧x 2+1,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是 ( ) A.[-1,2] B.[0,2] C.[1,+∞) D.[-1,+∞) 解:当x ≤1时,x 2+1≤2,得-1≤x ≤1;当x >1时,由1-log 2x ≤2,得log 2x ≥-1,所以x ≥12,所以x >1. 综上可知,实数x 的取值范围是[-1,+∞).故选D.4.(重庆市南开中学2020届高三一检)关于函数y =f (x )与y =f (ln x ),下列说法一定正确的是( ) A.定义域相同 B.值域相同C.单调区间相同D.奇偶性相同 解:对于A :y =f (x )的定义域是R ,而y =f (ln x )的定义域是(0,+∞),故A 错误;对于C :y =f (ln x )是复合函数,其单调性须遵循“在定义域上,同增异减”的原则,故C 错误;对于D :y =f (ln x )的定义域是(0,+∞)的子集,故y =f (ln x )不具有奇偶性,故D 错误;因为y =ln x 的值域是R ,故B 正确.故选B. 5.(2020届广东高三11月第一次质量检测)已知f (x )=(x -n )2,x ∈[2n -1,2n +1)(n ∈Z ),则f (2 021)= ( )A.1 0082B.1 0092C.1 0102D.1 0112 解:由2 021=2×1 011-1,可得f (2 021)=(2 021-1 011)2=1 0102.故选C.6.(2019·福州检测)已知f (x )=x 21+x 2,那么f (1)+f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+f (4)+f ⎝⎛⎭⎫14= ( ) A.3 B.72 C.4 D.92解:因为f (x )=x 21+x 2,所以f ⎝⎛⎭⎫1x =⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=11+x 2, 因为f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+11+x 2=1, 所以f (2)+f ⎝⎛⎭⎫12=1,f (3)+f ⎝⎛⎭⎫13=1,f (4)+f ⎝⎛⎭⎫14=1,因为f (1)=121+12=12, 所以f (1)+f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+f (4)+f ⎝⎛⎭⎫14=12+1+1+1=72.故选B. 7.(2019·全国卷Ⅱ)设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x -1).若对任意x ∈(-∞,m ],都有f (x )≥-89,则m 的取值范围是 ( ) A.⎝⎛⎦⎤-∞,94 B.⎝⎛⎦⎤-∞,73 C.⎝⎛⎦⎤-∞,52 D.⎝⎛⎦⎤-∞,83 解:因为f (x +1)=2f (x ),所以f (x )=2f (x -1). 因为x ∈(0,1]时,f (x )=x (x -1)∈⎣⎡⎦⎤-14,0; 所以x ∈(1,2]时,x -1∈(0,1],f (x )=2f (x -1)=2(x -1)(x -2)∈⎣⎡⎦⎤-12,0; 所以x ∈(2,3]时,x -1∈(1,2],f (x )=2f (x -1)=4(x -2)(x -3)∈[-1,0],作出函数f (x )的图象如图.当x ∈(2,3]时,由4(x -2)(x -3)=-89,解得x 1=73,x 2=83,若对任意x ∈(-∞,m ],都有f (x )≥-89,则m ≤73.则m 的取值范围是⎝⎛⎦⎤-∞,73.故选B. 8.【多选题】(山东省泰安二中2020届考试)对于函数y =f (x ),若存在区间[a ,b ],当x ∈[a ,b ]时,f (x )的值域为[ka ,kb ](k >0),则称y =f (x )为k 倍值函数.下列函数为2倍值函数的是 ( )A.f (x )=x 2B.f (x )=x 3+2x 2+2xC.f (x )=x +ln xD.f (x )=xex解:由题意可得,若f (x )=2x 在定义域内至少有两个不相等的实数根,则f (x )符合要求.对于A ,令f (x )=x 2=2x ,解得x =0或x =2满足题意;对于B ,令f (x )=x 3+2x 2+2x =2x ,解得x =-2或x =0满足题意;对于C ,f (x )是增函数,令f (x )=x +ln x =2x ,无解,不满足题意;对于D ,令f (x )=x e x =2x ,解得x =0或x =ln 12满足题意.故选ABD.9.(2019·山东省实验中学段考)设函数f (x )对x ≠0的一切实数都有f (x )+2f ⎝⎛⎭⎫2 021x =3x ,则f (2 021)=________.解:x =1时,f (1)+2f (2 021)=3, 当x =2 021时,f (2 021)+2f (1)=6 063,即⎩⎪⎨⎪⎧f (1)+2f (2 021)=3,f (2 021)+2f (1)=6 063,解得f (2 021)=-2 019.故填-2 019.10.(2019·北京卷)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为________.解:(1)x =10时,顾客一次购买草莓和西瓜各一盒,需要支付(60+80)-10=130元.(2)设顾客一次购买水果的促销前总价为y 元, 当y <120元时,李明得到的金额为y ×80%,符合要求;当y ≥120元时,有(y -x )×80%≥y ×70%恒成立,即8(y -x )≥7y ,x ≤y8恒成立,因为⎝⎛⎭⎫y 8min =15,所以x 的最大值为15. 故填130;15.11.(2018·唐山一中月考)已知f (x )=⎩⎪⎨⎪⎧cx +1,0<x <c ,2-x c 2+1,c ≤x <1,且f (c 2)=98. (1)求常数c ;(2)解方程f (x )=98.解:(1)因为0<c <1,所以0<c 2<c ,所以f (c 2)=c 3+1=98,即c =12.(2)由(1)得,f (x )=⎩⎨⎧12x +1,0<x <12,2-4x +1,12≤x <1.由f (x )=98得⎩⎨⎧0<x <12,12x +1=98或⎩⎨⎧12≤x <1,2-4x +1=98,解得x =14或x =34.12.某工厂生产某种产品的固定成本为3万元,该工厂每生产100台该产品的生产成本为1万元,设该产品的产量为x (单位:百台),其总成本为g (x )(单位:万元)(总成本=固定成本+生产成本),并且销售收入r (x )(单元:万元)满足r (x )=⎩⎪⎨⎪⎧-0.5x 2+7x -10.5,0≤x ≤7,13.5,x >7. 假定该产品产销平衡,根据上述信息求下列问题:(1)要使工厂有盈利,产量x 应控制在什么范围内?(2)工厂生产多少台产品时,盈利最大?解:依题意得g (x )=x +3.设利润函数为f (x ), 则f (x )=r (x )-g (x ),所以f (x )=⎩⎪⎨⎪⎧-0.5x 2+6x -13.5,0≤x ≤7,10.5-x ,x >7.(1)要使工厂有盈利,则f (x )>0, 即⎩⎨⎧0≤x ≤7,-0.5x 2+6x -13.5>0或⎩⎨⎧x >7,10.5-x >0⇒3<x ≤7或7<x <10.5,即3<x <10.5,所以要使工厂有盈利,则产量应控制在大于300台小于1 050台的范围内.(2)当3<x ≤7时,f (x )=-0.5(x -6)2+4.5, 故当x =6时,f (x )取得最大值4.5; 当7<x <10.5时,f (x )<10.5-7=3.5. 所以当工厂生产600台产品时,盈利最大. 13.已知函数f (x )=(1-a 2)x 2+3(1-a )x +6.(1)若f (x )的定义域为R ,求实数a 的取值范围; (2)若f (x )的值域为[0,+∞),求实数a 的取值范围.解:(1)①若1-a 2=0,即a =±1,(i)当a =1时,f (x )=6,定义域为R ,符合要求;(ii)当a =-1时,f (x )=6x +6,定义域不为R .②若1-a 2≠0,g (x )=(1-a 2)x 2+3(1-a )x +6为二次函数,因为f (x )的定义域为R ,所以g (x )≥0,x ∈R 恒成立,所以⎩⎪⎨⎪⎧1-a 2>0,Δ=9(1-a )2-24(1-a 2)≤0⇔⎩⎪⎨⎪⎧-1<a <1,(a -1)(11a +5)≤0⇒-511≤a <1.综合①②得a 的取值范围是⎣⎡⎦⎤-511,1. (2)因为函数f (x )的值域为[0,+∞), 所以函数g (x )=(1-a 2)x 2+3(1-a )x +6取一切非负实数,所以⎩⎪⎨⎪⎧1-a 2>0,Δ=9(1-a )2-24(1-a 2)≥0⇔⎩⎪⎨⎪⎧-1<a <1,(a -1)(11a +5)≥0⇒-1<a ≤-511.当a =-1时,f (x )=6x +6的值域为[0,+∞),符合题目要求.故所求实数a 的取值范围为⎣⎡⎦⎤-1,-511.附加题 (广东省汕头市2019届高三第二次模拟)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+1x ,x <0,2x +1,x ≥0,g (x )=x 2-x -2,设b 为实数,若存在实数a ,使得g (b )+f (a )=2成立,则b 的取值范围为( )A.[-1,2]B.⎣⎡⎭⎫-32,72 C.⎣⎡⎦⎤-32,72 D.⎝⎛⎦⎤-32,4 解:因为f (x )=⎩⎨⎧-x 2+1x ,x <0,2x +1,x ≥0,所以当x ≥0时,f (x )=2x +1单调递增,故f (x )=2x +1≥2;当x <0时,f (x )=-x 2+1x=-⎝⎛⎭⎫x +1x =(-x )+⎝⎛⎭⎫-1x ≥2,当且仅当-x =-1x ,即x =-1时,取等号.综上可得,f (x )∈[2,+∞).又因为存在实数a ,使得g (b )+f (a )=2成立, 所以只需g (b )≤2-f (x )min ,即g (b )=b 2-b -2≤0,解得-1≤b ≤2.故选 A.。