现代控制理论实验指导书3-第3章[1]
《现代控制理论》实验课程教学大纲

《现代控制理论》实验课程教学大纲1.实验课名称:现代控制理论2.实验课程名称(英文):Modern Control Theory3.课程代码:X0402064.实验课程性质:非独立设课5.学时:106.学分:7.适用专业:自动化、电气工程及其自动化8.先修或同修课程:高等数学、线性代数、电路学、自动控制原理9.开课单位:机电工程学院电气工程及自动化实验室10.制定实验教学大纲的依据:根据教学大纲的要求、设定实验内容11.本实验课在培养实验能力的地位及作用:《现代控制理论》课程是自动化、电气工程及其自动化专业一门理论性和实践性很强的专业课。
通过本实验课的学习,使学生进一步理解与掌握系统建模的状态空间表达的基本思想方法,闭环控制系统分析与综合的基本原理;培养学生工程实践动手能力、分析问题及解决问题的能力,掌握现代控制理论的计算机模拟及稳定性能测试方法,使理论教学得到有效的巩固与提高。
12.应达到的实验能力标准:简单控制系统的分析和综合应用等。
13.实验内容(1)系统的传递函数阵和状态空间表达式的转换学习多变量系统状态空间表达式的建立方法、了解统状态空间表达式与传递函数相互转换的方法,通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数相互转换方法。
(2)多变量系统的能控性判别与稳定性分析学习多变量系统状态能控性及稳定性分析的定义及判别方法,通过用MATLAB编程、上机调试,掌握多变量系统能控性及稳定性判别方法。
(3)多变量系统的能观性判别与稳定性分析学习多变量系统状态能观性及稳定性分析的定义及判别方法,通过用MATLAB编程、上机调试,掌握多变量系统能观性及稳定性判别方法。
(4)通过状态反馈实现控制系统的极点配置了解和掌握闭环控制系统极点配置的设计步骤,对工程中常见的控制系统进行极点配置设计。
(5)状态观测器的设计了解和掌握状态观测器的基本特点,设计控制系统的全状态观测器。
14.实验成绩考核办法每次实验结束后,学生必须提交实验报告。
现代控制理论-基于MATLAB的实验指导书课程设计指导书

现代控制理论基于MATLAB的实验指导书第一部分实验要求1.实验前做好预习。
2.严格按照要求操作实验仪器,用毕恢复原状。
3.实验完成后,由指导教师检查实验记录、验收仪器后,方可离开。
4.实验报告应包括以下内容:1)实验目的;2)实验原理图;3)实验内容、步骤;4)仿真实验结果(保留仿真实验波形,读取关键参数);5)仿真实验结果分析。
第二部分MATLAB平台介绍实际生产过程中,大部分的系统是比较复杂的,并且要考虑安全性、经济性以及进行实验研究的可能性等,这在现场实验中往往不易做到,甚至根本不允许这样做。
这时,就需要把实际系统建立成物理模型或数学模型进行研究,然后把对模型实验研究的结果应用到实际系统中去,这种方法就叫做模拟仿真研究,简称仿真。
到目前为止,已形成了许多各具特色的仿真语言。
其中美国Mathworks软件公司的动态仿真集成软件Simulink与该公司著名的MATLAB软件集成在一起,成为当今最具影响力的控制系统应用软件。
国内MA TLAB软件的著名论坛为“MATLAB中文论坛”,网址为:https:///forum.php,建议同学们注册并参与论坛相关内容的讨论。
图1 MA TLAB仿真环境第三部分 实验实验一线性系统的时域分析实验目的熟悉MATLAB 环境,掌握用MATLAB 控制系统工具箱进行线性定常系统的时域分析、能控性与能观性分析、稳定性分析的方法。
实验要求完成指导书规定的实验内容,记录并分析实验结果,写出实验报告。
实验内容1.已知系统的状态模型,求系统在单位阶跃输入下的各状态变量、输出响应曲线。
例:[]⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡2121214493.69691.1,0107814.07814.05572.0x x y u x x x x 。
键入:a = [-0.5572, -0.7814; 0.7814,0]; b = [1; 0]; c = [1.9691,6.4493]; d = 0;[y, x, t]=step(a, b, c, d); plot(t, y); grid (回车,显示输出响应曲线。
现代控制理论实验指导书

现代控制理论实验指导书实验⼀多变量时域响应⼀、实验⽬的1、掌握多输⼊多输出(MIMO )系统传递函数的建⽴2、分析MIMO 系统时域响应的特点⼆、实验仪器1、 TDN —AC/ACS 型⾃动控制系统实验箱⼀台2、⽰波器3、万⽤表三、实验原理与电路1、传递函数矩阵关于传递函数矩阵的定义是当初始条件为零时,输出向量的拉⽒变换式与输⼊向量的拉⽒变换式之间的传递关系。
设系统动态⽅程为()()x Ax t Bu t ?=+,()()()y t Cx t Du t =+令初始条件为零,进⾏拉⽒变换,有()()()()()()sX s AX s BU s Y s CX s DU s =+=+则11()()()()[()]()()()X s sI A BU s Y s C sI A B D U s G s U s --=-=-+=系统的传递函数矩阵表达式为1()()G s C sI A B D -=-+设多输⼊多输出系统结构图如图1-1。
图1-1多输⼊多输出系统结构图它是由传递函数矩阵为()G s 和()H S 的两个⼦系统构成。
由于()()()()[()()]()[()()()]Y s G s E s G s U s Z s G s U s H s Y s ==-=-1()[()()]()()Y s I G s H s G s U S -=+闭环传递矩阵为:1()[()()]()s I G s H s G s -Φ=+ 2、实验题⽬某⼀控制系统如图1-2,为⼆输⼊⼆输出系统的结构图。
图1-2 ⼆输⼊⼆输出系统的结构图由系统结构图可知,控制器的传递函数阵()c G s 为10()01c G s ??=被控对象的传递函数阵()p G s 为1/(0.11)0()1/(0.11)1/(0.11)p s G s s s +??=??++??反馈传递函数阵()H s 为10()01H s ??=?于是根据闭环传递矩阵公式得1()[()()()]()()c p c p s I G s G s H s G s G s -Φ=+ 将(),(),()c p G s G s H s 代⼊上式可得1101/(0.11)01010()011/(0.11)1/(0.11)0101s s s s -?+Φ=+++1/(0.11)0101/(0.11)1/(0.11)01s s s +++化简得21/(0.12)0()(0.11)/(0.12)1/(0.12)s s s s s +??Φ=??+++??由上式可得系统的输出量()()0.12Y s U s s =+21220.111()()()(0.12)0.12s Y s U s U s s s +=+++ 四、实验内容及步骤1、根据图1-2设计模拟电路图1-3,并按图1-3搭接线路图1-3 系统模拟电路图2、令u1为⼀阶跃信号,观察并记录系统输出的波形。
现控实验指导书

现代控制理论》实验指导书王璐自动化07-1 班山东科技大学机电系实验一系统的传递函数阵和状态空间表达式的转换、实验目的1 •学习多变量系统状态空间表达式的建立方法、了解状态空间表达式与传递函数相互转换的 方法; 2.通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数相互转换方法。
、实验要求学习和了解系统状态方程的建立与传递函数相互转换的方法;其中A 为n x n 维系数矩阵、B 为n x r 维输入矩阵C 为m x n 维输出矩阵,D 为传递阵,一般情况下为0。
系统的传递函数阵和状态空间表达式之间的关系如式(1 — 2)示。
式(1.2)中,num(s)表示传递函数阵的分子阵,其维数是 m x r ; den(s)表示传递函数阵的按s 降幕排列的分母。
五、实验步骤1 .据所给系统的传递函数或( A 、B 、C 阵),依据系统的传递函数阵和状态空间表达式之间的 关系如式(1— 2),采用MATLA B file.m 编程。
注意:ss2tf 和tf2ss 是互为逆转换的指令; 2. 在MATLA 界面下调试程序,并检查是否运行正确。
3. 已知MIMO 系统的系统的传递函数,求系统的空间状态表达式。
系统的传递函数为:4. 从系统的传递函数(1.4)式求状态空间表达式。
程序:num =[0 0 1 2;0 1 5 3]; %在给num 赋值时,在系数前补0,必须使num 和den 赋值的个 数相同; den =[1 2 3 4];[A,B,C,D]=tf2ss( num,de n)二、实验设备1. 计算机1台2.MATLAB6.X 软件 1 套。
四、实验原理说明设系统的模型如式 x Axy Cx(1 — 1)示。
Bu x DuR n u R r y R m(1— 1)G (S )器 C (SI A )1B D(1 — 2)G(S)s 2 5s 3 s 32s 23s 4(1 — 4)程序运行结果A =-2 -3 -4 1 0 0 0 1B =1 0 0在已知系统的状态空间表达式可以求得系统的传递函数,现在已知系统的状态空间表达式来求 系统的传递函数,对上述结果进行相应的验证。
《现代控制理论》实验指导书 第一部分 使用说明

《现代控制理论》实验指导书第一部分使用说明(1)微纳科技cSPACEcSPACE快速控制原型和硬件在回路开发系统(以下简称cSPACE系统)拥有AD、DA、IO、Encoder和快速控制原型开发、硬件在环仿真功能,通过Matlab/Simulink设计好控制算法,将输入、输出接口替换为cSPACE模块,编译整个模块就能自动生成DSP代码,在控制卡上运行后就能生成相应的控制信号,从而方便地实现对被控对象的控制。
运行过程中通过cSPACE提供的MATLAB接口模块,可实时修改控制参数,并以图形方式实时显示控制结果;而且DSP采集的数据可以保存到磁盘,研究人员可利用MATLAB对这些数据进行离线处理。
cSPACE主要能完成:平台实验、一级倒立摆的经典控制实验;一级倒立摆、二级倒立摆的现代控制实验;一级倒立摆、二级倒立摆的智能控制实验。
图1为利用cSPACE工具的开发流程图。
图1 cSPACE开发流程图1(2)AEDK-LabACT-3A自控原理实验箱AEDK-LabACT-3A自动控制实验箱主要能完成:1、自动控制原理实验;2、微机控制技术实验;3、控制系统实验。
自动控制实验箱根据这三个实验项目设计了四个功能区来实现。
根据功能本实验机划分了各种实验区均在主实验板上。
实验区组成见表1。
表1 实验区组成A 实验区模拟运算单元有六个模拟运算单元,每单元由多组电阻、或电容构成的输入回路、反馈回路和1~2个运算放大器组成。
A1~A6模拟运算扩充库包括校正网络库(A7)、整形模块(A8),可调零放大器(A9),放大器(A10)和2个0~999.9KΩ的直读式可变电阻、2个电位器及多个电容(A11)。
A7~A11B 实验区手控阶跃信号发生器由手控阶跃发生(0/+5v、-5v/+5v),幅度控制(电位器),非线性输出组成。
B1 函数发生器含有十种(可选择)波形输出:矩形波、正弦波、斜坡、方波输出,方波/正弦波、矩形波/正弦波同时输出,继电特性、饱和特性、死区特性及间隙特性等非线性输出。
现代控制理论第三章课程电子教案

现代控制理论强调数学建模、系统分析和优化,注重实际应用和工程实现,具有广泛的应用领域和重要的实际意 义。
现代控制理论的重要性
推动自动化技术发展
促进科技创新
现代控制理论是自动化技术的重要基 础,为工业自动化、智能制造等领域 提供了重要的理论支持和技术手段。
现代控制理论的发展和应用,推动了 科技创新和产业升级,为经济发展和 社会进步做出了重要贡献。
考试
期末闭卷考试,涵盖了课程的所有重点内容,包括系统建模、稳定性分析、状态反馈和 最优控制等。
学习效果评估
要点一
作业成绩
根据学生提交的作业,评估学生对控制理论知识的掌握程 度和应用能力。
要点二
考试成绩
根据期末考试成绩,评估学生对整个课程内容的掌握程度 。
教学改进建议
增加实践环节
为了提高学生的实际操作能力和 问题解决能力,建议增加实验或 实践环节,让学生亲自动手进行
课程目标
1
掌握现代控制理论的基本概念、原理和方法。
2
学会分析和设计控制系统,提高解决实际问题的 能力。
3
培养学生对控制理论的兴趣和热情,为后续学习 和工作打下基础。
02 现代控制理论概述
定义与特点
定义
现代控制理论是一门研究系统状态和行为变化规律的科学,通过数学模型和计算机仿真技术实现系统的分析和优 化。
状态转移矩阵的求解
02
通过系统的状态方程,求解状态转移矩阵,从而得到系统状态
的转移关系。
系统的稳定性分析
03
通过分析状态转移矩阵的性质,判断系统的稳定性,为后续控
制设计提供依据。
线性系统的状态反馈与极点配置
状态反馈控制器的设计
根据系统状态和期望的输出,设计状态反馈控制器,使得系统状态 能够跟踪期望的轨迹统的动态特性,实现系统性能的 优化。
现代控制理论实验指导书3-第3章[1]
![现代控制理论实验指导书3-第3章[1]](https://img.taocdn.com/s3/m/672b1dc87375a417876f8f06.png)
代控制理论实验指导书3-第3章[1]实验三利用MATLAB求取状态空间模型的相似变换及其标准型、控制系统的不同状态模型实现实验目的:1、通过实验掌握线性系统的对角线标准型、约当标准型、模态标准型以及伴随矩阵标准型的表示及相应变换阵的求解;2、通过编程、上机调试,掌握系统可控性和可观测性的判别方法、系统的可控性和可观测性分解等;3、加深理解由控制系统传递函数建立能控、能观、约当标准型等不同状态模型的方法。
实验原理:一、线性系统状态空间模型的相似变换及其标准型(1)将状态空间模型G经变换矩阵T变换为状态空间模型G1;G1=ss2ss(G,T)(2)将状态空间模型G经变换矩阵T变换为其他形式的状态空间模型G1 [G1,T]=canon(G,type)其中,当type为'companion'、'modal'、'jordan' 时,分别将状态空间模型G变换为伴随矩阵标准型、模态标准型、约当标准型状态空间模型G1,并得到相应的变换矩阵T;(3)计算矩阵A的特征值及与特征值对应的对角型变换矩阵D;[V,D]=eig(A)(4)计算矩阵A变换为约当标准型J,并得到变换矩阵V;[V,J]=jordan(A)二、线性系统可控、可观判别方法与分解(1)构造系统的可控性判别矩阵Tc;Tc=ctrb(A,B)(2)构造系统的可观测性判别矩阵To;To=obsv(A,C)(3)求取可控Gram矩阵和可观测Gram矩阵;W=gram(G,type)其中type为'c'时,为求取可控Gram矩阵,type为'o'时,为求取可观测Gram矩阵。
(4)能控性分解[Ac,Bc,Cc,Tc,Kc]=ctrbf(A,B,C)将系统分解为可控子系统和不可控子系统,Tc是变换阵,sum(Kc)是可控状态的数目;(5)能观测性分解[Ao,Bo,Co,To,Ko]=cbsvf(A,B,C)将系统分解为可观测子系统和不可观测子系统,Tc 是变换阵,sum(Ko)是可观测状态的数目;三、线性系统不同状态模型的实现设已知系统的传递函数为:3211()(1)( 2.5)(5)8.52012.5160.270.11 2.55G s s s s s s s s s s ==++++++-=+++++则:1. 系统能控标准状态模型实现为:[]11223312130100001012.5208.51100x x x x ux x x y x xx ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦对应的方框图和电路如图图4.1 能控标准状态模型实现电路2. 能观标准型状态模型实现为:[]11223312330012.5110200018.50001x x x x u x x x y x x x -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦对应的方框图和电路如图4.2图4.2 能观标准型实现电路3. 约当标准型状态模型实现为:[]11223311223310010 2.501005110.270.10.1670.270.16x x x x ux x x x y x x x x -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦对应的方框图和电路如图4.3图4.3 约当标准形状态模型实现电路实验步骤:1、根据所给系统的已知条件(可自行参阅选择刘豹教材中的例题或习题),如传递函数、零极点模型或(A、B、C、D),实现状态空间模型之间的相似变换、写出其对角线标准型、约当标准型、模态标准型以及伴随矩阵标准型的表示及求解相应变换阵,采用MATLAB的相关函数编写m-文件。
现代控制理论实验指导书【模板】

现代控制理论实验指导书西安文理学院物理与机电工程学院目录前言 (1)实验一系统的传递函数阵和状态空间表达式的转换 (3)实验二多变量系统的能控性和能观测性分析 (7)实验三多变量系统的稳定性分析 (13)实验四系统设计:状态观测器的设计 (17)前言这是一本为工科高年级学生编写的实验指导书,作为控制系统领域各门控制课程的配套实验教材。
一、现代控制理论实验的任务“现代控制理论”是全日制本科自动化专业的重要专业课程,它的实践性教学环节,对学生理解和掌握现代控制理论起着至关重要的直接影响作用。
现代控制理论实验的主要任务是使学生通过实验进一步理解和掌握现代控制理论的基本概念、基本原理和控制系统的分析与设计方法。
它是现代控制理论课程教学的一部分,其主要目标如下:(1)深刻理解现代控制理论的基本理论;(2)初步掌握控制系统的分析与设计方法;(3)学习和掌握现代计算机技术及其辅助工具的运用,提高计算机的应用能力与水平;(4)提高实际应用能力和动手操作能力,培养严肃认真、一丝不苟的科学态度。
二、实验的要求现代控制理论实验是一个专业性较强的实践环节,要求有专门的实验场所和实验设备;并且要求参加实验者必须具备必要的相关理论基础知识,对所做实验的前提条件及制约因素有足够的认识和理解;同时要求参加实验者具有较强的观察思考能力、研究分析能力和创新能力。
三、现代控制理论实验的实现方法现代控制理论课程的实验方法比较灵活,实验方案和思路也比较多。
众多厂家和高校都研制开发出了各种实验箱以及相应的实验平台,但大多数受到实验场所、实验设备等教学条件的制约。
按照加强理论、巩固基础、培养学生的观察思考能力和创新能力的指导思想,本实验指导书主要通过“计算机软件仿真”的实现方法去完成实验,使学生加深对所学理论的理解和认识。
四、对参加实验学生要求(1)认真阅读实验指导书,复习与实验有关的理论知识,明确每次实验的目的,了解实验所涉及的相关软件的操作,熟悉实验的内容和方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三利用MATLAB求取状态空间模型的相似变换及其标准型、控制系统的不同状态模型实现
实验目的:
1、通过实验掌握线性系统的对角线标准型、约当标准型、模态标准型以及伴随矩阵标准型的表示及相应变换阵的求解;
2、通过编程、上机调试,掌握系统可控性和可观测性的判别方法、系统的可控性和可观测性分解等;
3、加深理解由控制系统传递函数建立能控、能观、约当标准型等不同状态模型的方法。
实验原理:
一、线性系统状态空间模型的相似变换及其标准型
(1)将状态空间模型G经变换矩阵T变换为状态空间模型G1;
G1=ss2ss(G,T)
(2)将状态空间模型G经变换矩阵T变换为其他形式的状态空间模型G1 [G1,T]=canon(G,type)
其中,当type为'companion'、'modal'、'jordan' 时,分别将状态空间模型G变换
为伴随矩阵标准型、模态标准型、约当标准型状态空间模型G1,并得到相应的变
换矩阵T;
(3)计算矩阵A的特征值及与特征值对应的对角型变换矩阵D;
[V,D]=eig(A)
(4)计算矩阵A变换为约当标准型J,并得到变换矩阵V;
[V,J]=jordan(A)
二、线性系统可控、可观判别方法与分解
(1)构造系统的可控性判别矩阵Tc;
Tc=ctrb(A,B)
(2)构造系统的可观测性判别矩阵To;
To=obsv(A,C)
(3)求取可控Gram矩阵和可观测Gram矩阵;
W=gram(G,type)
其中type为'c'时,为求取可控Gram矩阵,type为'o'时,为求取可观测Gram
矩阵。
(4)能控性分解
[Ac,Bc,Cc,Tc,Kc]=ctrbf(A,B,C)
将系统分解为可控子系统和不可控子系统,Tc是变换阵,sum(Kc)是可控状
态的数目;
(5)能观测性分解
[Ao,Bo,Co,To,Ko]=cbsvf(A,B,C)
将系统分解为可观测子系统和不可观测子系统,Tc 是变换阵,sum(Ko)是可观测状态的数目;
三、线性系统不同状态模型的实现
设已知系统的传递函数为:
3211()(1)( 2.5)(5)8.52012.5160.270.11 2.55
G s s s s s s s s s s ==++++++-=+++++ 则:
1. 系统能控标准状态模型实现为:
[]112233121
30100001012.5208.51100x x x x u x x x y x x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦
对应的方框图和电路如图
图4.1 能控标准状态模型实现电路
2. 能观标准型状态模型实现为:
[]112233123
30012.5110200018.50001x x x x u x x x y x x x -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦
对应的方框图和电路如图
4.2
图4.2 能观标准型实现电路
3. 约当标准型状态模型实现为:
[]11223311223310010 2.501005110.270.10.1670.270.16x x x x u x x x x y x x x x -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=-+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦
对应的方框图和电路如图4.3
图4.3 约当标准形状态模型实现电路
实验步骤:
1、根据所给系统的已知条件(可自行参阅选择刘豹教材中的例题或习题),如传递函数、零极点模型或(A、B、C、D),实现状态空间模型之间的相似变换、写出其对角线标准型、约当标准型、模态标准型以及伴随矩阵标准型的表示及求解相应变换阵,采用MA TLAB的相关函数编写m-文件。
2.根据所给系统的已知条件(可自行参阅选择刘豹教材中的例题或习题),如(A、B、C、D)模型,判断其可控性和可观测性并进行可控性和可观测性分解。
3.按图4.1电路接线,输入阶跃信号,观察记录输出波形,观测稳态输出值(或稳态误差)和调整时间。
按图4.2图4.3分别接线,观察并记录两个电路相应的阶跃响应曲线,并与图4.1所示系统阶跃响应曲线进行比较,它们是否一致?并简单解释其原因。
实验输出的参数要求及记录要求如下
实验要求:
1.实现同一系统传递函数的状态模型是唯一的吗?
2.系统传递函数除上面三种不同状态模型实现外,常见的还有串连实现,对否?3.对于上述系统传递函数,其输出稳态值与输入阶跃信号幅值有何关系?
(注意:在搭建模型时不需要搭建电路图,只需搭建simulink仿真模型即可)
例如:约旦标准型的simulink仿真模型实现如下:。