分块矩阵的概念和运算图文.ppt
合集下载
§4 矩阵的分块运算

下页
返回
3. 乘法 设A为m × l矩阵 , B为l × n矩阵 , 分块成 A11 L A1t B11 L B1r A= M M , B = M M , A L A B L B st s1 tr t1 其中 Ai1 , Ai 2 , L , Ait 的列数分别等于 B1 j , B2 j , L , Btj的行数 , 那么
o
上页
下页
返回
1 3 例1 设 A = 0 0 0
2 5 0 0 0
0 0 0 0 1 2 0 −1 0 0
解 把A进行分块得 1 2 , 其中A1 = 3 5 1 2 3 A2 = 0 − 1 4 . 0 0 1
且A1−1
0 0 3 , 求A−1 . 4 1 1 3 A = 0 0 0
B −1 − B −1 DC −1 . 因此 A −1 = O C −1
O A = O B−1 另外 A−1 O B O
−1
上页
下页
返回
1 0 例3 设 A = 0 0
ቤተ መጻሕፍቲ ባይዱ
解
4 3 ; 求 A −1 2 1 1 2 3 利用分块法 A = 0 1 2 0 0 1 0 0 0 2 1 0 0 3 2 1 0
B3 = [0 1 1 b].
上页 下页 返回
一、分块矩阵
总体思想:对于行数和列数较高的矩阵 中 总体思想:对于行数和列数较高的矩阵A中,为了简化 运算,在矩阵A中 用横、竖虚线, 运算,在矩阵 中,用横、竖虚线,将A分成若干 分成若干 小块,视每一块为一元素进行相应的运算, 小块,视每一块为一元素进行相应的运算,然后再 对每一小块进行相应的运算,降阶运算, 对每一小块进行相应的运算,降阶运算,此法称为 矩阵分块法。 矩阵分块法。 具体做法是:将矩阵 用若干条纵 用若干条纵、 具体做法是:将矩阵A用若干条纵、横虚线分成许多个 小矩阵,每一个小矩阵称为矩阵A的子块, 小矩阵,每一个小矩阵称为矩阵 的子块,以子块 为元素的形式上的矩阵称为分块矩阵 分块矩阵. 为元素的形式上的矩阵称为分块矩阵 其中C1 = [a 1], 又如 C 2 = [0 0], a 1 0 0 0 a 0 0 C 1 C 2 A= 0 a 0 0 = C C 1 0 b 1 3 4 C 3 = 1 0 , C 4 = b 1 . 0 1 0 1 1 b 1 b
分块矩阵的概念和运算

-1 3
例4
-2 3 0 0
求A=
1 0 0
-2 0 0
0 1 2
5 02的逆矩 A-阵 1
- 2 3 0 0
解
A
=
1 0 0
-2 0 0
0 1 2
502=
A11 o
o A22
A1-11 =--12 --23
A-1 22
=-52
-12
A-1
=
A1-11 o
Ao2-12=
-2 -1 0 0
10 1 3 01 2 4 0 0 -1 0 0 0 0 -1
, B=1 20 02 600 31
0 0
,
0 -2 0 1
用分块矩阵计算kA,A+B及AB。
解:将矩阵A,B进行分块:A= I C ,B= D O ,
O -I
FI
7 -1 1 3
则
AB=
IC O -I
D O = D +CF C = 14 4 2 4 。
0 8 5
032=A O O1
O A2 O
O A O3=B O1
O B2
分块对角矩阵的性质
A11
设A
=
A22
是为分块对角矩阵
Arr
则
(1)
A1k1
Ak =
A2k2
其中 k是自然数
Arkr
( 2 ) |A |= |A 1 |• 1 |A 2 |• 2 |A r|r
(3) A可逆的充分必对 要任 条i(意 1件 i是 r),Aii可逆,
,
B=l2B21
B22
Ast
lt Bt1 Bt2
B1r
分块矩阵及其运算

第二章
矩阵及其 运算
1
第二章 矩阵概念及其运算
第三节 分块矩阵(Block matrix) 及其运算
分块矩阵的概念 分块矩阵的运算 问题与思考
2
一、分块矩阵的概念
将矩阵A用若干条纵线和横线分成许多小矩阵,每个小 矩阵称为A的一个子块.以这些子块为元素的形式上的矩阵 称为分块矩阵.
例如矩阵:
a11 a12 a13 a14
B
1 1
2 0
0 1 4 1
1 1 2 0
1 0 1 0
B
1 1
2 0
0 1 4 1
1 1 2 0
1 0 1 0
B
1 1
2 0
0 1 4 1
1 1 2 0
1 0 1 0
1 0 1 0
B
1 1
2 0
0 4
1 1
B
1 1
2 0
Байду номын сангаас
0 1 4 1
1 1 2 0
1 1 2 0
1 0 1 0
B
A a21 a31
a22 a32
a23 a33
a24
a34
记为 A11
A21
其中
A11
a11 a21
a12 a22
a13 a23
;
A12
a14 a24
;
A12
A22
A21 a31 a32 a33 ;
A22 a34
3
注: 任一矩阵A有多种分块方法,较特殊的分块有:
1)将矩阵A视为一个子块的分块矩阵; A
k 1
7
3.分块矩阵的转置
设矩阵A分块如下:
A11
矩阵及其 运算
1
第二章 矩阵概念及其运算
第三节 分块矩阵(Block matrix) 及其运算
分块矩阵的概念 分块矩阵的运算 问题与思考
2
一、分块矩阵的概念
将矩阵A用若干条纵线和横线分成许多小矩阵,每个小 矩阵称为A的一个子块.以这些子块为元素的形式上的矩阵 称为分块矩阵.
例如矩阵:
a11 a12 a13 a14
B
1 1
2 0
0 1 4 1
1 1 2 0
1 0 1 0
B
1 1
2 0
0 1 4 1
1 1 2 0
1 0 1 0
B
1 1
2 0
0 1 4 1
1 1 2 0
1 0 1 0
1 0 1 0
B
1 1
2 0
0 4
1 1
B
1 1
2 0
Байду номын сангаас
0 1 4 1
1 1 2 0
1 1 2 0
1 0 1 0
B
A a21 a31
a22 a32
a23 a33
a24
a34
记为 A11
A21
其中
A11
a11 a21
a12 a22
a13 a23
;
A12
a14 a24
;
A12
A22
A21 a31 a32 a33 ;
A22 a34
3
注: 任一矩阵A有多种分块方法,较特殊的分块有:
1)将矩阵A视为一个子块的分块矩阵; A
k 1
7
3.分块矩阵的转置
设矩阵A分块如下:
A11
2.13.12.5分块矩阵的定义和运算学习资料

12
1 1
02
1 1
01
2 1
4 , 1
A1
B22
1 1
2 4 1 2
1 3 0 3
3 , 1
1 0 1 0
于是
AB
1 2 1
2 4 1
0 3 3
1 13
.
2.5 分块矩阵 03 几 种 特 殊 分 块 矩 阵 的 行 列 式 和 逆 矩 阵
A1
形如
A
A2
的分块矩阵,
O
称为准对角矩阵(分
O
As
块对角矩阵).其中 Ai (i 1,2,s) 都是方阵.
5 0 0
0 3 1
0
2
1
3 0 0 0 0 0 3 5 0 0
0
1
2
0
0
0 0 0 3 1
0
0
0
2
1
2.5 分块矩阵 03 几 种 特 殊 分 块 矩 阵 的 行 列 式 和 逆 矩 阵
准对角矩阵除了具有准三角阵的性质以外,还有:
A
As1
kA
kA11
kA1r
.
kAs1 kAsr
A1r
,
k 为一个数
Asr
由于矩阵的加法与数乘比较简单,一般不需用分块计算.
2.5 分块矩阵
02 分 块 矩 阵 的 运 算
(3) 转置
A11
A
As1
A1r
,
Asr
A1T1 则 AT
A1Tr
AsT1 .
A1
O B1
O A1B1
O
A2
O
As
B2
31-23矩阵的基本运算逆矩阵分块矩阵精品PPT课件

要的基本概念之一 . 它是线性代数一个主要的研究对象,
且贯穿在线性代数的各个方面 . 矩阵的理论和方法在处
理许多实问际题问题,特方别法是计算机理应论用上是非应常用有力的.
20.10.2020
3
一、矩阵的基本运算
1、 数乘矩阵
Definitio数n 1 与矩阵 A = (aij) 的乘积,简称数乘
矩阵,记作 A
有数的,特cij 是殊的A 规的律第,i 行主与要产B 生的于第矩j 列阵的的对乘应法元运素算乘. 积的和
Definition设3 是一A 个(aij ) 矩阵, ms
B (bij )
是一个 s矩n阵,那么规定矩阵 A 与矩阵 B 的乘积
是一个 m矩n阵 b 1jai2b2j aisbsj aikbkj (i1 m ;j1 n) k 1
a11b11
a1n b1n
AB
am1 bm1
amn bmn
5
一、矩阵的基本运算
矩阵加法满足如下性质:
(1) A + B = B + A ; (2)A + (B + C) = (A + B) + C (3) A + 0 = 0 + A = A ( 0为与 A 同型的零矩阵 )
(4) ()AA A(5) (AB )AB
记为 C AB
20.10.2020
7
E xyya1y 2二y aa2 m1 21 11p、bba 1a 1l11e1 21 1 aa例x x 121 11 11aa 子1222a a bbaa1 2 设222 2 1211x x 222 2 有 aaaa两a 1a 2311 322 b3 3b33 x 个3x 313 13 线bbb132aa111性(213 11bb.变1b1 b1b22)132222换aa12tt2212 bbx 2x 2x 222 3 1 aab b b 1 3 12 21 1 1 33tttbb1 1 133 22b b b 1 3 2 2 2 2 tttt2 t2 2 12 (3.2)
分块矩阵的概念

As
i 1,2,L , s.
a1 j
按列分块 A
A1, A2 ,L
, An ,其中
Aj
a2 j M
,
j 1,2,L ,n. anj
一、分块矩阵的运算
1、加法 设 A, B 是两个 m n 矩阵,对它们
用同样的分法分块:
A11 A
As1
A1r
B11
, B
A1t
A2t L
Ast
例1 设
1 0 0 0
A
0 1
1 2
0 1
00 ,
1 1 0 1
求 AB.
1 0 1 0
B
1 1
2 0
0 4
1 1
,
1 1 2 0
解 把A, B分块成
1 0
A
0
1
1 0
0 1
E
E
,
1 0 1 0
B
1 1
2 0
0 4
1 1
1 1 2 0
,
O
Bs
A1 B1
则 A B
A2 B2
O
,
O
O
As
BS
A1B1
AB
A2 B2
O
O
.
O
As BS
(2) 准对角矩阵
A1
A
A2
O O
O
As
可逆
Ai 0,i 1,L , s Ai可逆,i 1,L , s
且
A11
A1
A21
O
O
O
As1
5 0 0
AB
Cs1 Csr
分块矩阵的概念及运算

19
2.3.3 分块初等阵
分块单位阵 一次初等变换 分块初等阵
Em
En
(1)
0 Em
En 0
或
0 En
Em 0
换法:
倍法:
(2)
P 0
0 En
或
Em 0
0 P
消法:
(3)
Em K
0 En
或
Em 0
K En
20
对分块矩阵进行一次初等行(列)变换, 相当于给它左(右)乘以一个相应的分 块初等矩阵:
30
例5
1 x1 y1
计算 x2 y1
x1 y2 1 x2 y2
x1 yn x2 yn
解
1 x1 y1 x1 y2 x2 y1 1 x2 y2
xn y1 xn y2
xn y1
xn y2
x1 yn
x1 y1
x2 yn
En
x2
y1
1 xn yn
xn
y1
1 xn yn
x1 y2
x1 yn
1.
3A AB
0 5B
3A 5B
33 A (5)3 B 234 53
2.
0 AB
3A 5B
(1)33
3A 5B
0 AB
(1)33
3A
AB
33 A (1)3 A B 235
14
尤其要注意 AmpBpn 0 时的特殊情况:
*例4
AB A(B1, B2 , , Bn ) A为一子块
(AB1, AB2, , ABn)
A21
A12
A22
a31 a32 a33 a34
特殊 A ——视为一个子块
第二章§4 分块矩阵

把大矩阵的运算化为小矩阵的运算. 把大矩阵的运算化为小矩阵的运算. 矩阵分块后,能突出该矩阵的结构, 矩阵分块后,能突出该矩阵的结构,从而可利用 它的特殊结构,使运算简化. 它的特殊结构,使运算简化. 可为某些命题的证明提供方法. 可为某些命题的证明提供方法.
4.1 分块矩阵的概念
例如
a1 1 A a1 = 2 a 31 得到4个子块 个子块: 得到 个子块:
1 0 A = 1 − 1
A B 、 分块成
1 −1 B= 1 −1 0 1 0 2 0 1 , 0 4 1 1 − 2 0
0 0 0 1 0 0 , 2 1 0 1 0 1
E 0 2 = A E 1 2
4.2 分块矩阵的运算
4. 分块矩阵的转置
分块后, 设对矩阵 A 分块后,得分块矩阵为
A1 A2 L At 1 1 1 A A L A 2 2 2 t A 21 = , M M M A A L A s2 s t s1
则
T T T A1 A1 L A 2 s 1 1 T T T T A2 A2 L A2 s . A = 1 2 M M M T T T 1 2 s t At At L A
4.2 分块矩阵的运算
分块对角阵的性质(教材 页 分块对角阵的性质 教材58页) 教材
分块对角阵的行列式
A 1 A 2 A = O A s
A= A A L s . A 1 2
分块对角阵的逆: 当 分块对角阵的逆: A≠0 即 A ≠0时,有 , i
− A1 1 1 − A 1 2 − A = . O 1 − A s
4.1 分块矩阵的概念
例如
a1 1 A a1 = 2 a 31 得到4个子块 个子块: 得到 个子块:
1 0 A = 1 − 1
A B 、 分块成
1 −1 B= 1 −1 0 1 0 2 0 1 , 0 4 1 1 − 2 0
0 0 0 1 0 0 , 2 1 0 1 0 1
E 0 2 = A E 1 2
4.2 分块矩阵的运算
4. 分块矩阵的转置
分块后, 设对矩阵 A 分块后,得分块矩阵为
A1 A2 L At 1 1 1 A A L A 2 2 2 t A 21 = , M M M A A L A s2 s t s1
则
T T T A1 A1 L A 2 s 1 1 T T T T A2 A2 L A2 s . A = 1 2 M M M T T T 1 2 s t At At L A
4.2 分块矩阵的运算
分块对角阵的性质(教材 页 分块对角阵的性质 教材58页) 教材
分块对角阵的行列式
A 1 A 2 A = O A s
A= A A L s . A 1 2
分块对角阵的逆: 当 分块对角阵的逆: A≠0 即 A ≠0时,有 , i
− A1 1 1 − A 1 2 − A = . O 1 − A s