激光钻孔的设备原理【深度解析】

合集下载

激光钻孔机工作原理

激光钻孔机工作原理

激光钻孔机工作原理
激光钻孔机利用激光器发射出的激光束进行钻孔加工。

具体工作原理如下:
1. 激光发生器:激光钻孔机的核心部件是激光发生器,通常采用CO2激光器。

激光发生器产生高能量、高稳定性、高一致
性的激光束。

2. 光学系统:激光束由光学系统进行聚焦、准直等处理。

光学系统包括准直器、聚焦镜、反射镜等光学元件,通过这些元件可以调整激光束的直径、形状和聚焦点的位置。

3. 材料加工:激光钻孔机将聚焦后的激光束照射到被加工材料上。

激光束的高能量使得材料表面迅速升温,并达到熔点以上的温度。

4. 材料蒸发和融化:激光束的高能量使得材料表面蒸发和融化。

蒸发产生的气体会通过废气系统排出,融化的材料则会形成一个圆孔。

5. 气体喷射和废渣排除:激光钻孔机通常会通过喷气系统喷射气体,将废渣从钻孔中排除,确保钻孔质量。

总的来说,激光钻孔机通过激光束的高能量,使得材料表面迅速升温、蒸发和融化,通过喷气系统排除废渣,从而实现钻孔加工。

玻璃激光打孔原理

玻璃激光打孔原理

玻璃激光打孔原理
玻璃激光打孔原理是利用激光束的高能量密度和可调控性,在玻璃表面形成一个微小的焦点点,使玻璃在焦点处发生局部的熔化或汽化,从而实现打孔的过程。

具体原理如下:
1. 激光束聚焦:通过使用透镜等光学元件,将激光束聚焦成一束相对较小的光斑。

聚焦的方式通常是使用球面或非球面透镜将平行光束集中到一个小区域内。

2. 光热效应:激光束聚焦后,它对玻璃表面的能量密度会非常高,玻璃吸收光能并转化为热能。

热量在聚焦点周围堆积,引起局部的温度升高。

3. 玻璃熔化或汽化:当局部温度升高到玻璃的熔点时,玻璃开始熔化,并在激光束的作用下形成一个小孔。

如果局部温度升高得更高,玻璃可能会发生汽化,形成气泡。

4. 打孔过程控制:通过调整激光束聚焦的位置、大小和功率等参数,可以控制打孔的深度和形状。

同时,激光束的扫描和移动也可以实现复杂的孔洞结构。

需要注意的是,激光打孔过程中,玻璃会在焦点周围产生热应力,可能导致破裂或产生裂纹。

因此,需要合理控制激光的功率和脉冲时间,以及适当冷却玻璃表面,以防止潜在的破坏。

激光打孔

激光打孔


除 材 料
※ 氧助熔化切割: 金属被激光迅速加热至燃点以上,与氧发生剧烈的氧化反应(即燃 烧),放出大量的热,又加热下一层金属,金属被继续氧化,并借助气体压力将氧
技 化物从切缝中吹掉。

上一页 回首页 下一页 回末页 回目录
7.3.2 激光切割

4. 激光切割的工艺参数及其规律
七 章
※ 激光功率: 激光切割时所需功率的大小,是由材料性质和切割机理决定的。
激 结构钢和合金工具钢都能够用激光切割方法得到良好的切边质量 ;铝及铝合金
光 不能用氧助熔化切割而要熔化切割机制 ;飞机制造业常用的钛及钛合金采用空
加 工 技
气作为辅助气体比较稳妥,可以确保切割质量;大多数镍基合金也可实施氧助熔 化切割;铜及铜合金反射率太高,基本上不能用10.6μ的二氧化碳激光进行切割。
7.3.1 激光打孔

1.激光打孔原理:激光打孔机的基本结构包括激光器、加工头、冷却系统、数控

装置和操作面盘(图7-13)。加工头将激光束聚焦在材料上需加工孔的位置,适

当选择各加工参数,激光器发出光脉冲就可以加工出需要的孔。
激 光 加 工 技 术
§7.3
图7-13 激光打孔机的基本结构示意图
2.激光打孔时材料的去除主要与激光作用区内物质的破坏及破坏产物的运动有
第 七 章 激 光 加 工 技 术
去 嘴到工件表面的距离对切割质量也有较大影响,为了保证切割过程稳定,这个距
除 材
离必须保持不变。



上一页 回首页 下一页 回末页 回目录
7.3.2 激光切割

5.工业材料的激光切割
七 章
※ 金属材料的激光切割:二氧化碳激光器成功的用于许多金属的切割实践;利用 氧助熔化切割方法切割碳钢板的切缝可控制在满意的宽度范围内 ;大多数合金

激光钻孔工艺介绍

激光钻孔工艺介绍

激光钻孔工艺介绍
激光钻孔的原理是利用激光束的高能量浓度来瞬间融化和蒸发钻孔材料,达到钻孔的目的。

该工艺主要包括以下几个步骤:
首先是激光束的聚焦。

激光束经过透镜或反射镜等光学元件的聚焦,使激光束能够集中到极小的焦点,实现高能量密度的聚集。

其次是激光束的照射。

聚焦的激光束照射到待加工材料的表面,产生高温和高能量的作用。

然后是材料的融化与蒸发。

高能量的激光束使材料迅速升温,达到融化点后迅速蒸发,形成钻孔。

最后是孔径的控制。

通过控制激光束的功率、照射时间和扫描速度等参数,可以实现对钻孔的孔径和深度的准确控制。

激光钻孔的工艺优点主要有以下几个方面:
首先是快速高效。

激光钻孔速度快,加工效率高,可以大大提高生产效率。

其次是精确度高。

激光束聚焦后,其直径可以控制在微米或纳米级,在加工精度要求高的场合,激光钻孔具有明显的优势。

然后是不产生振动和磨损。

激光钻孔不需要物理接触,避免了传统机械钻孔产生的振动和磨损,对待加工材料的损伤小。

此外,激光钻孔还具有无焊渣、无毛刺、无侵蚀等特点,在一些特殊材料的钻孔加工中,具有独特的优势。

激光钻孔的应用领域非常广泛。

在汽车制造、航空航天、电子元件制造、建筑材料、医疗器械等行业都有激光钻孔的应用。

例如,汽车发动机气门导管的钻孔、金属管道的钻孔、电子元件的钻孔等。

总体来说,激光钻孔是一种高效、精确的钻孔工艺,具有很大的应用潜力。

随着激光技术的不断发展和进步,激光钻孔将会在更多领域得到广泛应用,并为工业生产提供更多便利和效益。

激光打孔的原理及应用

激光打孔的原理及应用

激光打孔的原理及应用一、激光打孔的原理激光打孔是利用激光光束的高能量密度和高度集中的特性,通过将激光束聚焦到工件上,使其在瞬间发生熔化和汽化,形成一个小孔或小孔阵列。

激光打孔的原理主要包括以下几个方面:1.激光光源:激光打孔使用的光源是激光器,它能够产生一束高能量密度的激光光束。

2.激光光束的聚焦:激光光束经过透镜聚焦后,能够在工件上形成一个小的热点区域。

3.热传导:激光光束的能量在瞬间被工件吸收,通过热传导快速传递给周围的材料,导致局部区域的温度急剧升高。

4.熔化和汽化:当温度达到工件的熔点时,材料发生熔化,形成一个小孔。

当温度进一步升高超过蒸发温度时,材料发生汽化,形成孔隙。

5.副作用:除了孔隙的形成外,激光打孔还会产生一些副作用,如焊缝、气体喷射等。

二、激光打孔的应用激光打孔技术在很多领域都有广泛的应用,下面列举了一些常见的应用:1.电子器件制造:激光打孔技术可以用于制造微电子器件中的孔隙。

例如,在半导体芯片制造过程中,需要通过激光打孔来形成电子元件的连接线。

2.汽车制造:激光打孔可以用于汽车制造中的焊接、冲压和装配等工艺。

例如,利用激光打孔可以快速准确地制造汽车发动机的进气和排气歧管。

3.航空航天:激光打孔技术可以用于航空航天领域的复合材料加工,例如飞机的机身、飞翼等部件。

激光打孔可以实现高精度、高效率的加工,同时避免对材料的损坏。

4.医疗器械制造:激光打孔技术可以用于制造医疗器械中的微孔。

例如,激光打孔可以在钢铁或陶瓷材料上形成微孔,用于制造人工关节等医疗器械。

5.纺织工业:激光打孔可以用于纺织工业中的纺织品加工。

例如,利用激光打孔可以在纺织品上制造花纹、孔洞等装饰效果,增加产品的美观性和透气性。

6.电子显示技术:激光打孔技术也可以用于电子显示器件的制造。

例如,利用激光打孔可以在液晶显示屏上形成像素孔,实现高清晰度的显示效果。

7.生物医学研究:激光打孔技术在生物医学研究中也有广泛的应用。

玻璃激光打孔原理

玻璃激光打孔原理

玻璃激光打孔是一种利用激光技术在玻璃材料中创造孔洞的方法。

它被广泛应用于制造业和科学研究领域,例如玻璃器皿生产、光纤通信和激光加工等领域。

本文将详细介绍玻璃激光打孔的原理。

一、激光的基本原理激光是由一束高度聚焦的光束组成的,具有高亮度、单色性和相干性等特点。

它的产生基于光放大原理,通过激发物质内部的粒子,使其处于激发态,然后通过受激辐射将能量以激光形式释放出来。

二、玻璃的特性玻璃是一种非晶体固体材料,具有高硬度、透明度和化学稳定性等特点。

然而,由于其结构的紧密性和均匀性,使得传统的机械加工方法难以在玻璃表面上创造精确的孔洞。

三、玻璃激光打孔的过程1. 吸收:玻璃对激光光束的吸收是玻璃激光打孔过程的关键。

当激光束照射到玻璃表面时,玻璃会吸收激光能量,产生热量。

2. 传导:被吸收的能量会通过热传导的方式向玻璃内部传播。

由于玻璃的热传导性能较好,能量可以在玻璃中快速传导。

3. 转化:在玻璃内部,能量会引起局部温度的升高,使玻璃发生非线性光学效应,例如烧蚀效应和等离子效应。

4. 蒸发:当温度达到玻璃的熔点时,玻璃会开始蒸发。

蒸发产生的气体和蒸汽会将周围的材料击碎并排除出去,创造出一个孔洞。

5. 深化:在孔洞形成后,激光束继续向下穿透,与玻璃相互作用,使孔洞不断扩大和加深。

四、影响激光打孔效果的因素1. 激光参数:激光的功率和脉冲宽度等参数会直接影响打孔效果。

较高的功率和适当的脉冲宽度可以提高打孔速度和质量。

2. 玻璃类型:不同类型的玻璃具有不同的化学成分和物理特性,对激光打孔的响应也有差异。

一些玻璃材料可能更易于被激光打孔。

3. 聚焦方式:激光束在玻璃上的聚焦方式也会影响打孔效果。

合适的聚焦距离和聚焦点位置可以获得更好的打孔结果。

4. 打孔参数:打孔的速度、深度和孔径大小等参数也需要根据实际需求进行调整和控制,以满足特定的应用要求。

五、应用领域玻璃激光打孔技术在许多领域都有广泛应用。

例如,光纤通信中的光纤连接器需要玻璃打孔来实现光纤的连接;玻璃器皿制造中,通过打孔可以制作出玻璃管、注射器和玻璃芯片等产品;激光加工中,玻璃打孔也可以被用于制作微孔和微通道等微结构。

激光钻孔讲解

激光钻孔讲解
考察一个 的函数序列,若对一切n 1,2,.
当 0 时,成立 n1() o(n ()), (4.1)
2024/7/18
27
就称 n ( )是 0的一个渐近序列。
若对含参数 的函数 f (x,)和渐近序列 {n ( ),}

0

M
f (x, ) an (x)n ( ) o(M ( )) (4.2)
Atk(T (z z,t) T (z,t))
z
z
cAz(T (z,t t) T (z,t)).
(2.4)
引入 D k ,
(2.5)
c
2024/7/18
12
在 (2.4) 式 两 端 同 时 除 以 z t , 令 t 0 ,z 0 ,整理可得
2T 1 T
z 2 D t
(2.6)
有关激光钻孔的直观描述,参见动画。
2024/7/18
9
设时刻t上述圆柱体在深度为z处(尚未气化
的部分)的截面上的温度为 T (z,t) 。在圆柱
内尚未气化的部分,激光束提供的热量按
普通的热传导规律向深度方向传播。现考
察高为任意微孔小量未到的达界于的[深z,度z z,即z]
z s(t)。取一
的圆柱体,考
(2.2)
传入的热量使圆柱体内的温度从 T (z,t) 升
高至 T (z t,t) 。温度升高所需的热量

cAz(T (z,t t) T (z,t))
(2.3)
2024/7/18
11
其中 为加工物体的密度,c为该物体的比 热,由于热平衡规律,从外部通过顶、底 面传入的热量,应等于导致这段圆柱体温 度升高所需的热量,即
又由富里埃传热定律,这段时间传到物体

激光钻孔的原理

激光钻孔的原理

激光钻孔的原理
激光钻孔是一种利用激光束进行钻孔的技术。

其原理是利用激光器产生的高能激光束对材料表面进行加热,使其局部温度升高。

当温度超过材料的熔点时,材料会变为液态或气态,并在激光束的作用下被喷出。

激光钻孔的原理是基于光与物质的相互作用。

当激光束照射到材料表面时,激光能量会被材料吸收,导致材料中的原子和分子的运动加剧。

在足够高的激光能量作用下,材料中的电子受激发,并在被激发的状态下向更高的能级跃迁。

当电子回到基态时,会释放出额外的能量,这些能量以光子的形式被辐射出来形成激光束。

在钻孔过程中,激光束照射到材料表面,使局部区域的温度升高。

当温度超过材料的熔点时,材料会发生相变,由固态转化为液态或气态。

此时,由于材料的热膨胀和气体的膨胀,形成一个高压区域,将材料喷出。

通过控制激光束的参数,如激光功率、聚焦方式和作用时间等,可以控制钻孔的深度和直径。

激光钻孔具有很高的精度和速度,可以加工各种材料,如金属、陶瓷和塑料等。

它在制造业和科研领域有着广泛的应用,例如微电子器件制造、光纤连接器加工和生物医学领域等。

通过不断改进激光器技术和加工参数的优化,激光钻孔技术将继续发展并在更多领域得到应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光钻孔的设备原理【深度剖析】
内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!
更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、自动化、数字无人工厂、精密测量、3D 打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.
激光打孔技术具有精度高、通用性强、效率高、成本低和综合技术经济效益显著等优点,已成为现代制造领域的关键技术之一。

在激光出现之前,只能用硬度较大的物质在硬度较小的物质上打孔。

这样要在硬度大的金刚石上打孔,就成了极其困难的事。

激光出现后,这一类的操作既快又安全。

但是,激光钻出的孔是圆锥形的,而不是机械钻孔的圆柱形,这在有些地方是很不方便的。

可透过振镜进行程式化编程控制图形输出。

激光打孔指激光经聚焦后作为高强度热源对材料进行加热,使激光作用区内材料融化或气化继而蒸发,而形成孔洞的激光加工过程。

激光束在空间和时间上高度集中,利用透镜聚焦,可以将光斑直径缩小10的5次方~10的15次方W/cm2的激光功率密度。

如此高的功率密度几乎可对任何材料进行激光打孔。

例如,在高熔点的钼板上加工微米量级的孔,在硬质合金(碳化钨)上加工几十微米量级的小孔,在红蓝宝石商人加工几百微米量级的深孔,金刚石拉丝模,化学纤维喷丝头等。

激光打孔是早早达到实用化的激光加工技术,也是激光加工的重要应用领域之一。

激光打孔主要用于金属材料钢、铂、钼、钽、镁、锗、硅,轻金属材料铜、锌、铝、不锈钢、耐热合金、镍基质合金、钛金、白金,普通硬质合金磁性材料以及非金属材料中的陶瓷基片、人工宝石、金刚石膜、陶瓷、橡胶、塑料、玻璃等。

如此高的功率密度几乎可以在任何材料实行激光打孔,而且与其它方法如机械钻孔、电火花加工等常规打孔手段相比,具有以下显著的优点:
(1)激光打孔速度快,效率高,经济效益好。

|
由于激光打孔是利用功率密度为l07-109W/cm2的高能激光束對材料進行瞬时作用,作用世间只有10-3-10-5s,因此激光打孔速度非常快。

將高效能激光器与精度的机床及控制系统配合,通过微处理,效率提高l0-1000倍。

(2)激光打孔可获得大的深径比。

在小孔加工中,深径比是衡量小孔加工难度的一个重要指标。

对于用激光束打孔來说激光束参数较其它打孔方法便于优化,所以可获得比电火花打孔及机械钻孔大得多的深径比。

一般情况下,机械钻孔和电火花打孔所获得的深径比值不超过10。

(3)激光打孔可在硬、脆、软等各类材料上进行。

高能量激光束打孔不受材料的硬度、刚性、强度和脆性等机械性能限制,它既适于金属材料,也适于一般难以加工的非金属材料,如红宝石石、藍蓝宝石、陶瓷、人造金刚石和天然金刚石等。

由于難加工材料大都具有高强度、高硬度、低热导率、加工易硬化、化學亲和力强等性质,因此在切削加工中阻力大、温度高、工具寿命短,表面粗糙度差、倾斜面上打孔等因素使打孔的难度更大。

而用激光在這些难加工材料上打孔,以上问题將得到解决。

我国钟表行业所用的宝石轴承几乎全部是激光打孔。

人造金刚石和天然金刚石的激光打孔应用也非常普遍。

用YAG激光在厚度为5.5mm 的硬质合金上打孔,深径比高达l4:1,而在1l.5mm厚的65Mn上可打出深径比为l9:1的小孔。

在l0mm厚的坚硬的氮化矽陶瓷上可容易地打出直径为0.6mm的小孔,這都是常规打孔手段无法办到的。

特別是在弹性材料上,由于弹性材料易变形,很难用一般方法打孔。

(4)激光打孔无工具损耗。

激光打孔为无接触加工,避免了机械钻打微孔时易断钻头的问题。

用机械钻加工直径为0.8mm 以下的小孔,即使是在铝这样软的材料上,也常常出现折断钻头的问题,這不仅造成工具损耗而加大成本,而且會因钻头折断致使整個工件报废。

如果是在群孔板的加工中出出现钻头折断,將使问题更为严重。

在这种情况下,去除折断钻头的好方法也仍然是激光打孔。

当然此时的激光打孔设备必须具备精密的瞄准裝置,以便准确无误地打掉折断的钻头。

(5)激光打孔适合于数量多、高密度的群孔加工。

由于激光打孔机可以和自动控制系统及微机配合,实现光、机、电一体化,使得激光打孔过程准确无误地重复成千上万次。

结合激光打孔孔径小、深径比大的特点,通过程序控制可以连续、高效地制作出小孔径、数量大、密度高的群孔板,激光加工出的群孔板的密度比机械钻孔和电火花打孔的群孔板高1-3个数量级,例如,食品、制药行业使用的过滤片厚度为1-3mm,材料为不锈钢,孔径为0.3-0.8mm,密度为l0-100孔/cm2。

(6)用激光可在难加工材料倾斜面上加工小孔。

对于机械孔和电火花打孔这类接触式打孔來说,在倾斜面上特別是大角度倾斜面上打小孔是极为困难的。

倾斜面上的小孔加工的主要问题是钻头入钻困难,钻头切削刃在倾斜平面上单刃切削,两边受力不均,产生打滑难以入钻,甚至产生钻头折断。

如果为高强度、高硬度材料,打孔几乎是不可能的,而激光却特別适合于加工与工件表面成6o-90o角的小孔,即使是在难加工材料上打斜孔也不例外。

另外,由于激光打孔过程与工件不接触,因此加工出來的工件清洁,沒污染。

因为这种打孔是一种蒸发型的、非接触的加工过程,它消除了常规热丝穿孔和机械穿孔帶來的残渣,因而十分卫生。

而且激光加工时间短,对被加工的材料氧化、变形、热影响区域均较小,不需要特列保护。

激光不仅能对置于空气中的工件打孔,而且也能对置于真空中或其它条件下的工件进行打孔。

由此可见,激光是一种高质量、快速打孔的有效工具。

更多相关内容,就在深圳机械展!。

相关文档
最新文档