高三数学12月月考试题 理8
高三数学月考试题(12月)

高三数学月考试题一、选择题1、设全集U=R ,集合}02|{2<-=x x x A ,103x B xx ⎧-⎫=≥⎨⎬-⎩⎭,则集合A ðU B=( A ) A .}10|{<<x x B .}10|{≤<x xC .}20|{<<x xD .}1|{≤x x2、等差数列{}n a 中,n S 是前n 项的和,若205=S ,则=++432a a a ( B ) A 9 B 12 C 15 D 183、在ABC ∆中,如果sin A C =,30B =,那么角A 等于 ( D )A .30B .45C .60D .1204、若向量a ,b 满足||||1a b ==,且a ·b +b ·b =23,则向量a ,b 的夹角为( C )A .30°B .45°C .60°D .90°5、一组合体三视图如右,正视图中正方形 边长为2,俯视图为正三角形及内切圆,则该组合体体积为( C )A .B . 43πC 27D . 43π6、已知直线a 、b 和平面α、β,下面命题中的假命题是( B )A .若//a β,//αβ,a α⊄,则//a αB .若//a β,//b α,//αβ,则//a bC .若a α⊥,//b β,//αβ,则a b ⊥D .若a α⊥,b β⊥,αβ⊥,则a b ⊥ 7、若椭圆或双曲线上存在点P ,使得点P 到两个焦点的距离之比为2:1,则称此椭圆或双曲线存在“F 点”,下列曲线中存在“F 点”的是( A ) A . 122=-y xB .1242522=+yxC .11522=-yx D .1151622=+yx8、给出如下四个命题:①四个非零实数a 、b 、c 、d 依次成等比数列的充要条件是ad bc =;②设a ,b R ∈,且0ab ≠,若1a b<,则1b a>;③若()2log fx x =,则()f x 是偶函数;④若直线y x a =+与曲线2194x x y⋅-=有两个交点,则a =.其中错误命题个数是( D )A .0B .1C .2D .3 二、填空题 9、复数21i i-所对应的点在_______象限.1i -+(二象限)10、在A B C ∆中,4B π∠=,AC =cos 5C =,则BC 边的长是_________;11、已知点F 是双曲线22221x y ab-=(0a >,0b >)的左焦点,点E 是该双曲线的右顶点,过点F 且垂直于轴的直线与双曲线交于A 、B 两点,若△ABE 是直角三角形,则该双曲线的离心率是_____________.答案:e =212、若满足2220x y y ++=的实数x ,y ,使不等式0x y m ++≥恒成立,则实数m 的取值范围是 .)1 +∞,13、过抛物线22y px =(0p >)的焦点F 的直线l 交抛物线于点A 、B ,交其准线于点C ,若2CB B F= ,且|AF|=3,则此抛物线的方程为_____________________.23y x =解析:点F 到抛物线准线的距离为p ,又由|BC|=2|BF|得,点B 到准线的距离为|BF|,则|BF ||BC |=12,∴l 与准线夹角为30°,则直线l 的倾斜角为60°.由|AF|=3,如图连结AH ⊥HC ,EF ⊥AH ,则AE =3-p , 则cos60°=3-p 3,故p =32.∴抛物线方程为y 2=3x .14、将编号为1、2、3的三个小球,放入编号为1、2、3、4的四个盒子中,如果每个盒子中最多放一个球,那么不同的放球方法有 种;24 如果4号盒子中至少放两个球,那么不同的放球方法有 种.10 三、解答题15、设函数()2cos 2sin 3f x x x π⎛⎫=++ ⎪⎝⎭. (Ⅰ)求函数()f x 的最大值和最小正周期;(Ⅱ)设A ,B ,C 为∆ABC 的三个内角,若1cos 3B =,124C f ⎛⎫=-⎪⎝⎭,且C 为锐角,求sin A .解: (1)()2cos 2sin 3f x x x π⎛⎫=++ ⎪⎝⎭=1cos 21cos 2cos sin 2sin sin 233222xx x x ππ--+=-所以函数()f x2π.(2)2C f ⎛⎫⎪⎝⎭=1sin 22C -=14-,所以sin 2C =,因为C 为锐角,所以3C π=, 又因为在∆ABC 中,cosB=13,所以sin B =,所以()11sin sin sin cos cos sin 2326A B C B C B C =+=+=+⨯=.16、已知三棱柱111ABC A B C -的侧棱垂直于底面,90BAC ∠= ,12AB AA ==,1A C =,M ,N 分别是11A B ,B C 的中点.(Ⅰ)证明://M N 平面11AC C A ;(Ⅱ)试求线段MN 与平面ABC 所成角的余弦值.解:(空间向量)依条件可知A B ,A C ,1A A 两两垂直.如图,以点A 为原点,建立空间直角坐标系A xyz -.依条件可知A B ,A C ,1A A 两两垂直.如图,以点A 为原点,建立空间直角坐标系A xyz -。
湖南省衡阳市2023_2024学年高三数学上学期12月月考试题含解析

衡阳市2024届高三第五次月考数学试卷总分:150分考试时间:120分钟;一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题意的.1.如图,在复平面内,复数z 1,z 2对应的向量分别是,OA OB,则|z 1+z 2|=()A.2B.3C. D.2.函数()()e exxf x x -=-的部分图像大致为()A. B.C. D.3.已知圆O 为ABC 的外接圆,60BAC ∠=︒,BC =,则OB OC ⋅=()A.2B.2- C.4D.4-4.直线a 、b 是异面直线,α、β是平面,若a α⊂,b β⊂,⋂=c αβ,则下列说法正确的是()A.c 至少与a 、b 中的一条相交B.c 至多与a 、b 中的一条相交C.c 与a 、b 都相交D.c 与a 、b 都不相交5.已知函数()()423f x x m =++的图象经过坐标原点,则曲线()y f x =在点()()1,1f --处的切线方程是()A.872y x =- B.476y x =-C.872y x =+ D.476y x =+6.已知函数()y f x =的导函数为()y f x '=,x ∈R ,且()y f x '=在R 上为严格增函数,关于下列两个命题的判断,说法正确的是()①“12x x >”是“()()()()121211f x f x f x f x ++>++”的充要条件;②“对任意0x <都有()()0f x f <”是“()y f x =在R 上为严格增函数”的充要条件.A.①真命题;②假命题 B.①假命题;②真命题C.①真命题;②真命题D.①假命题;②假命题7.已知()f x 是定义在R 上的单调函数,满足()1x f f x e ⎡⎤⎣⎦-=,且()()f a f b e >>.若10log log 3a b b a +=,则a 与b 的关系为()A.3a b = B.3b a = C.2b a = D.2a b =8.已知函数()sin ln f x x x =+,将()f x 的所有极值点按照由小到大的顺序排列,得到数列{}n x ,对于n +∀∈N ,则下列说法中正确的是()A.()π1πn n x n <<+B.1πn n x x +-<C.数列()21π2n n x ⎧⎫-⎪⎪-⎨⎬⎪⎪⎩⎭是递增数列D.()()241π1ln2n n f x -<-+二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.单位向量a 与b的夹角为锐角,则2a b - 的取值可能为()A .1B.1.5C.2D.2.510.ABC 中,内角A ,B 的对边分别为a ,b ,则下列能成为“a b >”的充要条件的有()A.sin sin A B> B.cos cos A B< C.cos2cos2A B< D.sin 2sin 2A B>11.若将函数()πcos(2)12f x x =+的图象向左平移π8个单位长度,得到函数()g x 的图象,则下列说法正确的是()A.()g x 的最小正周期为πB.()g x 在区间π0,2⎡⎤⎢⎥⎣⎦上单调递减C.π6x =-是函数()g x 图象的一个对称轴 D.()g x 的图象关于点5π,012⎛⎫-⎪⎝⎭对称12.商场某区域的行走路线图可以抽象为一个22⨯的正方体道路网(如图,图中线段均为可行走的通道),甲、乙两人分别从A ,B 两点出发,随机地选择一条最短路径,以相同的速度同时出发,直到到达B ,A 为止,下列说法正确的是()A.甲从A 必须经过1C 到达B 的方法数共有9种B.甲从A 到B 的方法数共有180种C.甲、乙两人在2C 处相遇的概率为425D.甲、乙两人相遇的概率为1150三、填空题:本题共4小题,每小题5分,共20分.13.二项式6(1)x +的展开式的中间项系数为_____.14.记函数()()nf x x nx n n *=+-∈N在1x =处的导数为na,则()4216log a a =________.15.设12,F F 是椭圆2222:1(0)x y C a b a b +=>>的左、右焦点,O 为坐标原点,M 为C 上一个动点,且21112||MF MF F O +⋅的取值范围为[1,3],则椭C 的长轴长为______.16.已知e是单位向量,向量(1,2)i b i = 满足i i e b e b -=⋅ ,且12xb yb e += ,其中,x y ∈R ,且1x y +=.则下列结论中,正确结论的序号是___________.①121xe b ye b ⋅+⋅=;②()1212y x x y b b +-= ;③存在x ,y ,使得122b b -=;④当12b b - 取最小值时,120b b ⋅=.四、解答题:本题共6小题,共70分.17.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知sin cos 6b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)若2a =,3c =,求()sin A B +的值.18.已知数列{}n a 的前n 项和为n S ,12a =,等比数列{}n b 的公比为2,22nn n S b n =.(1)求数列{}{},n n a b 的通项公式;(2)令,,n n na n cb n ⎧=⎨⎩为奇数为偶数,求数列{}n c 的前10项和.19.某校在一次庆祝活动中,设计了一个“套圈游戏”,规则如下:每人3个套圈,向M ,N 两个目标投掷,先向目标M 掷一次,套中得1分,没有套中不得分,再向目标N 连续掷两次,每套中一次得2分,没套中不得分,根据累计得分发放奖品.已知小明每投掷一次,套中目标M 的概率为34,套中目标N 的概率为23,假设小明每次投掷的结果相互独立,累计得分记为X .(1)求小明恰好套中2次的概率;(2)求X 的分布列及数学期望.20.如图,ABC 与ABD △都是边长为2的正三角形,平面ABD ⊥平面ABC ,EC ⊥平面ABC且EC =.(1)证明:CD ⊥平面ABE .(2)求平面CED 与平面BDE 的夹角的大小.21.已知抛物线2:2(0)D y px p =>的焦点为F ,点Q 在D 上,且QF 的最小值为1.(1)求D 的方程;(2)过点()3,2M -的直线与D 相交于A ,B 两点,过点(3,6)N -的直线与D 相交于B ,C 两点,且A ,C 不重合,判断直线AC 是否过定点.若是,求出该定点;若不是,请说明理由.22.设()()11ln f x ax a x x=-+-.(1)讨论()f x 的单调性;(2)设()()22e xg x x f x =-,若关于x 的不等式()()13ln 1g x ax a x x++++≥恒成立,求实数a 的取值范围.衡阳市八中2024届高三第五次月考数学试卷总分:150分考试时间:120分钟;一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题意的.1.如图,在复平面内,复数z 1,z 2对应的向量分别是,OA OB,则|z 1+z 2|=()A.2B.3C. D.【答案】A 【解析】【详解】由题图可知,z 1=-2-i ,z 2=i ,则z 1+z 2=-2,∴|z 1+z 2|=2,故选A.2.函数()()e exxf x x -=-的部分图像大致为()A. B.C.D.【答案】A 【解析】【分析】先求解函数的定义域,且()()f x f x -=,故函数为偶函数,排除BC ;再求出()11e e0f -=->,排除D ,选出正确答案.【详解】()()e exxf x x -=-定义域为R ,且()()()()ee e e xx x x f x x x f x ---=--=-=,故()f x 为偶函数,所以排除选项B 和选项C ;又()11e e 0f -=->,排除D.故选:A .3.已知圆O 为ABC 的外接圆,60BAC ∠=︒,BC =,则OB OC ⋅=()A.2B.2- C.4D.4-【答案】B 【解析】【分析】先利用正弦定理求外接圆的半径,再根据数量积的定义分析运算.【详解】如图,圆O的直径为24sin 32BC R BAC ===∠,故2OB OC R ===,2120BOC BAC ∠=∠=︒,故1cos1202222OB OC OB OC ⎛⎫⋅=︒=⨯⨯-=- ⎪⎝⎭uu u r uuu r uu u r uuu r .故选:B.4.直线a 、b 是异面直线,α、β是平面,若a α⊂,b β⊂,⋂=c αβ,则下列说法正确的是()A.c 至少与a 、b 中的一条相交B.c 至多与a 、b 中的一条相交C.c 与a 、b 都相交D.c 与a 、b 都不相交【答案】A 【解析】【分析】依题意可知, ,a c 共面于α,,b c 共面于β.利用空间两条直线的位置关系,对选项举出反例进行排除,由此得出正确选项.【详解】解:由直线a 、b 是异面直线,α、β是平面,若a α⊂,b β⊂,c αβ⋂=,知:对于B 选项,c 可以与a 、b 都相交,交点为不同点即可,故B 选项不正确;对于C 选项,//a c ,b c A ⋂=,满足题意,故C 选项不正确;对于D 选项,c 与a 、b 都不相交,则c 与a 、b 都平行,所以a ,b 平行,与异面矛盾,故D 选项不正确;对于A 选项,由B ,C 、D 是错误的,可知A 正确.由于,a c 共面,,b c 共面,若c 与,a b 都平行,根据平行公理可知,a b 平行,这与已知,a b 异面矛盾,故A 选项正确.故本小题选A .【点睛】本小题主要考查空间直线的位置关系,包括平行、相交、异面和平行公理的考查,属于基础题.5.已知函数()()423f x x m =++的图象经过坐标原点,则曲线()y f x =在点()()1,1f --处的切线方程是()A.872y x =- B.476y x =-C.872y x =+ D.476y x =+【答案】A 【解析】【分析】由曲线过原点求m ,根据导数的几何意义求切线方程.【详解】因为函数()()423f x x m =++的图象经过坐标原点,所以()0810f m =+=,所以81m =-,所以()()42381f x x =+-所以()180f -=-.因为()()3823f x x '=+,所以()18f '-=.所以所求切线方程为()8081y x +=+,即872y x =-.故选:A.6.已知函数()y f x =的导函数为()y f x '=,x ∈R ,且()y f x '=在R 上为严格增函数,关于下列两个命题的判断,说法正确的是()①“12x x >”是“()()()()121211f x f x f x f x ++>++”的充要条件;②“对任意0x <都有()()0f x f <”是“()y f x =在R 上为严格增函数”的充要条件.A.①真命题;②假命题 B.①假命题;②真命题C.①真命题;②真命题 D.①假命题;②假命题【答案】C 【解析】【分析】对于①,构造函数()(1)()g x f x f x =+-,结合题设,判断“12x x >”和“()()()()121211f x f x f x f x ++>++”之间的逻辑推理关系,可判断其真假;对于②,结合函数单调性,判断必要性;采用反证思想,结合题设推出矛盾,说明充分性成立,判断②的真假.【详解】对于①:设()(1)()g x f x f x =+-,x ∈R ,则()(1)()g x f x f x '''=+-,因为()y f x '=在R 上为严格增函数,故(1)()f x f x ''+>,即()(1)()0g x f x f x '''=+->,则()(1)()g x f x f x =+-在R 上单调递增,由于12x x >,故12()()g x g x >,即()()()()112211f x f x f x f x +->+-。
最新辽宁省实验中学分校高三12月月考数学(理)试卷及答案

辽宁实验中学分校20xx —20xx 学年度上学期阶段性测试高三年级数学(理)试卷命题人:李慧 校对人:谷志伟一、选择题。
本大题共12小题,每小题5分,共60分。
1.已知1: 1, :1,p x q x≤< 则p ⌝是q 的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既非充分又非必要条件 2. 若幂函数2223(33)m m y m m x+-=++错误!未找到引用源。
的图像不过原点,且关于原点对称,则m 错误!未找到引用源。
的取值是 ( )A .2m =-错误!未找到引用源。
B.1m =-错误!未找到引用源。
C.21m m =-=-或错误!未找到引用源。
D.31m -≤≤-错误!未找到引用源。
3. 已知⎩⎨⎧≥<--=)1(log )1()3()(x xx a x a x f a 是),(+∞-∞上的增函数,那么a 的取值范围是( ) A.( 1,+∞)B.(0,3)C.(1,3)D.[32,3) 4. 设a 、b 是两条不同的直线,α、β是两个不同的平面,则下列说法正确的是( ) A .若a//b ,a//α,则b//α B .若α⊥β,a//α,则a ⊥β C .若α⊥β,a ⊥β,则a//αD .若a⊥b,a⊥α,b⊥β,则α⊥β5. 已知等差数列的前项和为,且,则为 ( )A. 15B. 20C. 25D. 30 6. 函数)32sin()(π-=x x f 的图象向左平移3π个单位,再将图象上各点的横坐标压缩为原来的21,那么所得图象的函数表达式为( ) 2.sin .sin(4).sin(4).sin()333A y x B y x C y x D y x πππ==+=+=+7. 设集合},),({R y R x y x u ∈∈=,n y x y x B m y x y x A -+=≥+-=),({},02),({}0>,若点B C A P u ∈)3,2(,则n m +的最小值为( ){}n a n n S ⎰+=3010)21(dx x S 2017,S =30SA .6-B .1C .4D .58. 已知函数()sin sin 44f x x x ππ=--+,则一定在函数()y f x =图象上的点是( ) A .()(),x f x - B .()(),x f x - C .,44x f x ππ⎛⎫⎛⎫--- ⎪⎪⎝⎭⎝⎭ D .,44x f x ππ⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭9. 一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( ) A.1 B.2 C.3 D.410. 若,,a b c 均为单位向量,且0a b ⋅=,()()0a c b c -⋅-≤,则||a b c +-的最大值为( )A. 3B. 2C. 1D. 2+111. 已知函数f (x )=201543212015432x x x x x +⋯+-+-+,则下列结论正确的是( ) A .f (x )在(0,1)上恰有一个零点B .f (x )在(-1,0)上恰有一个零点C .f (x )在(0,1)上恰有两个零点D .f (x )在(-1,0)上恰有两个零点 12. 设0a >b >,则()211a ab a a b ++-的最小值是( ) A.1 B.2 C.3 D.4 二、填空题。
辽宁省大连市高三12月月考数学(理)试题 Word版含答案

二、13. 14.48015.①③16.
三.
17.解:解:(1)证明:将直线l的方程整理为
y- =a ,∴直线l的斜率为a,且过定点A ,
而点A 在第一象限内,故不论a为何值,l恒过第一象限....5分
(2)直线OA的斜率为k= =3.
如图所示,要使l不经过第二象限,需斜率a≥kOA=3,∴a≥3....10分
17.已知直线 .
(1)求证:不论 为何值,直线 总经过第一象限;
(2)为使直线不经过第二象限,求 的取值范围.
18.已知函数 .
(1)若 ,且 ,求 的值;
(2)求函数 的最小正周期及单调递增区间.
19.设数列 的各项均为正数,若对任意的正整数 ,都有 成等差数列,且 成等比数列.
(Ⅰ)求证:数列 是等差数列;
1
8
3
偏高
2
0
1
超常
0
2
1
1
由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为 .
(Ⅰ)试确定 、 的值;
(Ⅱ)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为 ,求随机变量 的分布列及数学期望 .
21.如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.
因为 , ,
, ,
所以 的分布列为:
0
1
2
3
所以 .
(或 服从参数为N=40,M=3,n=24的超几何分布, )
答:随机变量 的数学期望为 ....12分
20.【解析】(Ⅰ)证明:找到 中点 ,连结 ,
2020-2021学年山西省阳泉市第十二中学高三数学理月考试题含解析

2020-2021学年山西省阳泉市第十二中学高三数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知,则A.-3 B. C.3 D.参考答案:D2. 根据如图的程序框图,当输入x为2017时,输出的y为28,则判断框中的条件可以是()A.x≥0?B.x≥1?C.x≥﹣1?D.x≥﹣3?参考答案:C【考点】程序框图.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量y的值,模拟程序的运行过程,可得答案.【解答】解:当输入的x为2017时,第1次执行循环体后,x=2015,输出y=3﹣2015+1;第2次执行循环体后,x=2013,输出y=3﹣2013+1;第3次执行循环体后,x=2011,输出y=3﹣2011+1;…第1007次执行循环体后,x=3,输出y=3﹣3+1;第1008次执行循环体后,x=1,输出y=3﹣1+1;第1009次执行循环体后,x=﹣1,输出y=31+1=4;第1010次执行循环体后,x=﹣3,输出y=33+1=28;此时不满足x≥﹣1,输出y=28,故选:C.3. 已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的()参考答案:B略4. 函数,若,且函数f(x)的图象关于直线对称,则以下结论正确的是()A.函数f(x)的最小正周期为B.函数f(x)的图象关于点对称C.函数f(x)在区间上是增函数D.由y=2cos2x的图象向右平移个单位长度可以得到函数f(x)的图象参考答案:D【考点】H2:正弦函数的图象.【分析】根据函数,求出φ,函数f(x)的图象关于直线对称,可得ω的值,求出了f(x)的解析式,依次对各选择判断即可.【解答】解:函数,∵,即2sinφ=,∵φ∴φ=又∵函数f(x)的图象关于直线对称,∴,k∈Z.可得ω=12k﹣10,∵0<ω<12.∴ω=2.∴f(x)的解析式为:f(x)=2sin(2x﹣).最小正周期T=,∴A不对.当x=时,可得y≠0,∴B不对.令﹣2x﹣,可得,∴C不对.函数y=2cos2x的图象向右平移个单位,可得2cos2(x﹣)=2cos(2x﹣)=2sin(2x﹣)=2sin(2x﹣).∴D项正确.故选D5. 在等差数列中,,则的值为()A.2 B.3 C.4 D.5参考答案:A6. 已知函数的部分图象如图所示,则圆中最长弦的长度为A. B. C.5 D.以上均不正确参考答案:B由题设得,则,故,将代入可得,即,所以.所以=0 ,故半径r=,最长弦即为直径,其长为2r=.7. 设,且为正实数,则()A.2 B.1 C.0 D.参考答案:D略8. 已知双曲线的渐近线与圆相切,则双曲线的离心率为(A)(B)(C)(D)2参考答案:A方法一:双曲线的渐近线方程为,则,圆的方程,圆心为,所以,化简可得,则离心率.方法二:因为焦点到渐近线的距离为,则有平行线的对应成比例可得知,即则离心率为. 选A.9. 一个几何体的三视图如图所示,则这个几何体的体积为(A )(B )(C ) (D )参考答案:B 略10. 方程的两个根可分别作为( )A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 参考答案: 答案:A解析:方程的两个根分别为2,,故选A二、 填空题:本大题共7小题,每小题4分,共28分11. 函数的单调递增区间为.参考答案:(-∞,-4)12. 我国古代数学名著《九章算术》中有“米谷粒分”题:粮仓开仓收粮,有人送来米1536石,验得米内夹谷,抽样取米一把,数得256粒内夹谷18粒,则这批米内夹谷约为_______参考答案:108(石). 【分析】根据抽取样本中米夹谷的比例,得到整体米夹谷的频率,从而求得结果.【详解】因为256粒内夹谷18粒,故可得米中含谷的频率为,则1536石中米夹谷约为1536(石).故答案为:(石).【点睛】本题考查由样本估计总体的应用,以及频率估计概率的应用,属基础题.13. 复数z 满足条件,则的取值范围是_______。
2023届福建省南安市柳城中学高三上学期12月月考数学试题(解析版)

2023届福建省南安市柳城中学高三上学期12月月考数学试题一、单选题 1.已知复数i2iz =+,i 为虚数单位,则z 的共轭复数为( ) A .12i 55+B .12i 55-C .21i 55+D .21i 55-【答案】B【分析】根据复数的运算公式求复数z 的代数形式,再求其共轭复数即可. 【详解】()()()i 2i i 12i 12=i 2i 2i 2i 555z -+===+++-, 所以z 的共轭复数为12i 55-,故选:B.2.已知集合()(){}120A x x x =+-<,{}Z 1B x x =∈≥,则()A B =R ( ) A .[]{}1,21⋃- B .[]1,2C .{}1,1,2-D .{}1,2【答案】C【分析】解一元二次不等式求得集合A ,解绝对值不等式求得集合B ,由此求得()A B ⋂R . 【详解】由120x x,得1x <-或2x >,所以[]1,2R A =-;由1x ≥,得1x ≤-或1x ≥,所以{Z|1B x x =∈≤-或}1x ≥, 从而(){}1,1,2A B ⋂=-R . 故选:C3.已知随机变量X 服从正态分布()23,N σ,若()()12436P X P X >=⋅<,则()23P X <<=( ) A .13B .14C .16D .19【答案】A【分析】利用对称性可得(2)(4)P X P X <=>结合条件可求()2P X <,再由 1(2)(4)(23)2P X P X P X -<-><<=求解.【详解】因为随机变量X 服从正态分布()23,N σ,又()()12436P X P X >=⋅<, 所以1(2)(4)6P X P X <=>=, 故1111(2)(4)166(23)223P X P X P X =---<-><<==. 故选:A.4.已知某圆锥的侧面展开图为半圆,该圆锥的体积为,则该圆锥的表面积为( )A .27πB .C .D .16π【答案】A【分析】根据条件先算出母线长与底面半径的关系,再根据体积计算出底面半径即可.【详解】设圆锥底面半径为r ,母线长为l ,则r l 2π=π,所以2l r =,=,所以213r π⨯=,解得3r =,故其表面积291827S r rl πππππ=+=+=;故选:A .5.将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( ) A .16B .14C .13D .12【答案】C【分析】先由平移求出曲线C 的解析式,再结合对称性得,232k k ωππππ+=+∈Z ,即可求出ω的最小值.【详解】由题意知:曲线C 为sin sin()2323y x x ππωππωω⎡⎤⎛⎫=++=++ ⎪⎢⎥⎝⎭⎣⎦,又C 关于y 轴对称,则,232k k ωππππ+=+∈Z ,解得12,3k k ω=+∈Z ,又0ω>,故当0k =时,ω的最小值为13.故选:C.6.已知抛物线212,,y F F =分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,抛物线的准线过双曲线的左焦点1F ,与双曲线的渐近线交于点A ,若124F F A π∠=,则双曲线的标准方程为( )A .22110x y -=B .22116y x -=C .2214y x -=D .2214x y -=【答案】C【分析】由已知可得出c 的值,求出点A 的坐标,分析可得112AF F F =,由此可得出关于a 、b 、c 的方程组,解出这三个量的值,即可得出双曲线的标准方程.【详解】抛物线245y x =的准线方程为5x =-,则5c =,则()15,0F -、()25,0F ,不妨设点A 为第二象限内的点,联立b y x a x c⎧=-⎪⎨⎪=-⎩,可得x c bc y a =-⎧⎪⎨=⎪⎩,即点,bc A c a ⎫⎛- ⎪⎝⎭,因为112AF F F ⊥且124F F A π∠=,则12F F A △为等腰直角三角形,且112AF F F =,即2=bc c a,可得2ba =,所以,22225ba c c ab ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得125a b c ⎧=⎪=⎨⎪=⎩,因此,双曲线的标准方程为2214y x -=.故选:C.7.如图,在正三棱柱111ABC A B C 中,13AA =,2AB =,则异面直线1A B 与1B C 所成角的余弦值为( )A .513B .713C .913D .1213【答案】B【分析】在三棱锥内构造直线使其平行于1A B ,然后构造三角形,运用异面直线夹角的定义求解即可.【详解】取11A C 的中点D ,连接1BC 交1B C 于点E ,连接DE , 则1//DE A B 且112DE A B =,则1DEB ∠为异面直线1A B 与1B C 所成的角或其补角. 易求1113A B BC =13B D ,则113DE B E ==, 所以222111113133744cos 21313132DE B E B D DEB DE B E +-+-∠===⋅⨯⨯. 故选:B .8.已知函数()f x 是定义域为R 的偶函数()1f x +为奇函数,当[]0,1x ∈时,()2xf x k a =⋅+,若()()036f f +=,则()2log 96f =( )A .2B .0C .-3D .-6【答案】C【分析】根据条件,可以证明()f x 是周期为4的周期函数,计算出a 和k ,由周期性可得()()22log 961log 3f f =+ ,再利用函数的对称性即可求解.【详解】因为()1f x +为奇函数,所以()()11f x f x -+=-+,又()f x 为偶函数, 所以()()11f x f x -+=-,所以()()11f x f x -=-+,即()()2=-+f x f x , 所以()()()42f x f x f x +=-+=,故()f x 是以4为周期的周期函数;由()()11f x f x -+=-+,易得()10f =,()()()3110f f f =-==,所以()06f =, 所以6k a +=,20k a +=,解得6k =-,12a =;所以()()()222log 965log 31log 3f f f =+=+()23log 2223log 31log 621232f f ⎛⎫⎛⎫=--=-=--⨯+=- ⎪ ⎪⎝⎭⎝⎭; 故选:C .9.已知0a b >>,0c d <<,则( ) A .a b d c> B .a b d c< C .ac bd < D .ac bd >【答案】BC【分析】利用不等式的基本性质判断不等关系. 【详解】因为0c d <<,所以0cd >,所以110d c <<,所以110d c->->,又0a b >>,所以a b d c ->-,所以a bd c<,故 A 错误,B 正确; 因为0a b >>,0c d ->->,所以ac bd ->-,所以.ac bd <故D 错误,C 正确. 故选:BC .10.已知数列{}n a 的前n 项和为n S ,则( ) A .若22n S n n =-,则{}n a 是等差数列 B .若121n n S +=-,则{}n a 是等比数列 C .若{}n a 是等差数列,则202310122023S a =D .若{}n a 是等比数列,且10a >,0q >,则221212n n n S S S -+⋅> 【答案】AC【分析】利用n a 与n S 的关系,结合等差数列与等比数列的定义,可得A 、B 的正误;根据等差中项以及等差数列求和公式,可得C 的正误;取1n =时的特殊情况验证不等式,可得D 的正误.【详解】对于A ,若22n S n n =-,则11a =,当2n ≥时,143n n n a S S n -=-=-,显然1n =时也满足43n a n =-, 故43n a n =-,由14n n a a --=,则{}n a 为等差数列,故A 正确;对于B ,若121n n S +=-,则13a =,2214a S S =-=,3328a S S =-=,显然3212a a a a ≠,所以{}n a 不是等比数列,故B 错误; 对于C ,因为{}n a 为等差数列,则()12023101220231012202320232202322a a a S a +⨯===,故C 正确;对于D ,当1n =时,()()222222132111110S S S a q q a q a q ⋅-=++-+=-<,故当1n =时,不等式不成立,即221212n n n S S S -+⋅>不成立,故D 错误.11.关于函数()()π3sin 21R 3f x x x ⎛⎫ ⎪⎝⎭=-+∈,下列说法正确的是( )A .若()()121f x f x ==,则()12πZ x x k k -=∈B .()y f x =的图像关于点2π,13⎛⎫⎪⎝⎭对称 C .()y f x =在π0,2⎛⎫⎪⎝⎭上单调递增D .()y f x =的图像向右平移π12个单位长度后所得图像关于y 轴对称【答案】BD【分析】对于A ,根据三角函数的对称中心性质即可判断; 对于B ,可根据对称中心对应的函数值特征即可判断; 对于C ,根据三角函数单调性判断即可;对于D ,求出平移后的解析式并根据偶函数的性质进行判断即可.【详解】对于A ,由()()121f x f x ==知()1,1x ,()2,1x 是()π3sin 213f x x ⎛⎫=-+ ⎪⎝⎭图象的两个对称中心,则12x x -是函数()f x 的最小正周期的整数倍,即()12πZ 2k x x k -=∈,故A 不正确; 对于B ,因为2π3sin π113f ⎛⎫=+= ⎪⎝⎭,所以2π,13⎛⎫⎪⎝⎭是()f x 的对称中心,故B 正确;对于C ,由()πππ2π22πZ 232k x k k -≤-≤+∈解得()π5πππZ 1212k x k k -≤≤+∈, 当0k =时,()f x 在π5π,1212⎡⎤-⎢⎥⎣⎦上单调递增,则()f x 在5π0,12⎡⎤⎢⎥⎣⎦上单调递增,在5ππ,122⎡⎤⎢⎥⎣⎦上单调递减,故C 不正确;对于D ,()y f x =的图象向右平移π12个单位长度后所得图象对应的函数ππ3sin 213cos 21123y x x ⎛⎫⎛⎫=--+=-+ ⎪ ⎪⎝⎭⎝⎭,x ∈R ()()3cos213cos21()f x x x f x ∴-=--+=-+=3cos 21y x =-+是偶函数,所以图象关于y 轴对称,故D 正确.故选:BD.12.将边长为2的正方形ABCD 沿对角线AC 折起,使点D 不在平面ABC 内,则在翻折过程中,下列结论正确的有( )A .存在某个位置,使直线BD 与平面ABC 所成的角为45°B .当二面角D AC B --为23π时,三棱锥D ABC - C .当平面ACD ⊥平面ABC 时,异面直线AB 与CD 的夹角为60°D .O 为AC 的中点,当二面角D AO B --为23π时,三棱锥A OBD -外接球的表面积为10π 【答案】ACD【分析】A.当当平面ACD ⊥平面ABC ,即可判断;B.根据锥体体积公式,即可求解; C.将异面直线所成的角转化为相交直线所成的角,即可求解; D.将三棱锥补体为三棱柱,即可求球心和半径.【详解】A.当平面ACD ⊥平面ABC 时,取AC 的中点O ,连接,BO DO ,DO AC ⊥,DO ∴⊥平面ABC ,DBO ∴∠为直线BD 与平面ABC 所成的角, DBO 是等腰直角三角形,45DBO ∴∠=,故A 正确;B.DO AC ⊥,BO AC ⊥,DO BO O ⋂=,AC ∴⊥平面DBO ,且23DOB π∠=, AC ⊂平面ABC ,∴平面DBO ⊥平面ABC ,且交于BO ,∴点D 在平面ABC 的射影落在BO 上,∴点D 到平面ABC 的距离6sin 602d DO =⋅=,三棱锥D ABC -的体积1166223223V =⨯⨯⨯⨯=,故B 错误;C.取,BC BD 的中点,M N ,连接,,OM ON MN ,则//OM AB ,/MN DC ,所以OMN ∠或其补角是异面直线AB 与CD 的夹角,根据A 的证明可知()()22222BD =+=,112ON BD ==,且1OM MN ==,所以OMN 是等边三角形,60OMN ∠=,故C 正确;D.由条件可知AO ⊥平面DOB ,23DOB π∠=,且DO OB =,所以可以将四棱锥A DOB -补成底面是菱形的直棱柱因为四边形OBCD 是菱形,且23BOD π∠=,所以点C 是底面OBD 外接圆的圆心,取侧棱1CC 的中点E ,则E 是四棱柱外接球的球心,连结OE ,()222221022OE OC CE ⎛⎫=+=+ ⎪ ⎪⎝⎭所以四棱锥A OBD -外接球的半径10R =2410S R ππ==,故D 正确. 故选:ACD三、填空题13.已知向量()3,1a =-,(),2b m =,且()2a a b ⊥+,则+=a b ______. 85 【分析】由向量线性运算及垂直的数量积表示可得方程解出m ,即可由坐标计算向量模. 【详解】()()()23,12,223,5a b m m +=-+=-,由()2a a b ⊥+得()()()23,123,5a a b m ⋅+=-⋅-6950m =-++=,解得73m =. 则()723,1,2,333a b ⎛⎫⎛⎫+=-+=- ⎪ ⎪⎝⎭⎝⎭,故2228533a b ⎛⎫+=-+= ⎪⎝⎭85. 14.63x x ⎛⎝展开式的常数项为______.【答案】2160【分析】根据给定条件,求出二项式展开式的通项公式,再求出常数项作答.【详解】6(3x展开式的通项公式为36662166C (3)(3(2)C ,N,6r r r r r r rr T x x r r ---+==⋅-∈≤, 令3602r -=,解得4r =,则244563(2)C 916152160T =⋅-=⨯⨯=, 所以展开式的常数项为2160. 故答案为:216015.已知函数()()()10 ln f x x x =+≥,将()f x 的图象绕原点逆时针旋转(]()0,ααθ∈角后得到曲线C ,若曲线C 仍是某个函数的图象,则θ的最大值为______.【答案】π4##1π4【分析】求得()f x 在点()0,0处的切线方程,从而求得正确答案. 【详解】依题意0x ≥, ()11f x x '=+,所以()01f '=,故函数()f x 的图象在()()0,0f 处的切线为y x =, 切线向上的方向与y 轴正方向的夹角为π4,函数()f x 的图象绕原点旋转不超过π4时,仍为某函数图象,若超过π4,y 轴与图象有两个公共点,与函数定义不符,故θ的最大值为π4.故答案为:π416.有一种投掷骰子走跳棋的游戏:棋盘上标有第1站、第2站、第3站、…、第10站,共10站,设棋子跳到第n 站的概率为n P ,若一枚棋子开始在第1站,棋手每次投掷骰子一次,棋子向前跳动一次.若骰子点数小于等于3,棋子向前跳一站;否则,棋子向前跳两站,直到棋子跳到第9站(失败)或者第10站(获胜)时,游戏结束.则3P =_________;该棋手获胜的概率为__________. 【答案】34##0.75 85256【分析】根据题意找出(38)n P n ≤≤与21,n n P P --的关系即可求解. 【详解】由题311132224P =+⨯=,因为2111(38)22n n n P P P n --=+≤≤,故11112n n n n P P P P ----=--,由2112P P -=-,所以111,22n n n P P n --⎛⎫-=-≥ ⎪⎝⎭,累加可得:2878108111118518521,1222128225612P P P ⎛⎫-- ⎪⎛⎫⎛⎫⎛⎫⎝⎭=+-+-+⋅⋅⋅+-==== ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭-- ⎪⎝⎭.故答案为:34;85256.四、解答题17.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,()22214cos a b B ab +-=-,且2cos c b B =.(1)求B ;(2)若ABC 的周长为423+,求BC 边上中线的长. 【答案】(1)π6B = (2)7.【分析】(1)已知条件结合余弦定理求得2π3C =,再由正弦定理求B . (2)由(1)求出角A ,利用三角形周长求出各边的长,再由余弦定理求BC 边上中线的长.【详解】(1)由()22214cos a b B ab +-=-,有22224cos a b b B ab +-=-,又2cos c b B =,所以2224cos c b B =,即222a b c ab +-=-, 由余弦定理,得2221cos 222a b c ab C ab ab +--===-. 又()0,πC ∈,所以2π3C =,由2cos c b B =及正弦定理,得sin 2sin cos C B B =,所以3sin 22B =, 由π0,3B ⎛⎫∈ ⎪⎝⎭,得2π20,3B ⎛⎫∈ ⎪⎝⎭,所以π23B =,解得π6B =.(2)由(1)可知π6B =,2π3C =,所以π2πππ636A =--=, 所以a b =,由2cos c b B =,得3c a =. 因为ABC 的周长为423+,所以3423a a a ++=+,解得2a =. 设BC 的中点为D ,则112CD BC ==,如图所示:AD==,所以BC.18.已知数列{}n a的前项和为n S,若()12n nnS n S+=+,且11a=.(1)求{}n a的通项公式;(2)设()2112nn nb na a-=≥,11b=,数列{}n b的前n项和为n T,求证32nT<.【答案】(1)n a n=(2)证明见解析【分析】(1)由已知等式可得12nnS nS n++=,采用累乘法可求得当2n≥时的nS,利用1n n na S S-=-可求得n a,检验首项后可得结论;(2)由(1)可得2n≥时nb的通项,由()()112122nbn n n n=<--,采用裂项相消法可求得11112nTn⎛⎫<+-⎪⎝⎭,由1n>可得结论.【详解】(1)由()12n nnS n S+=+得:12nnS nS n++=,则当2n≥时,()123211232111143123212n n n nn n nn nS S S S S S n n nS S S S S S n n n-----++-=⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅=---,又111S a==,()12nn nS+∴=,()()11122n n nn n n na S S n-+-∴=-=-=,经检验:11a=满足na n=;()na n n*∴=∈N.(2)由(1)得:当2n≥时,()()11111212221nbn n n n n n⎛⎫=<=-⎪---⎝⎭;123111111111112223341n n nT b b b b bn n-⎛⎫∴=+++⋅⋅⋅++<+-+-+-+⋅⋅⋅+-⎪-⎝⎭11112n⎛⎫=+-⎪⎝⎭,1n>,111n∴-<,1113111222nTn⎛⎫∴<+-<+=⎪⎝⎭.19.2018年9月10日,全国教育大会在北京召开,习近平总书记在会上提出“培养德智体美劳全面发展的社会主义建设者和接班人”.某学校贯彻大会精神,为学生开设了一门模具加工课,经过一段时间的学习,拟举行一次模具加工大赛,学生小明、小红打算报名参加大赛.(1)赛前,小明进行了一段时间的强化训练,加工完成一个模具的平均速度y (秒)与训练天数x (天)有关,经统计得到如下表数据:经研究发现,可用b y a x=+作为回归方程模型,请利用表中数据,求出该回归方程,并预测小明经过50天训练后,加工完成一个模具的平均速度y 约为多少秒?(2)小明和小红拟先举行一次模拟赛,每局比赛各加工一个模具,先加工完成模具的人获胜,两人约定先胜4局者赢得比赛.若小明每局获胜的概率为35,已知在前3局中小明胜2局,小红胜1局.若每局不存在平局,请你估计小明最终赢得比赛的概率.参考数据:(其中1i t x =) 参考公式:对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线ˆvu αβ=+的斜率和截距的最小二乘估计公式分别为1221n i ii n i i u v nu v unu β==-⋅=-∑∑,v u αβ=-⋅. 【答案】(1)100013ˆ0=+yx;150; (2)513625. 【分析】(1)令1t x =,则可利用最小二乘法估计ˆˆˆy bt a =+,从而得到ˆˆˆb y a x=+,代入x =50即可预测小明经过50天训练后,加工完成一个模具的平均速度;(2)设比赛再继续进行X 局小明最终赢得比赛,最后一局一定是小明获胜,且最多再进行4局就结束比赛分出胜负,则小明赢得比赛得概率P =P (X =2)+P (X =3)+P (X =4).【详解】(1)由题意,()19909904503203002402105007y =++++++=,令1t x =,设y 关于t 的线性回归方程为ˆˆˆy bt a =+, 则7172217184570.37500ˆ10000.557i ii i i t y t y b tt ==-⋅-⨯⨯===-∑∑, 则ˆ50010000.37130=-⨯=a, ∴100013ˆ0=+yt , ∴y 关于x 的回归方程为100013ˆ0=+y x, 当50x =时,ˆ150=y, ∴预测小明经过50天训练后,加工完成一个模具的平均速度y 约为150秒;(2)设比赛再继续进行X 局小明最终赢得比赛,则最后一局一定是小明获胜,由题意知,最多再进行4局就有胜负,X 的可能取值为2、3、4.当2X =时,小明4∶1胜,∴()33925525P X ==⨯=; 当3X =时,小明4∶2胜,∴()12333363C 1555125P X ⎛⎫==⨯⨯-⨯= ⎪⎝⎭; 当4X =时,小明4∶3胜,∴()2133331084C 1555625P X ⎛⎫==⨯⨯-⨯= ⎪⎝⎭. ∴小明最终赢得比赛的概率为93610851325125625625++=. 20.如图,圆台下底面圆O 的直径为AB , C 是圆O 上异于,A B 的点,且30BAC ∠=,MN 为上底面圆O '的一条直径,MAC △是边长为23的等边三角形,4MB =.(1)证明:BC ⊥平面MAC ;(2)求平面MAC 和平面NAB 夹角的余弦值.【答案】(1)证明见解析313【分析】(1)线线垂直从而证明线面垂直.(2)利用向量法,即可求二面角的余弦值.【详解】(1)∵AB 为圆台下底面圆O 的直径,C 是圆O 上异于,A B 的点,故=90ACB ︒∠又∵=30BAC ︒∠,23AC =,∴4AB MB ==∵AC MC =,BC BC =∴ABC MBC ≅,∴=90BCM ︒∠∴BC MC ⊥,又∵BC AC ⊥,AC MCC ,,AC MC ⊂平面MAC ∴BC ⊥平面MAC(2)取AC 的中点,连接,DM DO ,则MD AC ⊥,由(1)可知,BC DM ⊥∵AC BC C =,∴DM ⊥平面ABC , 又∵OD AC ⊥∴以D 为原点,DA 为x 轴,DO 为y 轴,DM 为z 轴,建立如下图所示的空间直角坐标系,由题意可得(3,0,0)A ,(3,2,0)B -,∵OO '⊥平面ABC ,∴//'DM OO ,四边形ODMO '为矩形,∴(0,2,3)N平面MAC 的一个法向量为1(0,1,0)n =.设平面NAB 的一条法向量为2(,,)n x y z =,(23,2,0)AB =-,(3,2,3)AN =-由2200n AB n AN ⎧⋅=⎪⎨⋅=⎪⎩ 得23203230x y x y z ⎧-+=⎪⎨++=⎪⎩ 令3x =3y =,1z =-平面NAB 的一个法向量为2(3,3,1)n =-则平面MAC 与平面NAB的夹角的余弦值为1212·3nn n n ==∴平面MAC 和平面NAB 21.已知抛物线2:2(0)C x py p =>在点()01,M y 处的切线斜率为12. (1)求抛物线C 的方程;(2)若抛物线C 上存在不同的两点关于直线:2l y x m =+对称,求实数m 的取值范围.【答案】(1)24x y =;(2)94m >.【分析】(1)根据给定条件,求出切线方程,再与抛物线C 的方程联立,借助判别式计算作答.(2)设出抛物线C 上关于l 对称的两点A ,B 的坐标,并设出直线AB 的方程,再与抛物线C 的方程联立,借助判别式及韦达定理计算作答.【详解】(1)点1(1,)2M p ,则切线方程为:11(1)22y x p -=-,由221(1)2py p x x py -=-⎧⎨=⎩消去y 并整理得: 210x px p -+-=,依题意,24(1)0p p ∆=--=,解得2p =,所以抛物线C 的方程是24x y =.(2)设抛物线C 上关于l 对称的两点为1122(,),(,)A x y B x y ,则设直线AB 方程为:12y x t =-+, 由2124y x t x y⎧=-+⎪⎨⎪=⎩消去y 并整理得:2240x x t +-=,则有4160t '∆=+>,解得14t >-, 122x x +=-,12121()2212y y x x t t +=-++=+,显然线段AB 的中点1(1,)2t -+在直线l 上, 于是得122t m +=-+,即有52t m =-,而14t >-,因此,5124m ->-,解得94m >, 所以实数m 的取值范围是94m >. 【点睛】结论点睛:抛物线22(0)x py p =≠在点200(,)2x x p 处的切线斜率0x k p =; 抛物线22(0)y px p =≠在点2000(,)(0)2y y y p ≠处的切线斜率0p k y =. 22.某品牌轿车经销商组织促销活动,给出两种优惠方案,顾客只能选择其中的一种. 方案一:每满6万元,可减6千元;方案二:金额超过6万元(含6万元),可摇号三次,其规则是依次从装有2个幸运号、2个吉祥号的一号摇号机,装有2个幸运号、2个吉祥号的二号摇号机,装有1个幸运号、3个吉祥号的三号摇号机各摇号一次,每次摇出一个号. 其优惠情况为:若摇出3个幸运号打6折;若摇出2个幸运号打7折;若摇出1个幸运号打8折;若没摇出幸运号不打折.(1)若某型号的车正好6万元,两名顾客都选方案二,求至少有一名顾客比选方案一更优惠的概率;(2)若你朋友看中一款价格为10万元的轿车,请用所学知识帮助你朋友分析一下应选择哪种优惠方案.【答案】(1)247256(2)方案二【分析】(1)设顾客三次没摇出幸运号为事件A ,由独立事件概率乘法公式求得()P A ,则利用对立事件概率得所求概率为()21P A -; (2)方案二,设付款金额为X 万元,则{}6,7,8,10X ∈,求出X 的分布列,期望与方案一比较即可.【详解】(1)方案一相当于打9折,要使选择方案二比选择方案一更优惠,则需要至少摇出1个幸运号,设顾客不打折即三次没摇出幸运号为事件A ,则()223344416P A =⨯⨯=, 故所求的概率()2232471116256P P A ⎛⎫=-=-= ⎪⎝⎭. (2)若选择方案一,则需要付款100.69.4-=(万元)若选择方案二,设付款金额为X 万元,则{}6,7,8,10X ∈, ()322116416P X ⨯⨯===,()322322122157416P X ⨯⨯+⨯⨯+⨯⨯===, ()322322322178416P X ⨯⨯+⨯⨯+⨯⨯===,()31016P X ==, 故X 的分布列为所以()1573678107.93759.416161616E X =⨯+⨯+⨯+⨯=<(万元),所以选方案二划算.。
长沙市雅礼中学2022-2023学年高三下学期月考试卷(八)数学试题(原卷版)

雅礼中学2023届高三月考试卷(八)数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}²4120A x x x =∈--<Z ,{}sin B y y e x x ==∈R ,,则A B =( ) A.{2,1,0,1,2}-- B.{}1|2x x -<< C.{1,0,1,2}-D.{2|x x ≥或}1x ≤-2.下列说法正确的是( )A.“a b ≥”是“22am bm ≥”的充要条件B.“4k x π=,k ∈Z ”是“tan 1x =”的必要不充分条件 C.命题“0x ∃∈R ,0012x x +≥”的否定形式是“x ∀∈R ,12x x +>”D.“1xy =”是“lg lg 0x y +=”的充分不必要条件3.斐波那契螺旋线被誉为自然界最完美的“黄金螺旋”,它的画法是:以斐波那契数1,1,2,3,5,8,…为边长比例的正方形拼成矩形,然后在每个正方形中画一个圆心角为90°的圆弧,这些圆弧所连起来的弧线就是斐波那契螺旋线,如图,矩形ABCD 是由若干符合上述特点的正方形拼接而成,其中16AB =,则图中的斐波那契螺旋线的长度为( )A.11πB.12πC.15πD.16π4.在平面直角坐标系中,已知点(3,4)P 为角α终边上一点,若1cos()3αβ+=,(0,)βπ∈,则cos β=( )A.315+B.315-C.415+D.415- 5.已知直角三角形ABC 中,90A ∠=︒,2AB =,4AC =,点P 在以A 为圆心且与边BC相切的圆上,则PB PC ⋅的最大值为( )C.165D.5656.已知0.75a =,52log 2b =,sin 5c π=,则a ,b ,c 的大小关系是( )A.c b a <<B.b c a <<C.c a b <<D.a c b <<7.若函数33()ln x e f x e x x x ⎛⎫=-+ ⎪⎝⎭只有一个极值点,则a 的取值范围是( )A.2,4e ⎛⎤-∞ ⎥⎝⎦B.(,0]-∞C.(]3,09e ⎧⎫-∞⎨⎬⎩⎭D.23,49e e ⎛⎤⎧⎫-∞⎨⎬ ⎥⎝⎦⎩⎭8.已知双曲线22122:1x y C a b==(0,0)a b >>与抛物线22:2C y px =(0)p >有公共焦点F ,过点F 作双曲线一条渐近线的垂线,垂足为点A ,延长FA 与抛物线2C 相交于点B ,若点A 为线段FB 的中点,双曲线1C 的离心率为e ,则2e =( )二、选择题;本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.上级某部门为了对全市36000名初二学生的数学水平进行监测,将获得的样本(数学水平分数)数据进行整理分析,全部的分数可0.040按照[)50,60,[)60,70,[)70,80,[)80,90,[]90,100分成5组,得到如图所示的频率分布直方图.则下列说法正确的是( )A.图中x 的值为0.025B.估计样本数据的80%分位数为84C.由样本数据可估计全市初二学生数学水平分数低于60分的人数约为360D.由样本数据可估计全市初二学生数学水平分数80分及以上的人数占比为3%10.一个质地均匀的正四面体表面上分别标有数字1,2,3,4,抛掷该正四面体两次,记事件A 为“第一次向下的数字为偶数”,事件B 为“两次向下的数字之和为奇数”,则下列说法正确的是( ) A.1()2P A =B.1()2P B A =C.事件A 和事件B 互为对立事件D.事件A 和事件B 相互独立11.如图,正方体1111ABCD A B C D -棱长为2,点P 是直线1A D 上的一个动点,则下列结论中正确的是( )A.BPB.PA PC +的最小值为C.三棱锥1B ACP -的体积不变D.以点B 1AB C 12.对于定义在区间D 上的函数()f x ,若满足:12,D x x ∀∈且12x x <,都有12()()f x f x ≤,则称函数()f x 为区间D 上的“非减函数”,若()f x 为区间[]0,2上的“非减函数”,且(2)2f =,()(2)2f x f x +-=,又当3,22x ⎡⎤∈⎢⎥⎣⎦时,()2(1)f x x ≤-恒成立,下列命题中正确的有( ) A.(1)1f =B.03,22x ⎡⎤∃⎢⎣∈⎥⎦,0()1f x <C.12257443184f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭D.10,2x ⎡⎤∀∈⎢⎥⎣⎦, (())()2f f x f x ≤-+三、填空题:本题共4小题,每小题5分,共20分.13.51(21)x x x ⎛⎫+- ⎪⎝⎭的展开式中含4x 项的系数为__________.14.已知点P 为抛物线2:4C y x =上的一个动点,直线:1l x =-,点Q 为圆22:(3)(31)M x y +-=+上的动点,则点P 到直线l 的距离与PQ 之和的最小值为__________.15.已知三棱锥P ABC -满足1PA =,PA ⊥平面ABC ,AC BC ⊥,若23P ABC V -=,则其外接球体积的最小值为__________.16.“0,1数列”是每一项均为0或1的数列,在通信技术中应用广泛.设A 是一个“0,1数列”,定义数列()f A :数列A 中每个0都变为“1,0,1”,A 中每个1都变为“0,1,0”,所得到的新数列.例如数列A :1,0,则数列()f A :0,1,0,1,0,1.已知数列1A :1,0,1,0,1,且数列1()k k A f A +=,1k =,2,3,…,记数列k A 的所有项之和为k S ,则1k k S S ++=__________.四、解答题:本题共6小题,共70分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.17.已知数列{}n a 的前n 项和为Sn ,且22n n S s a t n n =⋅+⋅-,*n ∈N .(1)当3s =,0t =时,求证:数列12n a ⎧⎫+⎨⎬⎩⎭为等比数列,并求出数列{}n a 的通项公式; (2)当0s =,3t =时,不等式1n na a λλ++≥对于任意2n ≥,*n ∈N 都成立,求实数λ的取值范围.18.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c 2sin 2cos 2B CB b +=. (1)求角A 的大小;(2)若BC 边上的中线1AD =,求ABC △面积的最大值.19.如图,在四棱锥P ABCD -中,PC ⊥底面ABCD ,四边形ABCD 是直角梯形,AD DC ⊥,AB DC ∥,222AB AD CD ===,点E 是PB 的中点.(1)证明:平面EAC ⊥平面PBC ;(2)若直线PB 与平面PAC ,求二面角P AC E --的余弦值. 20.某数学兴趣小组为研究本校学生数学成绩与语文成绩的关系,采取有放回的简单随机抽样,从学校抽取样本容量为200的样本,将所得数学成绩与语文成绩的样本观测数据整理如下:(2)在人工智能中常用(|)(|)(|)P B A L B A P B A =表示在事件A 发生的条件下事件B 发生的优势,在统计中称为似然比.现从该校学生中任选一人,A 表示“选到的学生语文成绩不优秀”,B 表示“选到的学生数学成绩不优秀”,请利用样本数据,估计(|)L B A 的值;(3)现从数学成绩优秀的样本中,按分层抽样的方法选出8人组成一个小组,从抽取的8人里再随机抽取3人参加数学竞赛,求这3人中,语文成绩优秀的人数X 的概率分布列及数学期望. 附:()()()()()22n ad bc a b c d a c b d χ-=++++,反射后必经过另一个焦点.若从椭圆2222:1(0)x y T a b a b+>>=的左焦点1F 发出的光线,经过两次反射之后回到点1F ,光线经过的路程为8,椭圆T 的离心率2. (1)求椭圆T 的标准方程;(2)设0(),D D x ,且D x a >,过点D 的直线l 与椭圆T 交于不同的两点M ,N ,点2F 是椭圆T 的右焦点,且2DF M ∠与2DF N ∠互补,求2MNF △面积的最大值. 22.已知函数31()6x f x e ax =-(a 为非零常数),记1()()n n f x f x +'=(n ∈N )0()()f x f x =,.(1)当0x >时,0f x ≥()恒成立,求实数a 的最大值; (2)当1a =时,设2()()nn i i g x f x ==∑,对任意的3n ≥,当nx t=时,()n y g x =取得最小值,证明:()0n n g t >且所有点(,())n n n t g t 在一条定直线上.。
扬州中学高三12月月考试题(数学)

扬州中学2008—2009学年度第一学期月考 高 三 数 学 试 卷 08.12一、填空题:(本大题共14小题,每小题5分,共70分.)1.35cos()3π-的值是 ▲ . 2. 当}21,1,2,1{-∈n 时,幂函数y=x n 的图象不可能经过第___▲______象限3.已知复数12312,1,32z i z i z i =-+=-=-,它们所对应的点分别为A ,B ,C .若OC xOA yOB =+,则x y +的值是 ▲ . 4.已知向量a bP a b=+,其中a 、b 均为非零向量,则P 的取值范围是 ▲ . 5.命题“∃x ∈R ,x 2-2x+l ≤0”的否定形式为 ▲ .. 6.设a 、b 、c 分别是△ABC 中∠A 、∠B 、∠C 所对边的边长,则直线sin 0x A ay c ⋅++= 与sin sin 0bx y B C -⋅+=的位置关系是 ▲ .7.在小时候,我们就用手指练习过数数. 一个小朋友按 如图所示的规则练习数数,数到2008时对应的指头是 ▲ .(填出指头的名称,各指头的名称依次为大拇指、食指、中指、无名指、小指).8.已知等差数列{}n a 满足:6,821-=-=a a .若将541,,a a a 都加上同一个数,所得的三个数依次成等比数列,则所加的这个数为 ▲ .9.若向量)1,3(=a ,(sin , cos )b m αα=-,(R ∈α),且b a //,则m 的最小值为_▲____ 10 已知函数()35xf x x =+-的零点[]0,x a b ∈,且1b a -=,a ,b N *∈,则a b +=▲ .11.已知{}n a 是首项为a,公差为1的等差数列,1n n na b a +=.若对任意的*n N ∈,都有8n b b ≥成立,则实数a 的取值范围是 ▲12.已知2()2f x x x =-,则满足条件()()0()()0f x f y f x f y +≤⎧⎨-≥⎩的点(,)x y 所形成区域的面积为▲ .13. 若函数1()ax f x e b=-的图象在x=0处的切线l 与圆C: 221x y +=相离,则P(a ,b)与圆C 的位置关系是 ▲ .14.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开始输入n输出S结束1(21)(21)S S i i =+-+1,0i S ==i=i+1?i n >是否重庆市永川中学2017届高三数学12月月考试题 理数学试题卷共2页。
考试时间120分钟。
第1至12题为选择题,60分;第13至23题为非选择题,90分。
满分150分。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2.答第1至12题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦擦干净后,再选涂其他答案标号。
3.答第13至23题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,将试题卷和答题卡一并交回。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分)1.已知集合{|(1)(2)0}A x x x =∈+-≤Z ,{|22}B x x =-<<, 则AB =( )A 、{|12}x x -≤<B 、{1,0,1}-C 、{0,1,2}D 、{1,1}- 2.在ABC ∆中,“4A π=”是“2cos A =”的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件3.已知i 是虚数单位,复数5i 2i--=( ) A 、2 B 、2- C 、i 2- D 、2i + 4.已知等比数列{}n a 中,若4810, 2.5,a a ==那么6a =( ) A 、5- B 、25 C 、5± D 、55.执行如右图所示的程序框图,如果输入3n =,则输出的S =( ) A 、67 B 、37 C 、89 D 、496.有4名优秀的大学毕业生被某公司录用,该公司共有5个部门,由公司人事部门安排他们去其中任意3个部门上班,每个部门至少安排一人,则不同的安排方法为( )A 、120B 、240C 、360D 、480 7.若二项式7)2(xax -的展开式中31x 的系数是84,则实数=a ( ) A 、2- B 、54- C 、1- D 、42-8.设2z x y =+,变量,x y 满足条件 ,若z 的最小值为3,则m 的值为( ) A 、1 B 、2 C 、3 D 、49.已知点M 是边长为2的正方形ABCD 的内切圆内(含边界)的一动点,则MB MA •的取值范围是( )A 、 []0,1-B 、[]2,1-C 、[]3,1-D 、[]4,1-10. 已知定义在R 上的可导函数()f x 的导函数为()f x ',满足()()f x f x '<,且(2)f x +为偶函数,(4)1f =,则不等式()xf x e <的解集为( )A 、(2,)-+∞B 、(0,)+∞C 、(1,)+∞D 、(4,)+∞11.设点M(0x ,1),若在圆O:221x y +=上存在点N,使得30OMN ∠=,则0x 的取值范围是( )A 、[]1,1-B 、 3,3⎡⎤-⎣⎦C 、 []2,2-D 、[]3,3-12.已知,a b R ∈,函数()ln 12f x x =+()-在12x =-处与直线ln 2y ax b =+-相切,设()2x g x e bx a =++,若在区间[]1,2上,不等式()22m g x m ≤≤-恒成立,则实数m ( )A 、有最小值e -B 、有最小值eC 、有最大值eD 、有最大值1e +第Ⅱ卷本卷包括必做题和选作题两部分,第13-21题为必做题,每个试题考生都必须作答。
第22-23题为选考题,考生根据要求作答。
二、填空题(本大题4小题,共20分)13.已知向量(sin ,1),(2cos ,1)a b θθ==-且(0,)θπ∈,若a b ⊥,则=θ________。
14.甲、乙两人在5次综合测评中成绩的茎叶图如图所示,其中一个数字被污损,记甲,乙的平均成绩分别为x 甲,x 乙,则x >甲x 乙的概率是________。
15.已知点P 在单位圆122=+y x 上运动,点P 到直线01043=--y x 与3=x 的距离分别记1d 、2d ,则21d d +最小值为________。
16. 在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足232cos2A A =,sin()4cos sin B C B C -=,则bc=________。
三、解答题(解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)在各项均为正数的等比数列{}n a 中,12a =,且12a ,3a ,23a 成等差数列.(Ⅰ)求等比数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足2112log n n b a =-,求数列{}n b 的前n 项和n T 的最大值.18.(本小题满分12分)某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,远离毒品”的电视公益广告,期望让更多的市民知道毒品的危害性.禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段在)2010[,,)30,20[,)4030[,,)5040[,,)6050[,的市民进行问卷调查,由此得到样本占有率分布直方图如图所示.(Ⅰ)求随机抽取的市民中年龄在)4030[,的人数;(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5人,求)6050[,年龄段抽取样品的人数;(Ⅲ)从(Ⅱ)中方式得到的5人中再抽取2人作为本次活动的获奖者,记X 为年龄在)6050[,年龄段的人数,求X 的分布列及数学期望.19.(本小题满分12分)已知函数()23cos sin 3cos 3f x x x x π⎛⎫=⋅+-+ ⎪⎝⎭,x R ∈.(Ⅰ)求()f x 的单调递增区间; (Ⅱ)在锐角ABC 中,角,,A B C 的对边分别为,,a b c ,若3(A),34f a ==,求ABC 面积的最大值.20.(本小题满分12分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为12,以原点为圆心,椭圆的短半轴长为半径的圆与直线75120x y -+=相切.(Ⅰ)求椭圆C 的方程;(Ⅱ)设(4,0)A -,过点(3,0)R 作与x 轴不重合的直线l 交椭圆C 于P ,Q 两点,连接AP ,AQ 分别交直线163x =于M ,N 两点,若直线MR 、NR 的斜率分别为1k 、2k ,试问:12k k 是否为定值?若是,求出该定值,若不是,请说明理由.21. (本小题满分12分)已知函数()f x 12ln ,m emx x m R x-+=--∈函数1()ln cos g x x x θ=+在[1,+∞)上为增函数,且(,)22ππθ∈-.(Ⅰ)求θ的值 ;(Ⅱ)当0m =时,求函数()f x 的单调区间和极值;(Ⅲ)若在[1,]e 上至少存在一个0x ,使得00()()f x g x >成立,求m 的取值范围.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
22.(本小题满分10分)已知曲线C 的极坐标方程是1ρ=,以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为t t y t x (232,21⎪⎪⎩⎪⎪⎨⎧+=+=为参数).(Ⅰ)写出直线l 与曲线C 的直角坐标方程;(Ⅱ)设曲线C 经过伸缩变换⎩⎨⎧='='yy x x ,2得到曲线C ',设曲线C '上任一点为),(y x M ,求y x 32+的最小值.23.(本小题满分10分) 已知函数()3 2.f x x x =--+ (Ⅰ)若不等式()1f x m ≥-有解,求实数m 的最小值M ; (Ⅱ)在(1)的条件下,若正数,a b 满足3a b M +=-,证明:313b a+≥.永川中学2016~2017学年上期考试评分细则高2017级12月月考数学(理科)一.选择题1-6:BCADBC 7-12:CACBBD二、填空题 13.4π 14. 25; 155545-16 16+ 三、解答题17、解:(Ⅰ)设数列{}n a 的公比为q ,0n a >.因为12a ,3a ,23a 成等差数列,所以123232a a a +=,则2111232a a q a q +=,所以22320q q --=,解得2q =或12q =-(………………………………… 3分又12a =,所以数列{}n a 的通项公式2n n a =…………………………………6分 (Ⅱ) 2112log 112n n b a n =-=-,……………………………………………8分 则19b =,12n n b b +-=-,故数列{}n b 是首项为9,公差为-2的等差数列, 所以2(9112)102n n n T n n +-==-+2(5)25n =--+………………………10分所以当5n =时,n T 的最大值为25 …………………………………12分 18、解 :(I )由图知,随机抽取的市民中年龄段在)4030[,的频率为 1-10⨯(0.020+0.025+0.015+0.010)=0.3,即随机抽取的市民中年龄段在)4030[,的人数为100⨯0.3=30人. ………3分(II )由(I )知,年龄段在)5040[,,)6050[,的人数分别为100⨯0.15=15人,100⨯0.1=10人,即不小于40岁的人的频数是25人, ∴ 在)6050[,年龄段抽取的人数为10⨯255=2人. ……………………6分 (III )由已知X =0,1,2,P (X =0)=1032523=C C ,P (X =1)=53251312=C C C ,P (X =2)=1012522=C C , ∴ X 的分布列为∴ EX =0×10+1×5+2×10=5. ………………………………12分19、22133133()cos (sin cos )3cos cos sin cos 22111sin 2cos 2x)sin 22x (2x )4423f x x x x x x x x x x sin π=+-+=-+=++=-=-…4分∵5-+222,2321212k x k k x k πππππππππ≤-≤+⇒-+≤≤+ ∴函数()f x 的 单调增区间为5[,](k Z)1212k k ππππ-++∈ (2)因为有()12=sin(2A-2A-23333f A ππππ=则或, 32A A ππ∴==或又因为ABC ∆为锐角,则=3A π,由余弦定理可得: 222222cos 3a b c bc A bc bc =+-=+-,即因为223+23bc b c bc bc =+≥≤,所以,……………………………10分∴1sin 2ABC S bc A ∆=≤,ABC ∆面积的最大值为4。