冀教版七年级数学上册 1.3 绝对值与相反数 教案
冀教版数学七年级上册《1.3绝对值和相反数》教学设计3

冀教版数学七年级上册《1.3 绝对值和相反数》教学设计3一. 教材分析冀教版数学七年级上册《1.3 绝对值和相反数》是学生在学习了有理数的基础上进一步学习的知识点。
本节内容主要介绍绝对值和相反数的概念及其性质。
通过本节课的学习,学生能够理解绝对值和相反数的含义,掌握它们的运算规则,并能运用它们解决实际问题。
二. 学情分析七年级的学生已经具备了一定的有理数基础,对数学概念和运算规则有一定的认识。
但部分学生可能对抽象的概念理解起来较为困难,需要通过具体的例子和实际操作来加深理解。
三. 教学目标1.理解绝对值和相反数的概念,掌握它们的性质和运算规则。
2.能够运用绝对值和相反数解决实际问题。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.绝对值和相反数的概念及其性质。
2.绝对值和相反数的运算规则。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题情境,引导学生自主探究和合作交流,从而达到理解概念、掌握性质和运算规则的目的。
六. 教学准备1.教学PPT。
2.练习题。
3.小组合作学习资料。
七. 教学过程1.导入(5分钟)利用PPT展示几个实际问题,如地图上的距离、温度计的读数等,引导学生思考如何表示这些问题的数学关系。
从而引出绝对值和相反数的概念。
2.呈现(15分钟)讲解绝对值和相反数的定义,利用PPT展示相关例题,让学生观察和分析,引导学生总结出绝对值和相反数的性质和运算规则。
3.操练(15分钟)让学生独立完成PPT上的练习题,教师巡回指导,及时解答学生的疑问。
4.巩固(10分钟)以小组为单位,让学生互相出题,进行小组内部的讨论和解答。
教师选取部分题目进行讲解,巩固学生对概念和运算规则的理解。
5.拓展(10分钟)让学生思考绝对值和相反数在实际生活中的应用,如计算购物时的折扣、判断比赛成绩等。
引导学生运用所学知识解决实际问题。
6.小结(5分钟)教师引导学生总结本节课所学内容,让学生复述绝对值和相反数的定义、性质和运算规则。
冀教版(2024)数学七年级上册1.3 绝对值与相反数

探究新知
定义: 像-4与4,-2与2,-1.5与+1.5这样符号 不同,绝对值相等的两个数,我们称其中一个数是 另一个数的相反数,这两个数互为相反数,0的相 反数是0.
探究新知
思考:(1)互为相反数的两个数在现实生活中有什 么意义呢?举例说明。 (2)如何表示一个数的相反数呢?
有理数a的相反数可以表示为-a.
归纳总结: 一个正数的绝对值等于它本身,一个负数的绝对值 等于它的相反数,0的绝对值是0.
探究新知
如果有理数用a表示,则有: 当a是正数时,|a |=a; 当a=0时,|a |=0; 当a是负数时,|a |= -a。
探究新知
思考: 如果一个数的绝对值等于它本身,那么这个数是 非负数 ; 如果一个数的绝对值等于它的相反数,那么这个数 是 非正数 。 符号语言:若|a |=a,则a ≥0 ;若|a |= -a,则a ≤0 .
A. -( - 5 )与 -|- 5|
B.|- 3|与|+3|
C. - (- 1)与|- 1|
D.|m|与|- m|
巩固练习
3.某车间生产了一批圆形机器零件,从中抽取6个进行检查, 比标准直径长的毫米数记作正数,比标准直径短的毫米数 记作负数,检查记录如下表:
编号 1
2
3
4
5
6
结果 -0.3 -0.2 +0.3 +0.2 -0.4 -0.1 指出第几个零件好些?请用学过的绝对值知识来说明.
学生活动二 【探究相反数的概念】
思考:例1中有到原点的距离相等的点吗?请找出 来,并说明这些数有什么特征?在数轴上的位置又 有什么特征?(从数与形的角度考虑)
探究新知
到原点距离相等的点有: -4与4,-2与2,-1.5与+1.5; 每组数的符号不同,绝对值相同; 在数轴上在原点的两侧,且到原点的距离相等。
冀教版七年级数学上册《绝对值和相反数》说课稿

冀教版七年级数学上册《绝对值和相反数》说课稿一、教材分析《绝对值和相反数》是冀教版七年级数学上册的一篇教学内容,主要介绍了绝对值的概念和性质,以及相反数的定义和运算规律。
本单元的教学内容对于培养学生的数学思维能力和运算能力具有重要意义。
二、教学目标1.知识目标:通过本节课的学习,学生应该掌握绝对值的概念和性质,能够正确计算和运用绝对值;同时能够理解相反数的概念和运算规律,能够进行相反数的加减运算。
2.能力目标:培养学生观察问题、分析问题、解决问题的能力,同时提高他们的逻辑思维能力和数学推理能力。
3.情感目标:通过多样化的教学方法和教学活动,激发学生的学习兴趣,培养他们积极参与课堂讨论,发散思维,培养学习自主性和合作精神。
三、教学重难点1.教学重点:帮助学生准确理解绝对值的概念,正确运用绝对值进行计算;引导学生理解相反数的概念,掌握相反数的加减运算规律。
2.教学难点:引导学生独立思考绝对值和相反数的概念,培养他们灵活运用数学知识解决问题的能力。
四、教学过程与方法(一)导入环节通过展示一些实际生活中的例子,引起学生对于绝对值和相反数的兴趣,如一个物体上升的高度和下降的深度、温度的正负表示等。
(二)知识讲解1.绝对值的定义:向学生解释绝对值的概念,即一个数在不考虑其正负时,它与0之间的距离。
例如,|2|的绝对值是2,|-5|的绝对值是5。
2.绝对值的性质:–非负性:任意实数的绝对值都是非负数,即|a| ≥ 0。
–等于性:如果一个数的绝对值为0,则该数必须是0。
–正负性:如果一个数的绝对值大于0,则该数可以是正数或负数。
3.相反数的定义:一个数的相反数是指与这个数的和等于0的数。
相同绝对值,符号相反。
–例如,5的相反数是-5,-7的相反数是7。
(三)示例分析通过一些实际问题和算术运算,引导学生运用绝对值和相反数进行计算和问题解决。
(四)练习与巩固出示一些具体的练习题,让学生通过练习巩固所学的知识。
如: 1. 计算 |3| + |-4| 的结果。
1.3 绝对值与相反数七年级上册数学冀教版

解:
| 3 | 3 ,| 2.5 | 2.5, 88
| 3 | 3 ,| 2.5 | 2.5 88
互为相反数的两个 数的绝对值相等.
新知探究 知识点3 绝对值的性质
问题8 求下列各数的绝对值.
12, 3 -7.5, 0。 5
解: |12|=12; 正数的绝对值等于它本身
如何求一个数的相反数? 在这个数前加一个“-”号.
新知探究 知识点2 相反数
问题5 若把 a分别换成+5,-7,0时,这些数的相反数怎样表示?
a = +5, - a = -(+5) -5
a = -7, - a = -(-7)
7
a = 0, - a = 0
0
化简多重符号时,只需数一下数字前面有多少个负号,若有偶 数个,则结果为正;若有奇数个,则结果为负.
6.____0___的相反数是它本身,__非___负__数__的绝对值是它本 身,___非__正__数____的绝对值是它的相反数.
随堂练习 7.化简下列各数,并求出它们的绝对值. (1)-(+10) (2)+(-0.15) (3)+(+3) (4)-(-12) (5)+[-(-1.1)] (6)-[+(-7)]
西 3米
东 3米
课堂导入
西 3米
东 3米
A
3
O
3
B
-3 -2
-1
0
问题:
1.它们所跑的路线相同吗?
1
23
路线不同, 正负性
路程一样,到 原点的距离相 等(不管方向)
2.它们所跑的路程(线段OA、OB的长度)一样吗?
冀教版数学七年级上册《1.3 绝对值和相反数》说课稿2

冀教版数学七年级上册《1.3 绝对值和相反数》说课稿2一. 教材分析冀教版数学七年级上册《1.3 绝对值和相反数》是学生在初中阶段第一次接触到关于绝对值和相反数的概念。
这一节的内容是在学生已经掌握了有理数的概念和运算法则的基础上进行讲解的,旨在让学生能够更好地理解和运用有理数,提高他们的数学思维能力。
教材首先介绍了绝对值的概念,通过实例让学生理解绝对值的含义和性质,然后引入了相反数的定义,并通过大量的例子让学生掌握相反数的性质和运用。
最后,教材还介绍了绝对值和相反数在实际问题中的应用,让学生能够将所学的知识运用到实际问题中。
二. 学情分析学生在进入七年级之前,已经掌握了有理数的概念和运算法则,对于一些基本的数学概念和运算规则有一定的理解。
但是,由于学生的学习背景和能力不同,对于一些概念的理解可能会有所欠缺,需要教师在教学过程中进行详细的解释和引导。
同时,学生在学习过程中可能存在一些困难,比如对于绝对值和相反数的理解可能存在一些模糊的地方,需要教师通过具体的例子和讲解让学生加深理解。
此外,学生的思维能力和解决问题的能力也有待提高,需要教师在教学过程中进行有意识的培养和引导。
三. 说教学目标1.让学生理解绝对值和相反数的概念,掌握它们的性质和运用。
2.培养学生的数学思维能力和解决问题的能力。
3.让学生能够将所学的知识运用到实际问题中,提高他们的应用能力。
四. 说教学重难点1.绝对值和相反数的概念的理解和运用。
2.绝对值和相反数在实际问题中的应用。
五. 说教学方法与手段在教学过程中,我会采用讲解法、引导法、实践法等多种教学方法,通过讲解、举例、练习等方式让学生理解和掌握绝对值和相反数的概念和运用。
同时,我还会利用多媒体教学手段,比如PPT、视频等,来丰富教学内容和形式,提高学生的学习兴趣和效果。
六. 说教学过程1.导入:通过引入实例,让学生理解绝对值的含义和性质,引导学生思考绝对值和相反数的关系。
2.讲解:讲解绝对值和相反数的定义和性质,通过具体的例子让学生理解和掌握。
冀教版七年级上册数学第1章 有理数 绝对值与相反数的认识

知2-练
知2-练
2【中考·广东】-2的相反数是( A)
A.2B.-2C. D.-
1
1
【中考·广元】一个数的相反数2是3,这个数 2
是( )
A. B.-DC.3D.-3
1
1
3
3
1.相反数的意义: 代数意义:(1)成对出现;(2)只有符号不同,即a的相 反数是-a,特殊的:0的相反数是0. 几何意义:数轴上原点两旁且到原点距离相等的两个 点所表示的数互为相反数. 2.多重符号化简的方法规律: 方法一:把所有的正号去掉;负号的个数是偶数时结 果为正,是奇数时结果为负,即“奇负偶正”. 方法二:采用两个同号得正,异号得负,分成化简.
解:如下图.
2.5的绝对-值6 -是5 -42.-53,-26-的1 绝0 对1 值2 是3 64 ,5 -6 47的绝对值是4,-1.5 的绝对值是1.5,0的绝对值是0,即|2.5|=2.5,|6|=6,|-4| =4,|-1.5|=1.5,|0|=0.
总结
Байду номын сангаас知1-讲
本题运用了定义法,首先要在数轴上表示出各 数,然后观察各点到原点的距离,即可得到各数的 绝对值.
5 A.3
B.-3
6 C.-1
D.
1
3
3
知2-导
知识点 2 相反数的定义
(1)相反数的几何定义:在数轴上表示两个数的点,如果分别位 于原点两侧,并且到原点的距离相等,那么这两个数互为相反 数.如图所示,4与-4互为相反数,互1 1为与相 1反1 数.
55
在数轴上,表示互为相反数的两点,位于原点的两侧,并且到 原点的距离相等,也就是说,它们相对原点的位置只有方向不 同. (2)相反数的代数定义:符号不同、绝对值相等的两个数,我们 称其中一个数是另一个数的相反数,也称这两个数互为相反数. 0的相反数是0.
冀教版七年级数学上册《绝对值和相反数》教案及教学反思

冀教版七年级数学上册《绝对值和相反数》教案及教学反思一、教学设计1.教学内容本课程教学的是《绝对值和相反数》。
该课程主要包括以下三个部分:•绝对值的定义及性质•相反数的定义及性质•绝对值和相反数的实际应用2.教学目标本课程的教学目标主要包括以下几个方面:•学生能正确理解绝对值和相反数的概念及本质•学生掌握绝对值的计算方法及其基本性质•学生掌握相反数的计算方法及其基本性质•学生能够运用绝对值和相反数解决实际问题3.教学方法本课程采用多种不同的教学方法,包括讲授法、练习法、实验法、小组讨论法等。
4.教学步骤第一步:引入课题引导学生回顾数学知识,引出“绝对值”和“相反数”的概念,探究实际生活中的应用。
第二步:讲授知识讲解绝对值和相反数的概念、性质、计算方法及其在实际问题中的应用。
第三步:练习及巩固通过一些练习来巩固学生对绝对值和相反数的理解和掌握,加深对绝对值和相反数的印象和认识。
第四步:拓展应用引导学生运用所掌握的知识解决实际问题,培养学生的数学思维能力和解决实际问题的能力。
第五步:总结反思对本节课的知识点、难点、疑点以及授课过程中存在的问题、教师的讲授方式、学生的学习情况和反应进行总结和反思,并对后续的教学进行布置和建议。
二、教学反思本节课的教学过程相对比较顺利,学生在课堂上的表现也比较出色。
主要表现在以下几个方面:1.教学运用了多种不同的教学法本课程采用了多种不同的教学方法,包括讲授法、练习法、实验法、小组讨论法等。
这样的方式可以让每个学生都有机会参与到教学当中,提高课程的互动性和探索性。
2.教学中强调了实际生活中的应用本节课在讲解绝对值和相反数的时候,更加注重与实际生活中的应用进行联系,让学生能够更加真实地理解和把握知识点,而不仅仅是停留在抽象的概念上。
3.课堂气氛比较活跃在教学过程中,教师时不时会与学生互动,通过问题、练习等形式来检测学生掌握知识的情况,引导学生探究知识。
这样的方式可以让学生更加活跃地参与到课堂中,培养学生的好奇心和探究精神。
2020-2021学年最新冀教版七年级数学上册《绝对值和相反数》教学设计-优质课教案

课时3(绝对值和相反数)教学目标:1.使学生初步理解绝对值的概念。
2.明确绝对值的代数定义和几何意义;会求一个已知数的绝对值;会在已知一个数的绝对值条件下求这个数。
3.培养学生用数形结合思想解决问题的能力,渗透分类讨论的数学思想。
4.使学生了解互为相反数的几何意义。
5.会求一个已知数的相反数;会对含有多重符号的数进行化简。
6.培养学生的观察、归纳与概括的能力;渗透数形结合思想。
教学重点难点:1.让学生掌握求一个已知数的绝对值及正确理解绝对值的概念。
2.对绝对值的几何意义、代数定义的导出、对“负数的绝对值是它的相反数”的理解。
3.理解相反数的代数定义与几何定义,熟练地求出一个已知数的相反数。
4.多重符号的数的化简问题的理解。
教学过程:一、复习引入:1.在数轴上分别找出表示各数的点。
6与―6,―213与213,―1.5与1.5 想一想:在数轴上,表示每对数的点有什么相同?有什么不同?2.观察数6与―6,―213与213,―1.5与1.5有何特点?,观察每组数所对应的两个点的位置关系有什么规律?学生归纳:每组中的两个数只有符号不同,他们所对应的两点分别在原点的两侧,到原点的距离相等。
二、讲授新课:1.发现、总结相反数的定义:象这样只有符号不同的两个数称互为相反数 (opposite number)。
理解:代数定义:只有符号不同的两个数互为相反数。
0的相反数是0。
几何定义:在数轴上原点两旁,离开原点距离相等的两个点所表示的两个数互为相反数。
0的相反数是0。
说明:“互为相反数”的含义是相反数,是成对出现的,因而不能说“―6是相反数”。
“0的相反数是0”是相反数定义的一部分。
这是因为0既不是正数,也不是负数,它到原点的距离就是0,这是相反数等于它本身的唯一的数。
2.例题:例1:判断下列说法是否正确:①―5是5的相反数; ( )② 5是―5的相反数; ( ) ③5与―5互为相反数; ( ) ④―5是相反数; ( )⑤正数的相反数是负数,负数的相反数是正数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3 绝对值与相反数【教学整体设计】
【教学目标】
1.能借助数轴理解相反数和绝对值的意义,会求一个数的相反数和绝对值.在实际生活中能知道相反数和绝对值的意义.会用字母表示一个数的绝对值和这个数的关系,并能借此解决一些简单的问题.
2.经历将实际问题数学化的过程,感受数学在生活中的应用价值,经历用字母表示规律的过程,感受由特殊到一般的特点.
【重点难点】
重点:理解绝对值、相反数的意义,会求一个数的相反数和绝对值.
难点:会用绝对值、相反数的意义解释一些实际问题和现象.
【教学过程设计】。