广东省揭阳市高考数学一模试卷 文(含解析)

合集下载

广东省揭阳市数学高三文数第一次模拟考试试卷

广东省揭阳市数学高三文数第一次模拟考试试卷

广东省揭阳市数学高三文数第一次模拟考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2018·天津模拟) 集合 ,则()A .B .C .D .2. (2分)(2019·永州模拟) 已知复数满足(其中为虚数单位),则复数()A .B .C .D .3. (2分)下列命题中,正确的命题有()①用相关系数r来判断两个变量的相关性时,r越接近0,说明两个变量有较强的相关性;②将一组数据中的每个数据都加上同一个常数后,方差恒不变;③设随机变量服从正态分布N(0,1),若,则;④回归直线一定过样本点的中心A . 1个B . 2个C . 3个D . 4个4. (2分)若非零向量,满足,且,则向量的夹角为()A .B .C .D .5. (2分)(2012·福建) 下列命题中,真命题是()A . ∃x0∈R,≤0B . ∀x∈R,2x>x2C . a+b=0的充要条件是 =﹣1D . a>1,b>1是ab>1的充分条件6. (2分) (2018高一下·安徽期末) ()A .B .C .D . 17. (2分)执行如图所示的程序框图,输出的s值为()A . -3B .C . 2D .8. (2分) (2019高二下·平罗月考) 设函数f(x)是定义在R上的偶函数,且f(x+2)=f(2-x),当x∈[-2,0]时,f(x)=,则在区间(-2,6)上关于x的方程f(x)-log8(x+2)=0的解的个数为()A . 4B . 3C . 2D . 19. (2分)某三棱锥的主视图与俯视图如图所示,则其左视图的面积为A . 2B . 3C . 4D . 610. (2分)要使有意义,则应有()A .B . m≥﹣1C .D .11. (2分) (2018高二上·长安期末) 已知双曲线C:(a>0,b>0)与直线交于其中,若 ,且 ,则双曲线C的渐近线方程为()A .B .C .D .12. (2分) (2019高三上·中山月考) 若函数的两个零点是,,则()A .B .C .D . 无法确定和的大小二、填空题 (共4题;共5分)13. (2分) (2017高二下·杭州期末) 设抛物线x2=4y,则其焦点坐标为________,准线方程为________.14. (1分)(2017·沈阳模拟) 某班共46人,从A,B,C,D,E五位候选人中选班长,全班每人只投一票,且每票只选一人.投票结束后(没人弃权):若A得25票,B得票数占第二位,C、D得票同样多,得票最少的E只得4票,那么B得票的票数为________.15. (1分) (2018高二上·凌源期末) 椭圆上的任意一点(短轴端点除外)与短轴上、下两个端点的连线交轴于点和,则的最小值是________.16. (1分) (2016高一下·蕲春期中) 已知,则cosα=________.三、解答题 (共7题;共75分)17. (10分) (2015高三上·青岛期末) 设数列{an}的前n项和为.(1)求数列{an}的通项公式an;(2)是否存在正整数n,使得?若存在,求出n值;若不存在,说明理由.18. (10分)(2017·新课标Ⅲ卷文) 某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(12分)(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.19. (15分)如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2.BM⊥PD于M.(1)求证:平面ABM⊥平面PCD;(2)求直线PC与平面ABM所成的角的正切值;(3)求点O到平面ABM的距离.20. (10分) (2017高二下·大名期中) 已知椭圆的离心率,连接椭圆的四个顶点得到的菱形的面积为4.(1)求椭圆的方程;(2)设直线l与椭圆相交于不同的两点A,B,已知点A的坐标为(﹣a,0),点Q(0,y0)在线段AB的垂直平分线上,且,求y0的值.21. (10分)(2016·江苏) 已知函数f(x)=ax+bx(a>0,b>0,a≠1,b≠1).(1)设a=2,b= .①求方程f(x)=2的根;②若对于任意x∈R,不等式f(2x)≥mf(x)﹣6恒成立,求实数m的最大值;(2)若0<a<1,b>1,函数g(x)=f(x)﹣2有且只有1个零点,求ab的值.22. (10分)(2018·内江模拟) 在直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数). 以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求直线和曲线的极坐标方程;(2)已知直线上一点的极坐标为,其中 . 射线与曲线交于不同于极点的点,求的值.23. (10分) (2017高一上·桂林月考) 已知函数 .(1)用分段函数的形式表示该函数,并画出该函数的图象;(2)写出该函数的值域、单调区间(不用说明理由).参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共75分) 17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、21-1、21-2、22-1、22-2、23-1、23-2、。

2020年广东揭阳市高考一模数学(文科)

2020年广东揭阳市高考一模数学(文科)

2020 年广东揭阳市高考一模数学(文科)
6
牛得装糊涂制作
2020 年广东揭阳市高考一模数学(文科)
7
牛得装糊涂制作
2020 年广东揭阳市高考一模数学(文科)
8
牛得装糊涂制作
2020 年广东揭阳市高考一模数学(文科)
9
牛得装糊涂制作
2020 年广东揭阳市高考一模数学(文科)
2020 年广东揭阳市高考一模数学(文科)参考答案
一. 选择题:
题号 1
2
3
4
5
6
7
8
9
10 11 12
答案 C
பைடு நூலகம்
D
A
A
B
B
C
B
B
A
B
D
13. 1 3
14. 7
32
15.
3
27
16. (2,1] [ 3,2)
10
牛得装糊涂制作
2020 年广东揭阳市高考一模数学(文科)
11
牛得装糊涂制作
2020 年广东揭阳市高考一模数学(文科)
12
牛得装糊涂制作
2020 年广东揭阳市高考一模数学(文科)
13
牛得装糊涂制作
2020 年广东揭阳市高考一模数学(文科)
14
牛得装糊涂制作
2020 年广东揭阳市高考一模数学(文科)
15
牛得装糊涂制作
2020 年广东揭阳市高考一模数学(文科)
16
牛得装糊涂制作
2020 年广东揭阳市高考一模数学(文科)
17
牛得装糊涂制作
2020 年广东揭阳市高考一模数学(文科)
2020年广东揭阳市高考一模数学(文科)

广东省揭阳市2021届新高考一诊数学试题含解析

广东省揭阳市2021届新高考一诊数学试题含解析

广东省揭阳市2021届新高考一诊数学试题一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数2(1)i i +的模为( ).A .12B .1C .2D .【答案】D 【解析】 【分析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解. 【详解】解:2(1)22i i i +=-+,∴复数2(1)i i +=故选:D . 【点睛】本题主要考查复数代数形式的乘除运算,考查复数模的求法,属于基础题.2.从装有除颜色外完全相同的3个白球和m 个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X ,已知()3E X =,则()(D X = ) A .85B .65C .45D .25【答案】B 【解析】 【分析】由题意知,3~(5,)3X B m +,由3533EX m =⨯=+,知3~(5,)5X B ,由此能求出()D X . 【详解】由题意知,3~(5,)3X B m +, 3533EX m ∴=⨯=+,解得2m =, 3~(5,)5X B ∴,336()5(1)555D X ∴=⨯⨯-=.故选:B . 【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用.3.为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有( ) A .12种 B .24种 C .36种 D .48种【答案】C 【解析】 【分析】先将甲、乙两人看作一个整体,当作一个元素,再将这四个元素分成3个部分,每一个部分至少一个,再将这3部分分配到3个不同的路口,根据分步计数原理可得选项. 【详解】把甲、乙两名交警看作一个整体,5个人变成了4个元素,再把这4个元素分成3部分,每部分至少有1个人,共有24C 种方法,再把这3部分分到3个不同的路口,有33A 种方法,由分步计数原理,共有234336C A ⋅=种方案。

广东省揭阳市高考一模数学文科试卷

广东省揭阳市高考一模数学文科试卷
当 且 时,方程表示椭圆;-------------------------------------5分
当 时,方程表示双曲线.-------------------------------------------6分
(2)由(1)知,当 时,轨迹T的方程为: .
连结OE,易知轨迹T上有两个点A ,B 满足 ,
A.甲先到达B地 B.乙先到达B地
C.甲乙同时到达B地 D.无法确定谁先到达B地
二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.
(一)必做题(11-13题)
11.命题“ ”的否定为.
12.椭圆 上一点P到右焦点的距离是长轴两端点到右焦点距离的等差中项,则P点的坐标为.
13.随机抽取某中学甲、乙两个班各10名同学,测量他们的身高(单位:cm)获得身高数据的茎叶图如下图甲,在样本的20人中,记身高在 , 的人数依次为 、 、 、 .图乙是统计样本中身高在一定范围内的人数的算法流程图,由图甲可知甲、乙两班中平均身高较高的是班;图乙输出的 .(用数字作答)
得 即 ------------------------------------2分
当 时,方程表示两条与x轴平行的直线;(答方程表示两条直线不扣分)----------------------------3分
当 时,方程表示以原点为圆心,4为半径的圆;(答方程表示圆不扣分)-----------------------4分
由 得
∴ 的单调减区间 .-------------------------12分
17.解:(1)该组合体的主视图和侧视图如右图示:-----3分
(2)∵ 平面 , 平面
∴平面 平面ABCD
∵ ∴BC 平面 ----------5分

揭阳市2019年高中毕业班高考第一次模拟考试 文科数学 试卷及答案

揭阳市2019年高中毕业班高考第一次模拟考试 文科数学 试卷及答案

i=1
20.(12 分)
已知椭圆 C : x2 + y2 = 1,直线 l : y = 6 x + m( m ∈ R )与椭圆 C 交于不同的两点 A 、B .
32
3
(1)若| AB |= 5 3 ,求 m 的值; 3
(2)试求|| OA |2 − | OB |2| (其中 O 为坐标原点)的最大值.
10
10
∑ ∑ 统计参考数据: x = 1.60 , y = 2.82 , (xi − x )( yi − y) = −0.52 , (xi − x )2 = 0.65 ,
i =1
i =1
n
∑ (xi − x )( yi − y)
附:线性回归方程 yˆ = bx + a , b = i=1 n

∑ (xi − x )2
频率/组距
B 的单价y(元/公斤)
0.025 0.02
yy21
0.015 0.01 m
0
B的亩产
725 735 745 755 765 775 785 795 805 (公斤)
y10
O
x1 x2
B 的种植亩数x x10 单位:万亩
(1)求出频率分布直方图中 m 的值,若各组的取值按中间值来计算,求杂交稻 B 的亩产平均值;
已知函数 f (x) =| x +1| − | x −1| ,
(1)求函数 f (x) 的值域; (2)若 x ∈[−2, 1] 时, f (x) ≤ 3x + a ,求实数 a 的取值范围.
揭阳市 2019 年高考一模数学(文科)试题 第4页(共 4 页)
揭阳市 2019 高考一模数学
(文科)参考答案及评分说明

广东省揭阳市2019年高考一模数学(文科)试题

广东省揭阳市2019年高考一模数学(文科)试题

2 9
B.
4 9
Байду номын сангаасC.
5 9
D.
1 2
C
F
B
9.如图,网格纸上虚线小正方形的边长为 1,实线画出的是某几何体 的三视图,则该几何体上下两部分的体积比为 A.
1 12
B.
1 8
C.
1 6
D.
1 4
x2 y 2 2 1(a 0, b 0) 2 b 10. 过双曲线 a 两焦点且与 x 轴垂直的直线与双曲
一、选择题:本题共12小题,每小题5分,共60分.在每个小题给出的四个选项中, 只有一项是符合题目要求的. 1.已知集合 A {x | y lg( x 2)} , B ( 2, 3) ,则 A B A. ( 2, 2) (2,3) B. ( 2, 2) C. (2, 3) D. [2, 3) 2.已知 a R , i 是虚数单位,若 z 3 ai , | z | 2 ,则 a A. 7或- 7 B.1 或-1 C. 2 D. 2 3.已知向量 a (1, 2), b (2, 1), c (1, ) ,若 ( a b) c ,则 的值为 1 1 A. 3 B. C. D. 3 3 3
14.在曲线 f ( x) x 4 x 的所有切线中,斜率最小的切线方程为
3
. .
1 4 1 2 3 , , 1 4 3 , 3
15.若圆 x y 1 与圆 x y 6 x 8 y m 0 相切,则 m 的值为
2 2 2 2
16. 如图,给出一个直角三角形数阵,满足每一列的数成等差数列,从第三 行起,每一行的数成等比数列,且每一行的公比相等,记第 i 行第 j 列的 数为 aij (i j , i、j Z ) ,则 an 4

广东省揭阳市高三第一次模拟考试(数学文)(,含答案)

广东省揭阳市高三第一次模拟考试(数学文)(,含答案)

oy oy oyoxy侧视图正视图DCB A 揭阳市高中毕业班高考第一次模拟考数 学 (文科)一. 选择题: 1. 已知集合{0,2,4,6,8,10}U =,{2,4,6}A =,则U C A =A .{2,4,6} B .{0,8,10} C .{6,8,10} D .{8,10}2. 函数()2lg(1)f x x x --的定义域是A .(, 2]-∞ B.(2,)+∞ C.(1,2] D.(1,)+∞3. 已知复数(tan 3)1i z i θ-=,则“3πθ=”是“z 是纯虚数”的A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件4. 设向量(1,2),(2,),//,|3|a b y a b a b ==-+若则等于A .5B .6C 17D .265. 已知双曲线22221x y a b-=(a >0, b >0)的离心率为2,一个焦点与抛物线216y x =的焦点相同,则双曲线的渐近线方程为. A. 32y x =± B. 3y x = C. 3y x = D. 3y x =± 6. 已知函数(),0(),0.f x x yg x x >⎧=⎨<⎩是偶函数,()log a f x x =的图象过点(2,1),则()y g x =对应的图象大致是A. B. C. D.7. 已知α为锐角,且4cos(),65πα+=则cos α的值为.A.43310- B.43310+ C.43310 D. 433108. 一个正方体截去两个角后所得几何体的正视图 (又称主视图)、侧视图(又称左视图)如右图 所示,则其俯视图为.9. 已知函数()sin 3(0)f x x x ωωω=->的图象与x 轴的两个相邻交点的距离等于2π,则为得到函数()y f x =的图象可以把函数sin y x ω=的图象上所有的点.A .向右平移6π,再将所得图象上所有的点的纵坐标变为原来的2倍; B . 向右平移3π,再将所得图象上所有的点的纵坐标变为原来的2倍; C .向左平移12π,再将所得图象上所有的点的纵坐标变为原来的12倍; D .向左平移12π,再将所得图象上所有的点的纵坐标变为原来的2倍.0.080.050.045155105055004954900.020.030.010.07产品重量(克)频数(490,495](495,500](500,505](505,510](510,515]481486S=S/10i =i+1S=S+(a i -a)2输入a i 开始否结束输出S i ≥10?i =1S =0是DE ACB10. 直线3y kx =+与圆22(2)(3)4x y -+-=相交于M 、N 两点,若23MN ≤k 的取值范围是 A .[3,3] B .3] C .33(,[,)3-∞+∞D .33[]二. 填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题) 11. 已知1{1,,1,2}2α∈-,则使函数y x α=在[0,)+∞上单调递增的所有α值为 .12. 已知函数(),()f x g x 分别由下表给出:则满足(())(())f g x g f x =的x 值为 .13. 某市新年第一个月前10天监测到空气污染指数如下表(主要污染物为可吸入颗粒物):(第i天监测得到的数据记为i a )在对上述数据的分析中,一部分计算见右图所示的算法流程图, 则这10个数据的平均数a = ,输出的S 值是_ ,(二)选做题(14、15题,考生只能从中选做一题)14.(几何证明选做题)如图所示,圆的内接三角形ABC 的角平分线BD 与AC 交于点D ,与圆交于点E,连结AE ,已知ED=3,BD=6 , 则线段AE 的长= .15. (坐标系与参数方程选做题) 已知直线112,:()2.x t l t y kt =-⎧⎨=+⎩为参数,2,:12.x s l y s =⎧⎨=-⎩(s 为参数),若1l //2l ,则k = ;若12l l ⊥,则k = .16.(本小题满分12分)已知数列{}n a 是首项为2,公比为12的等比数列,n S 为{}n a 的前n 项和. (1)求数列{}n a 的通项n a 及n S ; (2)设数列{}n n b a +是首项为-2,公差为2的等差数列,求数列{}n b 的通 项公式及其前n 项和n T .17. (本小题满分12分)某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在(495,510]的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,图1是乙流水线样本的频率分布直方图.x 1 2 3 4 ()f x 1 3 1 3 x 1 2 3 4 ()g x3232i1 2 3 4 5 6 7 8 9 10 i a61596057606360625761第13题图第14题图HGDE FABC表1:(甲流水线样本频数分布表) 图1:(乙流水线样本频率分布直方图)(1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图;(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少; (3)由以上统计数据完成下面22⨯列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”. 甲流水线 乙流水线合计 合格品 a = b = 不合格品 c =d =合 计n =附:下面的临界值表供参考:(参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++)18.(本小题满分14分)已知如图:平行四边形ABCD 中,6BC =,正方形ADEF 所在平面与平面ABCD 垂直,G ,H 分别是DF ,BE 的中点.(1)求证:GH ∥平面CDE ; (2)若2,42CDDB ==,求四棱锥F-ABCD 的体积.19. (本小题满分14分)如图,某人在塔的正东方向上的C 处在与塔垂直的水 平面内沿南偏西60°的方向以每分钟100米的速度步行了 1分钟以后,在点D 处望见塔的底端B 在东北方向上,已知沿途塔的仰角AEB ∠=α,α的最大值为60.(1)求该人沿南偏西60°的方向走到仰角α最大时,走了几分钟;(2)求塔的高AB.20.(本小题满分14分)在直角坐标系xoy 上取两个定点12(2,0),(2,0)A A -,再取两个动点1(0,),N m 2(0,)N n ,且3mn =.(1)求直线11A N 与22A N 交点的轨迹M 的方程;(2)已知点G (1,0)和'(1,0)G -,点P 在轨迹M 上运动,现以P 为圆心,PG 为半径作圆P,试探究是否存在一个以点'(1,0)G -为圆心的定圆,总与圆P 内切?若存在,求出该定圆的方程;若不存在,请说明理由.21.(本小题满分14分)已知函数321()(21)3(2)13f x x a x a a x =-++++,a R ∈.(1)当0a =时,求曲线()y f x =在点(3,(3)f )处的切线方程; (2)当1a =-时,求函数()y f x =在[0,4]上的最大值和最小值;(3)当函数'()y f x =在0,4()上有唯一的零点时,求实数a 的取值范围.2()p K k ≥0.15 0.10 0.05 0.025 0.010 0.005 0.001 k2.0722.7063.8415.0246.6357.87910.828D EAC B揭阳市高中毕业班高考第一次模拟考 数学(文科)参考答案及评分说明一.选择题:BCCAD BDCAC解析: 3.(tan 3)1(tan 3)i z i θθ--==+,当3πθ=时,z i =是纯虚数,反之当z 是纯虚数时,θ未必为3π,故选C.4. 4(1,2)a b y a b ⇒=-⇒=//3+||5a b ⇒=3+,选A.5. 依题意得双曲线的半焦距4c =,由22ce a a==⇒=,∴2223b c a =-=,∵双曲线的焦点在x 轴,∴双曲线的渐近线方程为3y x =.选D.6. 依题意易得2()log f x x =(0x >)因函数的图象关于y 轴对称,可得2()log ()g x x =- (0x <),选B.7. coscos 66ππαα⎡⎤⎛⎫=+-==⎪⎢⎥⎝⎭⎣⎦43310.选D.8. 依题意可知该几何体的直观图如右,其俯视图应选C. 9. 依题意知2ω=,故()2sin(2)3f x x π=-2sin 2()6x π=-,故选A.10.当|MN |=231,可求出3k =,再结合图形可得答案C.或设圆心到直线3y kx =+的距离为d ,则21d k =+,由22||()42MN d =- 且23MN ≤2331k k ≥⇒≥或3k ≤二. 填空题:11.1,1,22;12. 2, 4、; 13. 60、3.4、;14. 3315. 4、-1. 解析:12. 将1,2,3,4x =依次代入方程(())(())f g x g f x =检验,易得2,4x =14. ∵,E E EAD EBA ∠=∠∠=∠∴EDA ∆∽EAB ∆AE EDBE AE⇒=2AE ED BE ⇒=⋅39=⨯33AE ⇒=15. 将1l 、2l 的方程化为直角坐标方程得:1:240l kx y k +--=,2:210l x y +-=,由1l //2l 得24211k k+=≠⇒4k =,由12l l ⊥得220k +=1k ⇒=-三.解答题:16. 解:(1)∵数列{}n a 是首项12a =,公比12q =的等比数列∴1212()22n n n a --=⋅=,12(1)124(1)1212nn nS -==--.(2)依题意得:22(1)24nn b a n n +=-+-=-∴224242n n n b n a n -=--=--设数列{}n n b a +的前n项和为n P 则(224)(3)2nn n P n n -+-==- ∴221(3)4(1)3422n n n n nT P S n n n n -=-=---=--+ 17. 解:(1)甲流水线样本的频率分布直方图如下:HGDE FABC(2)由表1知甲样本中合格品数为814830++=,由图1知乙样本中合格品数为(0.060.090.03)54036++⨯⨯=,故甲样本合格品的频率为300.7540=乙样本合格品的频率为360.940=,据此可估计从甲流水线任取1件产品,该产品恰好是合格品的概率为0.75 从乙流水线任取1件产品,该产品恰好是合格品的概率为0.9.(3)22⨯列联表如下:------10分∵22()()()()()n ad bc K a b c d a c b d -=++++=280(120360) 3.11766144040⨯-≈⨯⨯⨯ 2.706>∴有90%的把握认为产品的包装质量与两条自动包装流水线的选择有关.---------12分18.(1)证法1:∵//EF AD ,//AD BC ∴//EF BC 且EF AD BC ==∴四边形EFBC 是平行四边形 ∴H 为FC 的中点 又∵G 是FD 的中点∴//HG CD ∵HG ⊄平面CDE ,CD ⊂平面CDE ∴GH ∥平面CDE证法2:连结EA ,∵ADEF 是正方形 ∴G 是AE 的中点∴在⊿EAB 中,//GH AB又∵AB ∥CD ,∴GH ∥CD ,∵HG ⊄平面CDE ,CD ⊂平面CDE ∴GH ∥平面CDE(2)∵平面ADEF ⊥平面ABCD ,交线为AD 且F A ⊥AD ,∴F A ⊥平面ABCD .∵6BC =, ∴6FA = 又∵2,42CD DB == ,222CD DB BC +=∴BD ⊥CD ∴ ABCD S CD BD =⋅=82 ∴ F ABCD V -=13ABCD S FA ⋅=18261623⨯⨯=19.解:(1)依题意知在△DBC中30BCD ∠=,18045135DBC ∠=-=CD =100(m),1801353015D ∠=--=,由正弦定理得sin sin CD BCDBC D=∠∠ ∴sin 100sin15sin sin135CD D BC DBC ⋅∠⨯==∠=6210050(62)450(31)222-⨯-==-(m) 在Rt △ABE 中,tan ABBEα=∵AB 为定长 ∴当BE 的长最小时,α取最大值60°,这时BE CD ⊥当BE CD ⊥时,在Rt △BEC 中cos EC BC BCE =⋅∠350(31)25(33)2=-⋅=-(m), 设该人沿南偏西60°的方向走到仰角α最大时,走了t 分钟,甲流水线乙流水线合计 合格品 a =30 b =36 66 不合格品 c =10d =414合 计4040n =80则25(33)100100EC t==334-=(分钟) (2)由(1)知当α取得最大值60°时, BE CD ⊥,在Rt △BEC 中,sin BE BC BCD =⋅∠ ∴tan 60sin tan 60AB BE BC BCD =⋅=⋅∠⋅=150(31)325(33)2⋅=(m ) 即所求塔高为25(33)m.20.解:(1)依题意知直线11A N 的方程为:(2)2m y x =+直线22A N 的方程为:(2)2ny x =-- 设(,)Q x y 是直线11A N 与22A N 交点,①×②得22(4)4mn y x =-- 由3mn = 整理得22143x y +=∵12,N N 不与原点重合 ∴点12(2,0),(2,0)A A -不在轨迹M 上 ∴轨迹M 的方程为22143x y +=(2x ≠±) (2)由(1)知,点G (1,0)和'(1,0)G -为椭圆22143x y +=的两焦点, 由椭圆的定义得|'|||4PG PG +=,即|'|4||PG PG =-∴以'G 为圆心,以4为半径的圆与P 内切,即存在定圆'G ,该定圆与P 恒内切,其方程为:22(1)16x y ++=21.解:(1)当0a =时, 321()13f x x x =-+,∴(3)1f =, ∵2'()2f x x x =- 曲线在点(3,1)处的切线的斜率'(3)3k f == ∴所求的切线方程为13(3)y x -=-,即38y x =-(2)当1a =-时,函数321()313f x x x x =+-+∵2'()23f x x x =+-,令'()0f x =得121,3x x ==-2[0,4]x ∉,当(0,1)x ∈时,'()0f x <,即函数()y f x =在(0,1)上单调递减, 当(1,4)x ∈时,'()0f x >,即函数()y f x =在(1,4)上单调递增∴函数()y f x =在[0,4]上有最小值,2()(1)3f x f ==-最小值,又1(0)1,(4)263f f ==∴当1a =-时,函数()y f x =在[0,4]上的最大值和最小值分别为1226,33-.-----8分(3) ∵2'()2(21)3(2)f x x a x a a =-+++(3)(2)x a x a =---∴123,2x a x a ==+①当12x x =时,32a a =+,解得1a =,这时123x x ==,函数'()y f x =在(0,4)上有唯一的零点,故1a =为所求; ②当12x x >时,即32a a >+1a ⇒>,这时12x x >3>,又函数'()y f x =在(0,4)上有唯一的零点,∴2134,324,424.3 4.3x a a x a <<<+<⎧⎧⇒⇒≤<⎨⎨≥≥⎩⎩,③当12x x <时,即1a <,这时12x x <3<又函数'()y f x =在(0,4)上有唯一的零点,∴120,30,200 3.02 3.x a a x a ≤≤⎧⎧⇒⇒-<≤⎨⎨<<<+<⎩⎩综上得当函数'()y f x =在(0,4)上有唯一的零点时,20a -<≤或423a ≤<或1a =.。

揭阳市高三一模试题数学(文)参考答案

揭阳市高三一模试题数学(文)参考答案

x 揭阳市2011—2012学年度高中三年级学业水平考试数学试题(文科)参考答案及评分说明一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.一.选择题:B C B B C A D B C C解析:1.∵{1,0,1}A =-,210i A +=∈,故选B.4.由该函数的图象过原点且关于原点对称可排除A 、C ,由()f x 在[0,)+∞为增函数,可排除D ,故选B.5.依题意知:1tan 2α=,从而22tan 4tan 21tan 3ααα==-,选C. 6.由22,13c b a ==⇒=3c e a ⇒===,选A. 7.()BA BC AF ⋅+u u u r u u u r u u u r =()BA BC CD BA BD ⋅+=⋅u u u r u u u r u u u r u u u r u u u r=0,选D.8. 由三视图知,该几何体为圆锥,其底面的半径为1,r =高h =母线3l ==, 故24S rl r πππ=+=表,故选B.9.∵a b ⊥r r∴2()02x z y z z x y -++=⇒=+,点(,)x y 的可行域如图示,当直线2z x y =+过点(1,1)时,Z 取得最大值,max 213z =+=,选C.10.依题意得111213212223313233a a a a a a a a a ++++++++12223222333936a a a a =++==,选C. 二.填空题:11. {|12}x x x >≠且(或{|122}x x x <<>或;12. 27; 13.772. 14.15.解析: 11.由101211x x x x ->⎧⇒>≠⎨-≠⎩且.12.该市当月“pm2.5”含量不达标有801001601206020()0.0053027333333+++++⨯⨯=(天); 13.====⋅⋅-+=72sin sin ,2160cos 54254022ac A bc B a 77214.把直线和圆的参数方程化为普通方程得,01=++y x 22(3)(1)25x y -++=,于是弦心距,223=d 弦长l ==15.∵,PCB PAC CPB APC ∠=∠∠=∠ ∴PBC ∆∽PCA ∆∴12PB BC BC AC PC AC AC =⇒=⇒=三.解答题:16.解:(1)∵()sin cos ),4f x x x x x R π=-=-∈----------------------------2分∴函数()f x 的最小正周期2T π=------------------------------------3分(2)函数()f x .--------------------------------5分 (3)由1()4f α=得1sin cos 4αα-= ∴21(sin cos )16αα-=,----------------------------------------------------6分1151sin 2,sin 21616αα-==--------------------------------------------------7分∴21531(sin cos )1sin 211616ααα+=+=+=-------------------------------------9分∵(0,)2πα∈,∴sin cos 0αα+>∴sin cos αα+=.----------------------------------------------------12分 17.解:(1)由样本数据知,30件产品中等级系数7ξ≥有6件,即一等品有6件,二等品有9件,三等品有15件-------------------------------------------------------3分∴样本中一等品的频率为60.230=,故估计该厂生产的产品的一等品率为0.2;-----4分 二等品的频率为90.330=,故估计该厂生产的产品的二等品率为0.3;-------------5分 三等品的频率为150.530=,故估计该厂生产的产品的三等品的频率为0.5.---------6分 (2)样本中一等品有6件,其中等级系数为7的有3件,等级系数为8的也有3件,-7分 记等级系数为7的3件产品分别为1C 、2C 、3C ,等级系数为8的3件产品分别为1P 、2P 、3P .则从样本的一等品中随机抽取2件的所有可能为:FEDPPDEFM121323(,),(,),(,),C C C C C C 12(,),P P 1323(,),(,)P P P P ,11121321(,),(,),(,),(,),C P C P C P C P 2223(,),(,)C P C P ,3132(,),(,),C P C P 33(,)C P .共15种,-------------------------------10分记从“一等品中随机抽取2件,2件等级系数都是8”为事件A ,则A 包含的基本事件有 12(,),P P 1323(,),(,)P P P P 共3种,-------------------------11分 故所求的概率31()155P A ==.-------------------------------------------------12分 18.(1)证明:依题意知图①折前,AD AE CD CF ⊥⊥,-------------------------------1分 ∴,PD PE PF PD ⊥⊥,-------------------------------------------------------2分 ∵PE PF P =I ∴PD ⊥平面PEF -----------------------------------4分 又∵EF ⊂平面PEF ∴PD EF ⊥----------------------------------------5分 (2)解法1:依题意知图①中AE=CF=12 ∴PE= PF=12, 在△BEF中2EF ==,-----6分 在PEF ∆中,222PE PF EF PE PF +=∴⊥∴8121212121=⋅⋅=⋅⋅=∆PF PE S PEF -------------------8分 ∴13P DEF D PEF PEF V V S PD --∆==⋅11113824=⨯⨯=.-----10分【(2)解法2:依题意知图①中AE=CF=12 ∴PE= PF=12,在△BEF中2EF ==,-----------------------6分 取EF 的中点M ,连结PM则PMEF ⊥,∴4PM =-------------7分∴111228PEF S EF PM ∆=⋅==---------------8分 ∴13P DEF D PEF PEF V V S PD --∆==⋅11113824=⨯⨯=.------------------------------10分】 (3) 由(2)知PE PF ⊥,又PE PD ⊥ ∴⊥PE 平面PDF ---------------------12分 ∴线段PE 的长就是点E 到平面PDF 的距离--------------------------------------13分∵12PE =, ∴点E 到平面PDF 的距离为1219.解(1)解法1.依题意得点P 的坐标为(,0)m -.-------1分∵以点()2,1M -为圆心的圆与直线l 相切与点P ,∴MP l ⊥.0(1)112MP l k k m --⋅=⋅=---,解得1m =-.----3分∴点P 的坐标为()1,0.设所求圆的半径r ,则22||112r PM ==+=,------------------------------------5分 ∴所求圆的方程为()222(1)2x y -++=.--------------------------------------6分 【解法2.设所求圆的方程为()2222(1)x y r -++=,--------------------------------1分依题意知点P 的坐标为(,0)m -.----------------------------------------------2分 ∵以点()2,1M -为圆心的圆与直线l 相切于点(),0P m -,∴222(2)1,.m r r ⎧++=⎪⎨=⎪⎩解得1,m r =-⎧⎪⎨=⎪⎩-------------------------------------------5分∴所求的圆的方程为()222(1)2x y -++=.------------------------------------6分】(2)解法1.将直线方程y x m =+中的y 换成y -,可得直线l '的方程为y x m =--.--------------------------------------------7分由21,.x y m y x m ⎧=⎪⎨⎪=--⎩得20mx x m ++=,(0)m ≠-----------------------------------9分 2Δ14m =-,--------------------------------------------------------------10分∵直线l '与抛物线21:C x y m=相切 ∴0∆=,解得12m =±.----------------------------------------------------12分 当12m =时,直线l 的方程为12y x =+,抛物线C 的方程为22x y =,-------------13分当12m =-时,直线l 的方程为12y x =-,抛物线C 的方程为22x y =-.----------14分【解法2.将直线方程y x m =+中的y 换成y -,可得直线l '的方程为y x m =--.-----7分设直线l '与抛物线21:C x y m=相切的切点为()00,x y ,---------------------------8分 由2y mx =得2y mx '=,则021mx =----①-----------------------------------10分00y x m =--------②200y mx =.---------③①②③联立得1142m m m =-21142m m ⇒=⇒=±,----------------------------12分 当12m =时,直线l 的方程为12y x =+,抛物线C 的方程为22x y =,-------------13分当12m =-时,直线l 的方程为12y x =-,抛物线C 的方程为22x y =-.----------14分】20.解:(1)解法1:∵1240a a +=,12256,a a =且1q >解得12832a a =⎧⎨=⎩---------------2分∴214a q a == ∴11211842n n n n a a q --+==⨯=---------------------------------4分 ∴ 2log n n b a ==212log 221n n +=+--------------------------------------------6分【解法2:由1240a a +=,12256,a a =且1q >得12832a a =⎧⎨=⎩ ∴214a q a ==---------------------------------------------------2分∴112122log log loglog 42,n n n n n na b b a a a +++-=-===----------------------------3分 又1212log log 83,b a ===-------------------------------------------------------4分 ∴{}n b 是以3为首项,2为公差的等差数列,----------------------------------------5分 ∴3(1)221n b n n =+-⨯=+;----------------------------------------------------6分】 (2)当2n ≥时,1121,n n n T T b n ---==-∴()()()()11232211n n n n n T T T T T T T T T T ---=-+-+-+-+L =()()()()12132123532n n n n --+-+-+++=L ()()11;n n =-+---------------8分∵当2n ≥时,()()1111111211n T n n n n ⎛⎫==- ⎪-+-+⎝⎭,----------------------------10分 ∴21ni iT =∑=2341111n T T T T ++++L111111111111123243531211n n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥----+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L =111131111.221421n n n n ⎛⎫⎛⎫+--=-+ ⎪ ⎪++⎝⎭⎝⎭--------------------------------------12分 ∵2n ≥,∴111151236n n +≤+=+ ∴31113151.4214263n n ⎛⎫-+≥-⋅= ⎪+⎝⎭ 又1101n n +>+ ∴311134214n n ⎛⎫-+< ⎪+⎝⎭ 即对,2n N n *∀∈≥,211334n i i T =≤<∑.----------------------------------------------14分21.解:(1)当1=a 时,32()2f x x x x =--+2'()321f x x x =--=(1)(31)x x -+,------------------------------------------2分 令'()0f x =,解得121,13x x =-=. 当'()0f x >时,得1x >或13x <-; 当'()0f x <时,得113x -<<. 当x 变化时,'()f x ,()f x 的变化情况如下表:-------------------------------------------------------------------------------4分 ∴当13x =-时,函数()f x 有极大值,15()=()2,327f x f -=极大-----------------------5分 当1x =时函数()f x 有极小值,()(1)1f x f ==极小---------------------------------6分 (2)∵2'()321f x x ax =--,∴对x R ∀∈,4'()||3f x x ≥-成立,即24321||3x ax x --≥-对x R ∀∈成立,--------------------------------------7分 ①当0x >时,有213(21)03x a x -++≥,即12133a x x+≤+,对(0,)x ∀∈+∞恒成立,----------------------------------9分∵1323x x +≥=,当且仅当13x =时等号成立, ∴212a +≤12a ⇒≤------------------------------------------------------11分 ②当0x <时,有213(12)03x a x +-+≥,即1123||3||a x x -≤+,对(,0)x ∀∈-∞恒成立,∵13||23||x x +≥=,当且仅当13x =-时等号成立,∴11222a a -≤⇒≥-----------------------------------------------------13分 ③当0x =时,a R ∈综上得实数a 的取值范围为11[,]22-.-------------------------------------------14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省揭阳市2015届高考数学一模试卷(文科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={4,5,6,8},B={3,5,7,8},则A∪B中元素的个数为( )A.5 B.6 C.7 D.8考点:并集及其运算.专题:集合.分析:根据并集的运算计算即可.解答:解:∵A={4,5,6,8},B={3,5,7,8},∴A∪B={3,4,5,6,7,8},故则A∪B中元素的个数为6个,故选:B点评:本题考查了集合的运算,属于基础题.2.已知复数z=(﹣8﹣7i)(﹣3i),则z在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则、几何意义即可得出.解答:解:复数z=(﹣8﹣7i)(﹣3i)=24i﹣21,则z在复平面内对应的点(﹣21,24)位于第二象限.故选;B.点评:本题考查了复数的运算法则、几何意义,属于基础题.3.“a>b”是“a2>b2”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据充分条件和必要条件的定义进行判断即可.解答:解:若a=1,b=﹣1,满足a>b,但a2>b2不成立,若a=﹣1,b=0,满足a2>b2,但a>b不成立,故“a>b”是“a2>b2”的既不充分也不必要条件,故选:D点评:本题主要考查充分条件和必要条件的判断,比较基础.4.双曲线﹣=1(a>0)的离心率为( )A.B.C.2 D.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求得双曲线的b=2a,由双曲线的a,b,c的关系和离心率公式计算即可得到.解答:解:双曲线﹣=1(a>0)的b=2a,c==a,即有e==.故选A.点评:本题考查双曲线的方程和性质,主要考查双曲线的离心率的求法,属于基础题.5.已知=(sinα,cosα),=(﹣2,1),若⊥,则tanα的值为( )A.﹣2 B.2 C.D.考点:数量积判断两个平面向量的垂直关系.专题:平面向量及应用.分析:由向量垂直的性质得=﹣2sinα+cosα=0,从而cosα=2sinα,由此能求出tanα==.解答:解:∵=(sinα,cosα),=(﹣2,1),⊥,∴=﹣2sinα+cosα=0,∴cosα=2sinα,∴tanα==.故选:C.点评:本题考查角的正切值的求法,是基础题,解题时要注意向量垂直的性质的合理运用.6.已知函数y=log a x(a>0,a≠1)的图象经过点(2,),则其反函数的解析式为( ) A.y=4x B.y=log4x C.y=2x D.y=()x考点:反函数.专题:函数的性质及应用.分析:由对数函数的图象过定点求出a的值,然后化指数式为对数式,再把x,y互换求得原函数的反函数.解答:解:∵y=log a x(a>0,a≠1)的图象经过点(2,),∴,解得a=4.∴y=log4x,则x=4y,把x,y互换得到函数y=log4x的反函数为y=4x.故选:A.点评:本题考查了对数函数的运算性质,考查了函数的反函数的求法,是基础题.7.某单位200名职工的年龄分布情况如图示,该单位为了解职工每天的睡眠情况,按年龄用分层抽样方法从中抽取40名职工进行调查.则应从40﹣50岁的职工中抽取的人数为( )A.8 B.12 C.20 D.30考点:分层抽样方法.专题:概率与统计.分析:根据分层抽样的定义建立比例关系即可得到结论.解答:解:由图表关系知,若抽取40名职工,则应从40﹣50岁的职工中抽取的人数为40×30%=12,故选:B点评:本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.比较基础.8.不等式组表示的平面区域的面积为( )A.14 B.5 C.3 D.7考点:简单线性规划.专题:不等式的解法及应用.分析:先画出满足条件的平面区域,再求出交点的坐标,根据三角形的面积公式求出即可.解答:解:画出满足条件表示的平面区域,如图示:∴平面区域的面积是×4×=7,故选:D.点评:本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.9.设l、m是两条不同的直线,α,β是两个不同的平面,则下列命题为真命题的是( ) A.若m∥l,m∥α,则l∥αB.若m⊥α,l⊥m,则l∥αC.若α∥β,l⊥α,m∥β,则l⊥m D.若m⊂α,m∥β,l⊂β,l∥α,则α∥β考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:利用空间直线的位置关系以及线面平行、面面平行的判定定理对选项分别分析解答.解答:解:对于A,若m∥l,m∥α,则l可能在α内,故A错误;对于B,若m⊥α,l⊥m,则l可能在α内,故B错误;对于C,若α∥β,l⊥α,得到l⊥β,结合m∥β,得到l⊥m;故C正确;对于D,若m⊂α,m∥β,l⊂β,l∥α,则α与β可能相交;故D错误;故选C.点评:本题考查了空间直线的位置关系以及线面平行、面面平行的判定定理,关键是熟练掌握定理.10.对任意的a、b∈R,定义:min{a,b}=;max{a,b}=.则下列各式中恒成立的个数为( )①min{a,b}+max{a,b}=a+b②min{a,b}﹣max{a,b}=a﹣b③(min{a,b})•(max{a,b})=a•b④(min{a,b})÷(max{a,b})=a÷b.A. 1 B.2 C.3 D.4考点:进行简单的合情推理.专题:推理和证明.分析:本题根据函数的定义,分类研究a,b的大小,可得到取小函数与取大函数min{a,b},max{a,b}的值,从而得到本题结论.解答:解:∵对任意的a、b∈R,定义:min{a,b}=;max{a,b}=,∴min{a,b}取a,b中的最小值,max{a,b}取a,b的最大值.∴min{a,b},max{a,b}分别取出a,b中的一个最大值与一个最小值,∴min{a,b}+max{a,b}=a+b,(min{a,b})•(max{a,b})=a•b,故①③成立;若a≤b,则有:min{a,b}﹣max{a,b}=a﹣b,若a>b,则min{a,b}﹣max{a,b}=b﹣a≠a﹣b,故③不一定成立;若a≤b,且b≠0,则有:(min{a,b})÷(max{a,b})=a÷b,若a>b,且a≠0,(min{a,b})÷(max{a,b})=b÷a≠a÷b.故④不一定成立.故选B.点评:本题考查了新定义函数的理解和分类讨论的数学思想,本题难度不大,属于基础题.二、填空题:本大题共3小题,考生作答4小题,每小题5分,满分15分.(一)必做题(11-13题)11.不等式x2﹣3x﹣10<0的解集为{x|﹣2<x<5}.考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:把不等式x2﹣3x﹣10<0化为(x﹣5)(x+2)<0,求出解集即可.解答:解:不等式x2﹣3x﹣10<0可化为(x﹣5)(x+2)<0,解得﹣2<x<5;∴该不等式的解集为{x|﹣2<x<5}.故答案为:{x|﹣2<x<5}.点评:本题考查了一元二次不等式的解法与应用问题,是基础题目.12.在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,若a=3,∠B=2∠A,cosA=,则b=2.考点:正弦定理.专题:解三角形.分析:由条件利用同角三角函数的基本关系,二倍角公式求得sinA和sinB的值,再利用正弦定理求得b的值.解答:解:△ABC中,由cosA=,∠B=2∠A,可得sinA=,sinB=sin2A=2sinAcosA=2××=.再由正弦定理可得=,即=,求得b=2,故答案为:.点评:本题主要考查正弦定理、同角三角函数的基本关系,二倍角公式,属于基础题.13.已知函数f(x)=x3对应的曲线在点(a k,f(a k))(k∈N*)处的切线与x轴的交点为(a k+1,0),若a1=1,则=3.考点:利用导数研究曲线上某点切线方程.专题:计算题;导数的概念及应用;等差数列与等比数列.分析:求出函数的导数,可得切线的斜率,由点斜式方程可得切线方程,再令y=0,结合等比数列的定义可得,数列{a n}是首项a1=1,公比的等比数列,再由等比数列的求和公式计算即可得到所求值.解答:解:由f'(x)=3x2得曲线的切线的斜率,故切线方程为,令y=0得,故数列{a n}是首项a1=1,公比的等比数列,又=,所以.故答案为:3.点评:本题考查导数的运用:求切线的方程,主要考查导数的几何意义,同时考查等比数列的定义和求和公式,运用点斜式方程求得切线方程是解题的关键.(二)选做题(14、15题,考生只能从中选做一题)【坐标系与参数方程选做题】14.在极坐标系中,直线ρsin(θ+)=2被圆ρ=4截得的弦长为4.考点:简单曲线的极坐标方程.专题:常规题型;转化思想.分析:先利用三角函数的和角公式展开直线的极坐标方程的左式,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得直角坐标方程,最后利用直角坐标中直线与圆的关系求出截得的弦长即可.解答:解:∵ρsin(θ+)=2,∴ρsinθ+ρcosθ=2,化成直角坐标方程为:x+y﹣2=0,圆ρ=4化成直角坐标方程为x2+y2=16,圆心到直线的距离为:∴截得的弦长为:2×=.故答案为:.点评:本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.【几何证明选讲选做题】15.如图,BE、CF分别为钝角△ABC的两条高,已知AE=1,AB=3,CF=4,则BC边的长为.考点:相似三角形的性质.专题:选作题;立体几何.分析:先求出BE,再利用△BEA∽△CFA,求出AC,可得EC,利用勾股定理求出BC.解答:解:依题意,AE=1,AB=3,得,因△BEA∽△CFA得,所以AF=2,AC=6,所以EC=7,所以.故答案为:.点评:本题考查相似三角形的性质,考查学生的计算能力,正确运用相似三角形的性质是关键.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.已知函数f(x)=2sin(ωx+)(ω>0,x∈R)的最小正周期为π.(1)求ω的值;(2)若f(α)=,α∈(0,),求cos2α的值.考点:正弦函数的图象.专题:三角函数的求值;三角函数的图像与性质.分析:(1)直接利用正弦型函数的周期关系式求出结论.(2)利用(1)所确定的函数关系式进一步对关系式中的角进行恒等变换,利用三角函数的诱导公式求出结果.解答:解:(1)函数f(x)=2sin(ωx+)(ω>0,x∈R)的最小正周期为π,由得ω=2;(2)由:得∵,∴,∴∴==∴.点评:本题考查的知识要点:利用正弦型函数周期的关系式确定函数的解析式,函数关系式中角的恒等变换的应用.17.如图是某市今年1月份前30天空气质量指数(AQI)的趋势图.(1)根据该图数据在答题卷中完成频率分布表,并在图4中补全这些数据的频率分布直方图;分组频数频率[20,40)[40,60)[60,80)[80,100)[100,120)[120,140)[140,160)[160,180)[180.200]合计 30 1(2)当空气质量指数(AQI)小于100时,表示空气质量优良.某人随机选择当月(按30天计)某一天到达该市,根据以上信息,能否认为此人到达当天空气质量优良的可能性超过60%?(图中纵坐标1/300即,以此类推)考点:频率分布直方图.专题:应用题;概率与统计.分析:(1)根据图中数据,列出频率分布表,画出频率分布直方图即可;(2)由频率分布表,得出该市本月前30天中空气质量优良的天数,计算任意1天空气质量优良的概率即可.解答:解:(1)根据图中数据,列出频率分布表如下;分组频数频率[20,40) 2[40,60) 5[60,80)7[80,100) 5[100,120) 2[120,140) 5[140,160) 1[160,180) 1[180.200] 2合计 30 1根据频率分布表,画出频率分布直方图,如下;(2)由频率分布表知,该市本月前30天中空气质量优良的天数为2+5+7+5=19,﹣﹣﹣∴此人到达当天空气质量优良的概率:;﹣﹣﹣∴可以认为此人到达当天空气质量优良的可能性超过60%.﹣﹣﹣点评:本题考查了列频率分布表与画频率分布直方图的应用问题,也考查了利用频率估计概率的应用问题,是基础题目.18.如图5,已知△BCD中,∠BCD=90°,BC=CD=1,AB=,AB⊥平面BCD,E、F分别是AC、AD的中点.(1)求证:平面BEF⊥平面ABC;(2)设平面BEF∩平面BCD=l,求证CD∥l;(3)求四棱锥B﹣CDFE的体积V.考点:棱柱、棱锥、棱台的体积;平面与平面垂直的判定.专题:空间位置关系与距离.分析:(1)利用线面垂直的判定与性质定理可证:CD⊥平面ABC,再利用三角形的中位线定理可得:EF∥CD.再利用线面垂直的判定、面面垂直的判定即可证明;(2)由CD∥EF,利用线面平行的判定定理可得:CD∥平面BEF,再利用线面平行的性质定理即可证明;(3)解法1:由(1)知EF∥CD,利用三角形相似的性质可得:,得到,求出V B﹣ACD即可得出.解法2:取BD中点G,连接FC和FG,则FG∥AB,利用线面垂直的性质可得:FG⊥平面BCD,由(1)知EF⊥平面ABC,利用V=V F﹣EBC+V F﹣BCD即可得出;解答:(1)证明:∵AB⊥平面BCD,CD⊂平面BCD,∴AB⊥CD,又BC⊥CD,AB∩BC=B,∴CD⊥平面ABC,又E、F分别是AC、AD的中点,∴EF∥CD.∴EF⊥平面ABC又EF⊂平面BEF,∴平面BEF⊥平面ABC.(2)证明:∵CD∥EF,CD⊄平面BEF,EF⊂平面BEF,∴CD∥平面BEF,又CD⊂平面BCD,且平面BEF∩平面BCD=l,∴CD∥l.(2)解法1:由(1)知EF∥CD,∴△AEF~△ACD.∴,∴,∴=.解法2:取BD中点G,连接FC和FG,则FG∥AB,∵AB⊥平面BCD,∴FG⊥平面BCD,由(1)知EF⊥平面ABC,∴V=V F﹣EBC+V F﹣BCD==.点评:本题考查了线面面面垂直与平行的判定与性质定理、三角形的中位线定理、三角形相似的性质三棱锥的体积计算公式,考查了推理能力与计算能力,考查了空间想象能力,属于中档题.19.已知S n为数列{a n}的前n项和,S n=na n﹣3n(n﹣1)(n∈N*),且a2=12.(1)求a1的值;(2)求数列{a n}的通项公式;(3)求证:++…+.考点:数列的求和.专题:等差数列与等比数列.分析:(1)在数列递推式中,取n=2,结合已知a2=12求得数列首项;(2)在数列递推式中,取n=﹣1得另一递推式,作差后可得数列{a n}为等差数列,由等差数列的通项公式得答案;(3)求出等差数列的前n项和,取倒数后利用裂项相消法求出++…+得答案.解答:(1)解:由S n=na n﹣3n(n﹣1),得a1+a2=2a2﹣3×2×(2﹣1),即a1=a2﹣6,∵a2=12,∴a1=12﹣6=6;(2)解:由S n=na n﹣3n(n﹣1),得S n﹣1=(n﹣1)a n﹣1﹣3(n﹣1)(n﹣2)(n≥2),两式作差得:a n=na n﹣(n﹣1)a n﹣1﹣6n+6,即a n﹣a n﹣1=6(n≥2).∴数列{a n}是以6为首项,以6为公差的等差数列,∴a n=6+6(n﹣1)=6n;(3)证明:,则,∴++…+==.点评:本题考查了数列递推式,考查了等差关系的确定,训练了裂项相消法求数列的和,是中档题.20.已知抛物线C:x2=2py(p>0)的焦点为F,点P是直线y=x与抛物线C在第一象限的交点,且|PF|=5.(1)求抛物线C的方程;(2)设直线l:y=kx+m与抛物线C有唯一公共点M,且直线l与抛物线的准线交于点Q,试探究,在坐标平面内是否存在点N,使得以MQ为直径的圆恒过点N?若存在,求出点N的坐标,若不存在,说明理由.考点:抛物线的简单性质.专题:常规题型;圆锥曲线的定义、性质与方程.分析:(1)设点P(m,m)(m>0),根据抛物线的定义和点P在抛物线C上构建关于m,p 的方程,解方程组即可求出抛物线的方程;(2)假设存在点N,使得以MQ为直径的圆恒过点N,由直线l:y=kx+m与抛物线C有唯一公共点M知,直线l与抛物线C相切,利用导数求出直线l的方程,进而求出Q点坐标,根据直径所对的圆周角为直角,利用求出N点坐标.解答:解:(1)解法1:∵点P是直线y=x与抛物线C在第一象限的交点,∴设点P(m,m)(m>0),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵抛物线C的准线为,由|PF|=5结合抛物线的定义得﹣﹣﹣﹣﹣﹣﹣①﹣﹣﹣﹣﹣又点P在抛物线C上,∴m2=2pm(m>0)⇒m=2p.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②﹣﹣﹣﹣﹣由①②联立解得p=2,∴所求抛物线C的方程式为x2=4y.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣[解法2:∵点P是直线y=x与抛物线C在第一象限的交点,∴设点P(m,m)(m>0),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵抛物线C的焦点为,由|PF|=5得,即,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣①﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣又点P在抛物线C上,∴m2=2pm(m>0)⇒m=2p.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣由①②联立解得p=2,∴所求抛物线C的方程式为x2=4y.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣](2)解法1:由抛物线C关于y轴对称可知,若存在点N,使得以MQ为直径的圆恒过点N,则点N必在y轴上,设N(0,n),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣又设点,由直线l:y=kx+m与抛物线C有唯一公共点M知,直线l与抛物线C相切,由得,∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴直线l的方程为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣令y=﹣1得,∴Q点的坐标为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∵点N在以MQ为直径的圆上,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣要使方程(*)对x0恒成立,必须有解得n=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴在坐标平面内存在点N,使得以MQ为直径的圆恒过点N,其坐标为(0,1).﹣﹣﹣﹣﹣﹣﹣﹣[解法2:设点M(x0,y0),由l:y=kx+m与抛物线C有唯一公共点M知,直线l与抛物线相切,由得,∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴直线l的方程为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣令y=﹣1得,∴Q点的坐标为,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴以MQ为直径的圆方程为:﹣﹣﹣﹣﹣﹣﹣﹣③﹣﹣﹣﹣分别令x0=2和x0=﹣2,由点M在抛物线C上得y0=1,将x0,y0的值分别代入③得:(y﹣1)(y+1)+(x﹣2)x=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣④(y﹣1)(y+1)+(x+2)x=0﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣⑤④⑤联立解得或,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴在坐标平面内若存在点N,使得以MQ为直径的圆恒过点N,则点N必为(0,1)或(0,﹣1),将(0,1)的坐标代入③式得,左边==2(1﹣y0)+2(y0﹣1)=0=右边,将(0,﹣1)的坐标代入③式得,左边=不恒等于0,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴在坐标平面内是存在点N,使得以MQ为直径的圆恒过点N,点N坐标为为(0,1).﹣﹣点评:本题考查了抛物线的定义及直线与抛物线的位置关系,这类题目考查比较灵活,解决问题时注意几何关系向代数关系(即坐标关系)的转化.21.已知函数f(x)=ax,g(x)=lnx,其中a∈R.(1)若函数F(x)=f(x)﹣g(x),当a=1时,求函数F(x)的极值;(2)若函数G(x)=f(sin(x﹣1))﹣g(x)在区间(0,1)上为减函数,求a的取值范围;(3)证明:<ln(n+1).考点:利用导数研究函数的单调性;利用导数研究函数的极值.专题:导数的综合应用.分析:(1)利用导数研究函数的单调性极值即可得出;(2)解法1:由函数G(x)=f(sin(x﹣1))﹣g(x)=asin(x﹣1)﹣lnx在区间(0,1)上为减函数,可得在(0,1)上恒成立在(0,1)上恒成立,设,利用导数研究其单调性极值与最值即可得出;解法2:由函数G(x)=f(sin(x﹣1))﹣g(x)=asin(x﹣1)﹣lnx在区间(0,1)上为减函数,可得对∀x∈(0,1),(*)恒成立,由x∈(0,1),可得cos(x﹣1)>0,对a分类讨论:当a≤0时,(*)式显然成立;当a>0时,(*)式⇔在(0,1)上恒成立,设h(x)=xcos(x﹣1),利用其单调性即可得出.解答:解:(1)∵当a=1时,函数F(x)=x﹣lnx,(x>0)∴,令F'(x)=0得x=1,当x∈(0,1)时F'(x)<0,当x∈(1,+∞)时,F'(x)>0,即函数F(x)在(0,1)单调递减,在(1,+∞)单调递增,∴函数F(x)在x=1处有极小值,∴F(x)极小=1﹣ln1=1.(2)解法1:∵函数G(x)=f(sin(x﹣1))﹣g(x)=asin(x﹣1)﹣lnx在区间(0,1)上为减函数∴在(0,1)上恒成立在(0,1)上恒成立,设,则,当x∈(0,1)时,sin(x﹣1)<0,cos(x﹣1)>0∴H'(x)<0在(0,1)上恒成立,即函数H(x)在(0,1)上单调递减,∴当x∈(0,1)时,H(x)>H(1)=1,∴a≤1.解法2:∵函数G(x)=f(sin(x﹣1))﹣g(x)=asin(x﹣1)﹣lnx在区间(0,1)上为减函数∴对∀x∈(0,1),(*)恒成立,∵x∈(0,1),∴cos(x﹣1)>0,当a≤0时,(*)式显然成立;当a>0时,(*)式⇔在(0,1)上恒成立,设h(x)=xcos(x﹣1),易知h(x)在(0,1)上单调递增,∴h(x)<h(1)=1,∴⇒0<a≤1,综上得a∈(﹣∞,1].(3)由(2)知,当a=1时,G(x)=sin(x﹣1)﹣lnx>G(1)=0,⇒sin(x﹣1)>lnx,(**)∵对∀k∈N*有,在(**)式中令得,∴=,即.点评:本题考查了利用导数研究函数的单调性极值与最值、利用函数的单调性证明不等式,考查了恒成立问题的等价转化方法,考查了分类讨论的思想方法,考查了推理能力与计算能力,属于难题.。

相关文档
最新文档