深圳市南山区2016届九年级上期末数学模拟试卷(word版含答案)

合集下载

深圳市南山区九年级上册期末数学模拟试卷(附解析)

深圳市南山区九年级上册期末数学模拟试卷(附解析)

广东省深圳市南山区九年级(上)期末数学模拟试卷一.选择题(共12小题,满分36分)1.如图是由四个相同的小正方体堆成的物体,它的正视图是()A.B.C.D.2.已知点A(1,y1),(2,y2)是反比例函数y=图象上的点,若1>0>2,则一定成立的是()A.y1>y2>0B.y1>0>y2C.0>y1>y2D.y2>0>y13.下列线段中,能成比例的是()A.3cm、6cm、8cm、9cm B.3cm、5cm、6cm、9cmC.3cm、6cm、7cm、9cm D.3cm、6cm、9cm、18cm4.菱形,矩形,正方形都具有的性质是()A.四条边相等,四个角相等B.对角线相等C.对角线互相垂直D.对角线互相平分5.用放大镜观察一个五边形时,不变的量是()A.各边的长度B.各内角的度数C.五边形的周长D.五边形的面积6.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内7.2017﹣2018赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛),比赛总场数为380场,若设参赛队伍有支,则可列方程为()A.(﹣1)=380B.(﹣1)=380C.(+1)=380D.(+1)=3808.如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16B.18C.20D.249.如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍10.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC.则下列四种不同方法的作图中准确的是()A.B.C.D.11.如图,在同一平面直角坐标系中,一次函数y1=+b(、b是常数,且≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<<2B.<﹣3或>2C.﹣3<<0或>2D.0<<212.如图,在矩形ABCD中,∠ADC的平分线与AB交于E,点F在DE的延长线上,∠BFE=90°,连接AF、CF,CF与AB交于G.有以下结论:①AE=BC②AF=CF③BF2=FG•FC④EG•AE=BG•AB其中正确的个数是()A.1B.2C.3D.4二.填空题(共4小题,满分12分,每小题3分)13.一个不透明的盒子中装有10个黑球和若干个白球,它们除颜色不同外,其余均相同,从盒子中随机摸出一球记下其颜色,再把它放回盒子中摇匀,重复上述过程,共试验400次,其中有240次摸到白球,由此估计盒子中的白球大约有个.14.如图,以点O为位似中心,将△ABC缩小得到△A′B′C,若AA′=2OA′,则△ABC与△A′B′C′的周长比为.15.线段AB=10,点P是AB的黄金分割点,且AP>BP,则AP=(用根式表示).16.如图,已知直线y=1+b与轴、y轴相交于P、Q两点,与y=的图象相交于A(﹣2,m)、B(1,n)两点,连接OA、OB,给出下列结论:①12<0;②m+n=0;③S△AOP=S△BOQ;④不等式1+b的解集是<﹣2或0<<1,其中正确的结论的序号是.三.解答题(共7小题,满分52分)17.(8分)解下列方程:(1)2﹣8+1=0(配方法)(2)3(﹣1)=2﹣2.18.(6分)甲、乙两大型超市为了吸引顾客,都举行有奖酬宾活动,凡购物满200元,均可得到一次抽奖的机会,在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少(如下表).甲超市(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.19.(6分)如图,身高1.6m的小王晚上沿箭头方向散步至一路灯下,他想通过测量自己的影长估计路灯的高度,具体做法如下:先从路灯底部向东走20步到M处,发现自己的影子端点刚好在两盏路灯的中间点P处,继续沿刚才自己的影子走5步到P处,此时影子的端点在Q处.(1)找出路灯的位置.(2)估计路灯的高,并求影长PQ.20.(7分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.21.(8分)如图所示,点P是正方形ABCD内的一点,连接AP,BP,CP,将△PAB绕点B顺时针旋转90°到△P′CB的位置.若AP=2,BP=4,∠APB=135°,求PP′及PC的长.22.(8分)如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC和Rt△BED的边长,已知AE=c,这时我们把关于的形如a2+c+b=0的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)试判断方程2++=0是不是“勾系一元二次方程”;(2)求关于的“勾系一元二次方程”a2+c+b=0的实数根.23.(9分)如图1,正方形OABC的边长为12,点A、C分别在轴、y轴的正半轴上,双曲线y=(>0)与边BC、AD分别交于点D、E,且BD=AE.(1)求的值;(2)如图2,若点N为双曲线y=上正方形OABC内部一动点,过点N作y轴的垂线,交AC于点F,交AB于点G,过点F作轴的垂线交双曲线y=于点M.设点N的纵坐标为n.①若n=8,求证:△BMN是直角三角形;②若去掉①中的条件“n=8”,△BMN是否仍为直角三角形?请证明你的结论.参考答案一.选择题1.解:从正面看可得从左往右2列正方形的个数依次为2,1,故选:A.2.解:∵=2>0,∴函数为减函数,又∵1>0>2,∴A,B两点不在同一象限内,∴y2<0<y1;故选:B.3.解:根据如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.所给选项中,只有D符合,3×18=6×9,故选D.4.解:菱形,矩形,正方形都具有的性质为对角线互相平分.故选:D.5.解:∵用一个放大镜去观察一个五边形,∴放大后的五边形与原五边形相似,∵相似五边形的对应边成比例,∴各边长都变大,故A选项错误;∵相似五边形的对应角相等,∴对应角大小不变,故选项B正确;∵相似五边形的周长得比等于相似比,∴C选项错误.∵相似五边形的面积比等于相似比的平方,∴D选项错误;故选:B.6.解:A、正确.不符合题意.B、由题意=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,=2.5或24,24﹣2.5=21.5<35,故本选项错误,符合题意;D、当≤5时,函数关系式为y=2,y=2时,=1;当>15时,函数关系式为y=,y=2时,=60;60﹣1=59,故当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内,正确.不符合题意,故选:C.7.解:设参赛队伍有支,则(﹣1)=380.故选:B.8.解:∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF :S△ABC=1:9,设S△AEF=,∵S四边形BCFE=16,∴=,解得:=2,∴S△ABC=18,故选:B.9.【解答】解:A、∵四边形ABCD是菱形,∴AB=BC=AD,∵AC<BD,∴△ABD与△ABC的周长不相等,故此选项错误;B、∵S△ABD=S平行四边形ABCD,S△ABC=S平行四边形ABCD,∴△ABD与△ABC的面积相等,故此选项正确;C、菱形的周长与两条对角线之和不存在固定的数量关系,故此选项错误;D、菱形的面积等于两条对角线之积的,故此选项错误;故选:B.10.解:A、如图所示:此时BA=BP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;B、如图所示:此时PA=PC,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;C、如图所示:此时CA=CP,则无法得出AP=BP,故不能得出PA+PC=BC,故此选项错误;D、如图所示:此时BP=AP,故能得出PA+PC=BC,故此选项正确;故选:D.11.解:∵一次函数y1=+b(、b是常数,且≠0)与反比例函数y2=(c是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<<0或>2.故选:C.12.解:①DE平分∠ADC,∠ADC为直角,∴∠ADE=×90°=45°,∴△ADE为等腰直角三角形,∴AD=AE,又∵四边形ABCD矩形,∴AD=BC,∴AE=BC②∵∠BFE=90°,∠BFE=∠AED=45°,∴△BFE为等腰直角三角形,∴则有EF=BF又∵∠AEF=∠DFB+∠ABF=135°,∠CBF=∠ABC+∠ABF=135°,∴∠AEF=∠CBF在△AEF和△CBF中,AE=BC,∠AEF=∠CBF,EF=BF,∴△AEF≌△CBF(SAS)∴AF=CF③假设BF2=FG•FC,则△FBG∽△FCB,∴∠FBG=∠FCB=45°,∵∠ACF=45°,∴∠ACB=90°,显然不可能,故③错误,④∵∠BGF=180°﹣∠CGB,∠DAF=90°+∠EAF=90°+(90°﹣∠AGF)=180°﹣∠AGF,∠AGF=∠BGC,∴∠DAF=∠BGF,∵∠ADF=∠FBG=45°,∴△ADF∽△GBF,∴==,∵EG∥CD,∴==,∴=,∵AD=AE,∴EG•AE=BG•AB,故④正确,故选:C.二.填空题(共4小题,满分12分,每小题3分)13.解:∵共试验400次,其中有240次摸到白球,∴白球所占的比例为=0.6,设盒子中共有白球个,则=0.6,解得:=15,故答案为:15.14.解:由题意可知△ABC∽△A′B′C′,∵AA′=2OA′,∴OA=3OA′,∴==,∴==,故答案为:3:1.15.解:∵点P是AB的黄金分割点,AP>BP,∴AP=AB×,∵线段AB=10,∴AP=10×=5﹣5;故答案为:5﹣5.16.解:由图象知,1<0,2<0,∴12>0,故①错误;把A(﹣2,m)、B(1,n)代入y=中得﹣2m=n,∴m+n=0,故②正确;把A(﹣2,m)、B(1,n)代入y=1+b得,∴,∵﹣2m=n,∴y=﹣m﹣m,∵已知直线y=1+b与轴、y轴相交于P、Q两点,∴P(﹣1,0),Q(0,﹣m),∴OP=1,OQ=m,=m,S△BOQ=m,∴S△AOP=S△BOQ;故③正确;∴S△AOP由图象知不等式1+b的解集是<﹣2或0<<1,故④正确;故答案为:②③④.三.解答题(共7小题,满分52分)17.解:(1)∵2﹣8=﹣1,∴2﹣8+16=﹣1+16,即(﹣4)2=15,则﹣4=±,∴=4±;(2)∵3(﹣1)+2(﹣1)=0,∴(﹣1)(3+2)=0,则﹣1=0或3+2=0,解得:=1或=﹣.18.解:(1)画树状图为:共有12种等可能的结果数;(2)∵去甲超市购物摸一次奖获50元礼金券的概率P(甲)═=,去乙超市购物摸一次奖获50元礼金券的概率P(乙)═=,∴我选择去甲超市购物.19.解:(1)如图,点O为路灯的位置;(2)作OA垂直地面,如图,AM=20步,MP=5步,MN=PB=1.2m,∵MN∥OA,∴△PMN∽△PAO,∴=,即=,解得OA=8(m),∵PB∥OA,∴△QPB∽△QAO,∴=,即=,解得PQ=.答:路灯的高8m,影长PQ为步.20.解:(1)设每个月生产成本的下降率为,根据题意得:400(1﹣)2=361,解得:1=0.05=5%,2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%.(2)361×(1﹣5%)=342.95(万元).答:预测4月份该公司的生产成本为342.95万元.21.解:∵△PAB绕着点B顺时针旋转90°到△P′CB的位置,∴BP′=BP=4,P′C=AP=2,∠PBP′=90°,∠BP′C=∠BPA=135°,∴△PB P′是等腰直角三角形,∴PP′=BP=4,∠BP′P=45°,∴∠PP′C=∠BP′C﹣∠BP′P=135°﹣45°=90°,在Rt△PP′C中,PC===6.答:PP′和PC的长分别为4,6.22.解:(1)∵c=,∴c=,∵()2+()2=()2,∴2++=0是“勾系一元二次方程”;(2)a2+c+b=0===,=,2=.123.解:(1)∵正方形OABC的边长为12,∴A(12,0),C(0,12),B(12,12),∴BC=12,设点D(m,12),∴CD=m,∴BD=BC﹣CD=12﹣m,∵AE=BD=12﹣m,∴E(12,12﹣m),∵D,E在反比例函数y=,∴=12m=12(12﹣m),∴m=6,∴=72;(2)当n=8时,∴G(12,8),∵FG∥轴,∴点F,N的纵坐标为8,∵点N在反比例函数y=上,∴N(9,8),∵A(12,0),C(0,12),∴直线AC的解析式为y=﹣+12,∵点F在直线AC上,∴F(4,8),∵FM⊥轴交反比例函数于M,∴M(4,18),∵B(12,12),∴BM2=(12﹣4)2+(12﹣18)2=100,BN2=(12﹣9)2+(12﹣8)2=25,MN2=(9﹣4)2+(8﹣18)2=125,∴BM2+BN2=MN2,∴△BMN是直角三角形;(3)同(2)的方法得,N(,n),M(12﹣n,),∵B(12,12),∴BM2=(12﹣n﹣12)2+(﹣12)2=n2+()2﹣24×+144BN2=(﹣12)2+(n﹣12)2=(﹣12)2+n2﹣24n+144MN2=(12﹣n﹣)2+(﹣n)2=(﹣12)2+2n(﹣12)+n2+()2﹣2n×+n2=(﹣12)2+144﹣24n+n2+()2﹣2n×+n2.∴BM2+BN2﹣MN2=n2+()2﹣24×+144+(﹣12)2+n2﹣24n+144﹣[(﹣12)2+144﹣24n+n2+()2﹣2n×+n2]=n2+()2﹣24×+144+(﹣12)2+n2﹣24n+144﹣(﹣12)2﹣144+24n﹣n2﹣()2+2n×﹣n2=﹣24×+144+2n×=﹣2(12﹣n)×+144=0,∴BM2+BN2=MN2,∴△BMN是直角三角形.。

2016年深圳九年级教学检测数学试卷(含答案)

2016年深圳九年级教学检测数学试卷(含答案)

2016年九年级教学质量检测数学参考答案及评分意见第一部分 选择题(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确..的) 题号 1 23 4 5 6 7 8 9 10 11 12 答案 CB A B D D AC B C B B 第二部分 非选择题二、填空题(本题共4小题,每小题3分,共12分) 题号 13 14 1516 答案 ()21-x y π600 40 47+n三、解答题:(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20、21题各8分,第22题9分,第23题9分,共52分)17.解:原式1922-+-= …………………………4分 8= …………………………5分18.解:解不等式①,得.3->x …………………………2分 解不等式②,得.2≤x …………………………4分 在同一条数轴上表示不等式①②的解集,(图略)…………………………5分 所以,原不等式组的解集是.23≤<-x …………………………6分19. 解:(1)25%; …………………………2分(2)︒54 …………………………4分(3)375. …………………………7分20.(1)证明:∵CE ∥BD ,DE ∥AC ,∴四边形CODE 是平行四边形. …………………………1分∵四边形ABCD 是矩形,∴AC=BD ,OA=OC ,OB=OD .∴OD=OC . …………………………3分∴四边形CODE 是菱形; …………………………4分(2)∵四边形ABCD 是矩形,∴︒=∠90ABC .在Rt △ABC 中,由勾股定理,得222AC BC AB =+, ∴34482222=-=-=AB AC BC . …………………………5分 ∴316344BC AB A BCD =⨯=∙=矩形S . …………………………6分 ∵3441ABCD ODC ==∆矩形S S . …………………………7分 ∴382ODC OCED ==∆S S 菱形. …………………………8分21. 解:过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F ,∵AB ∥CD ,∴∠AEF=∠EFB=∠ABF=90°,∴四边形ABFE 为矩形.∴AB=EF ,AE=BF .由题意可知:AE=BF=300米,CD=3500米. ……………………2分 在Rt △AEC 中,∠C=60°,AE=300米, ∴3100330060tan ==︒=AE CE (米), ……………………4分 在Rt △BFD 中,∠BDF=45°,BF=300米,∴DF=BF=300(米). ……………………6分 ∴31003003500-+=-+==CE DF CD EF AB ……………………7分 ≈3800﹣100×1.732≈3627(米) ……………………8分答:一小岛两端A 、B 的距离为3627米.22.(1)135 ……………………3分(2)PB·CQ=9 ……………………4分理由:由题意可得∠DCO=∠CDO=45°∵m ∥CD ∴∠PBx=∠CDO=45°∴∠QCO=∠PBO=135°∵∠POQ=45°∴∠POB+∠COQ=45°∵∠CQO+∠COQ=45°∴∠POB=∠CQO∴△CQO ∽△BOP ……………………5分 ∴C Q OB OC PB =∴PB·CQ=OB·OC=3×3=9 ……………………6分(3)∵OC=OB=3 ∴可将△OCQ 绕点O 顺时针旋转90°得到△OBQ'∴∠OBQ'=∠OCQ=135° ∠BOQ'=∠COQ BQ'=CQ OQ=OQ'∴∠xBQ'=∠PBx=45° ∠BOQ'+∠POB=∠COQ+∠POB=45°∴∠PBQ'=90° ∠POQ=∠POQ'=45° ……………………7分∵OQ=OQ' OP=OP∴△POQ ≌△POQ'∴PQ=PQ' ……………………8分在Rt △PB Q'中, 222''PQ PB BQ =+ ∴……………………9分23.解:(1)对于直线4--=x y ,当 0=x 时,;4-=y 当 0=y 时,;4-=x ∴A (―4,0),,C (0,―4). ……1分 由抛物线过A 、O 两点,可设抛物线a x a x ax y 4)2()4(2-+=+=,∴顶点B (―2,―4a ),又顶点B 的纵坐标为2-,∴―4a =―2,得21=a , ∴顶点B (―2,―2),点B 在直线AC 上. ……………………2分 ∴抛物线为x x x x y 221)4(212+=+=. …………………3分 (2)直线AC 与⊙D 相切.Q' B DC O x Q P y m A O xy C B · D P F连接DA 、DO ,由点D 与B 对称得D (―2,2),,4,822===OA DO DA ………4分 ∴,222OA DO DA =+ADO ∆是等腰直角三角形, ︒=∠45DAO , ︒=∠90D O A . ………………5分由对称得︒=∠45BAO ,∴ ︒=∠90DAC ,直线AC 与⊙D 相切. ………………6分(3)在⊙D 中, ︒=∠=∠4521ADO AEO , 由∠POA :∠AEO=2:3,得︒=∠30POA . ……………………7分设点)221,(2m m m P + ,过点P 作x PF ⊥于点F , 当点P 在x 轴上方时,在Rt △OPF 中,OFPF =︒30tan , 即mm m -+=221332,解得4332--=m ,32342212+=+m m , 点)3234,3324(+--P . ……………………8分 当点P 在x 轴下方时,同上法可得)3342,3324(-+-P ………………… 9分 综合知点P 的坐标为)3234,3324(+--P 或)3342,3324(-+-P .。

广东省深圳市南山区2016届九年级上学期期末数学试卷及解析

广东省深圳市南山区2016届九年级上学期期末数学试卷及解析


=,
∴= , 故选 D.
= ,求出 即可解决问题.
【点评】该题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是牢固掌握相似三角 形的判定及其性质.
=( )
A. B. C. D. 【考点】比例的性质. 【分析】根据合比性质,可得答案.
附近,那么可以推算出 a 的值大约是

15.如图,在平面直角坐标系中,直线 l∥x 轴,且直线 l 分别与反比例函数 y= (x>0)和 y=﹣ (x
<0)的图象交于点 P、Q,连结 PO、QO,则△POQ 的面积为

16.如图,已知正方形 ABCD 的边长为 4,点 E、F 分别在边 AB,BC 上,且 AE=BF=1,则
连接 AC、BD, ∵四边形 ABCD 的对角线相等, ∴AC=BD, 所以,EF=FG=GH=HE, 所以,四边形 EFGH 是菱形. 故选 C.
【点评】本题考查了菱形的判定和三角形的中位线的应用,熟记性质和判定定理是解此题的关键, 注意:有四条边都相等的四边形是菱形.作图要注意形象直观.
7.如图,在菱形 ABCD 中,BD=6,AC=8,则菱形 ABCD 的周长为( )
OC=

三、解答题(本大题有 7 题,共 52 分) 17.解方程:x2+6x﹣7=0.
18.一个不透明的口袋里装有分别标有汉字“美”、“丽”、“南”、“山”的四个小球,除汉字不同之外, 小球没有任何区别,每次摸球前先搅拌均匀再摸球. (1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率; (2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉 字恰能组成“美丽”或“南山”的概率.
5.一个口袋中有 2 个红球,3 个白球,这些球除色外都相同,从口袋中随机摸出一个球,这个球是 红球的概率是( )

九年级上册深圳数学期末试卷易错题(Word版 含答案)

九年级上册深圳数学期末试卷易错题(Word版 含答案)

九年级上册深圳数学期末试卷易错题(Word 版 含答案)一、选择题1.要得到函数y =2(x -1)2+3的图像,可以将函数y =2x 2的图像( ) A .向左平移1个单位长度,再向上平移3个单位长度 B .向左平移1个单位长度,再向下平移3个单位长度 C .向右平移1个单位长度,再向上平移3个单位长度 D .向右平移1个单位长度,再向下平移3个单位长度2.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2015a b -+的值是( ) A .2011B .2015C .2019D .20203.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点M 是AB 上的一点,点N 是CB 上的一点,43=BM CN ,当∠CAN 与△CMB 中的一个角相等时,则BM 的值为( )A .3或4B .83或4C .83或6D .4或64.如图1,S 是矩形ABCD 的AD 边上一点,点E 以每秒k cm 的速度沿折线BS -SD -DC 匀速运动,同时点F 从点C 出发点,以每秒1cm 的速度沿边CB 匀速运动.已知点F 运动到点B 时,点E 也恰好运动到点C ,此时动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF 的面积为2ycm .已知y 与t 的函数图像如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC =6cm ,CD =4cm ; ③sin ∠ABS =32; ④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D .②③④5.如图,在由边长为1的小正方形组成的网格中,点A ,B ,C ,D 都在格点上,点E 在AB 的延长线上,以A 为圆心,AE 为半径画弧,交AD 的延长线于点F ,且弧EF 经过点C ,则扇形AEF 的面积为( )A .5π B .58πC .54πD .5π 6.已知二次函数y =(a ﹣1)x 2﹣x+a 2﹣1图象经过原点,则a 的取值为( ) A .a =±1B .a =1C .a =﹣1D .无法确定7.关于2,6,1,10,6这组数据,下列说法正确的是( ) A .这组数据的平均数是6 B .这组数据的中位数是1 C .这组数据的众数是6 D .这组数据的方差是10.2 8.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( )A .40B .60C .80D .1009.如图,A 、B 、C 、D 是⊙O 上的四点,BD 为⊙O 的直径,若四边形ABCO 是平行四边形,则∠ADB 的大小为( )A .30°B .45°C .60°D .75°10.下列条件中,一定能判断两个等腰三角形相似的是( ) A .都含有一个40°的内角 B .都含有一个50°的内角 C .都含有一个60°的内角 D .都含有一个70°的内角11.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似 D .所有矩形都相似 12.一组数据10,9,10,12,9的平均数是( )A .11B .12C .9D .10二、填空题13.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________. 14.关于x 的一元二次方程20x a +=没有实数根,则实数a 的取值范围是 . 15.已知矩形ABCD ,AB=3,AD=5,以点A 为圆心,4为半径作圆,则点C 与圆A 的位置关系为 __________.16.如图,四边形ABCD 是半圆的内接四边形,AB 是直径,CD CB =.若100C ∠=︒,则ABC ∠的度数为______.17.如图,在△ABC 中,AB =3,AC =4,BC =6,D 是BC 上一点,CD =2,过点D 的直线l 将△ABC 分成两部分,使其所分成的三角形与△ABC 相似,若直线l 与△ABC 另一边的交点为点P ,则DP =________.18.设1x ,2x 是关于x 的一元二次方程240x x +-=的两根,则1212x x x x ++=______. 19.将二次函数y =2x 2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为____.20.关于x 的方程220kx x --=的一个根为2,则k =______.21.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____. 22.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y…343…23.如图,AB 是⊙O 的直径,弦BC=2cm ,F 是弦BC 的中点,∠ABC=60°.若动点E 以2cm/s 的速度从A 点出发沿着A ⇒B ⇒A 方向运动,设运动时间为t (s )(0≤t <3),连接EF ,当t 为_____s 时,△BEF 是直角三角形.24.如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△D EM 的面积为1,则□ABCD 的面积为________.三、解答题25.如图①抛物线y =ax 2+bx +4(a ≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点.(1)试求抛物线的解析式;(2)点D (3,m )在第一象限的抛物线上,连接BC ,BD .试问,在对称轴左侧的抛物线上是否存在一点P ,满足∠PBC =∠DBC ?如果存在,请求出点P 点的坐标;如果不存在,请说明理由;(3)点N 在抛物线的对称轴上,点M 在抛物线上,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,请直接写出点M 的坐标.26.某商场销售一批衬衫,每件成本为50元,如果按每件60元出售,可销售800件;如果每件提价5元出售,其销售量就减少100件,如果商场销售这批衬衫要获利润12000元,又使顾客获得更多的优惠,那么这种衬衫售价应定为多少元?(1)设提价了x 元,则这种衬衫的售价为___________元,销售量为____________件. (2)列方程完成本题的解答.27.如图,在平行四边形ABCD 中,过点B 作BE CD ⊥,垂足为E ,连接AE ,F 为AE 上一点,且BFE C ∠=∠. (1)求证:ABF EAD .(2)若4AB =,3BE =,72AD =,求BF 的长.28.已知,如图,抛物线2(0)y ax bx c a =++≠的顶点为(1,9)M ,经过抛物线上的两点(3,7)A --和(3,)B m 的直线交抛物线的对称轴于点C .(1)求抛物线的解析式和直线AB 的解析式.(2)在抛物线上,A M 两点之间的部分(不包含,A M 两点),是否存在点D ,使得2DAC DCM S S ∆∆=?若存在,求出点D 的坐标;若不存在,请说明理由.(3)若点P 在抛物线上,点Q 在x 轴上,当以点,,,A M P Q 为顶点的四边形是平行四边形时,直接写出满足条件的点P 的坐标.29.关于x 的方程22210x x m -+-=有实数根,且m 为正整数,求m 的值及此时方程的根.30.如图,AB 是⊙O 的弦,AB =4,点P 在AmB 上运动(点P 不与点A 、B 重合),且∠APB =30°,设图中阴影部分的面积为y . (1)⊙O 的半径为 ;(2)若点P 到直线AB 的距离为x ,求y 关于x 的函数表达式,并直接写出自变量x 的取值范围.31.如图,已知⊙O 的直径AC 与弦BD 相交于点F ,点E 是DB 延长线上的一点,∠EAB=∠ADB .(1)求证:AE 是⊙O 的切线;(2)已知点B 是EF 的中点,求证:△EAF ∽△CBA ; (3)已知AF=4,CF=2,在(2)的条件下,求AE 的长.32.(1)如图①,点A ,B ,C 在O 上,点D 在O 外,比较A ∠与BDC ∠的大小,并说明理由;(2)如图②,点A ,B ,C 在O 上,点D 在O 内,比较A ∠与BDC ∠的大小,并说明理由;(3)利用上述两题解答获得的经验,解决如下问题:在平面直角坐标系中,如图③,已知点()1,0M ,()4,0N ,点P 在y 轴上,试求当MPN ∠度数最大时点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到. 【详解】解:∵y =2(x -1)2+3的顶点坐标为(1,3),y=2x 2的顶点坐标为(0,0),∴将抛物线y=2x 2向右平移1个单位,再向上平移3个单位,可得到抛物线y =2(x -1)2+3 故选:C . 【点睛】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.2.C解析:C 【解析】 【分析】根据方程解的定义,求出a-b ,利用作图代入的思想即可解决问题. 【详解】∵关于x 的一元二次方程240ax bx ++=的解是x=−1, ∴a−b+4=0, ∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019. 故选C. 【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.3.D解析:D 【解析】 【分析】分两种情形:当CAN B ∠=∠时,CAN CBA ∆∆∽,设3CN k =,4BM k =,可得CN ACAC CB=,解出k 值即可;当CAN MCB ∠=∠时,过点M 作MH CB ⊥,可得CAN BAC ∆∆∽,得出125MH k =,165BH k =,则1685CH k =-,证明ACN CHM ∆∆∽,得出方程求解即可. 【详解】解:在Rt △ABC 中,∠ACB =90°,AC =6,BC =8, ∴CMB CAB CAN ∠>∠>∠,AB=10, CAN CAB ∴∠≠∠,设3CN k =,4BM k =,①当CAN B ∠=∠时,可得CAN CBA ∆∆∽, ∴CN ACAC CB=,∴3668k=,32k∴=,6BM∴=.②当CAN MCB∠=∠时,如图2中,过点M作MH CB⊥,可得BMH BAC∆∆∽,∴BM MH BHBA AC BC==,∴41068k MH BH==,125MH k∴=,165BH k=,1685CH k∴=-,MCB CAN∠=∠,90CHM ACN∠=∠=︒,ACN CHM∴∆∆∽,∴CN MHAC CH=,∴123516685kkk=-,1k∴=,4BM∴=.综上所述,4BM=或6.故选:D.【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.4.C解析:C【解析】【分析】①根据函数图像的拐点是运动规律的变化点由图象即可判断.②设AB CD acm==,BC AD bcm==,由函数图像利用△EBF面积列出方程组即可解决问题.③由 2.5BS k=,1.5SD k =,得53BS SD =,设3SD x =,5BS x =,在RT ABS ∆中,由222AB AS BS +=列出方程求出x ,即可判断.④求出BS 即可解决问题. 【详解】解:函数图像的拐点时点运动的变化点根据由图象可知点E 运动到点S 时用了2.5秒,运动到点D 时共用了4秒.故①正确. 设AB CD acm ==,BC AD bcm ==,由题意,1··( 2.5)721·(4)42a b a b ⎧-=⎪⎪⎨⎪-=⎪⎩解得46a b =⎧⎨=⎩, 所以4AB CD cm ==,6BC AD cm ==,故②正确, 2.5BS k =, 1.5SD k =, ∴53BS SD =,设3SD x =,5BS x =, 在Rt ABS ∆中,222AB AS BS +=,2224(63)(5)x x ∴+-=, 解得1x =或134-(舍), 5BS ∴=,3SD =,3AS =, 3sin 5AS ABS BS ∴∠==故③错误, 5BS =, 5 2.5k ∴=,2/k cm s ∴=,故④正确,故选:C . 【点睛】本题考查二次函数综合题、锐角三角函数、勾股定理、三角形面积、函数图象问题等知识,读懂图象信息是解决问题的关键,学会设未知数列方程组解决问题,把问题转化为方程去思考,是数形结合的好题目,属于中考选择题中的压轴题.5.B解析:B 【解析】 【分析】连接AC ,根据网格的特点求出r=AC 的长度,再得到扇形的圆心角度数,根据扇形面积公式即可求解. 【详解】连接AC ,则r=AC=22251=+ 扇形的圆心角度数为∠BAD=45°, ∴扇形AEF 的面积=()2455360π⨯⨯=58π故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.6.C解析:C 【解析】 【分析】将(0,0)代入y =(a ﹣1)x 2﹣x+a 2﹣1 即可得出a 的值. 【详解】解:∵二次函数y =(a ﹣1)x 2﹣x+a 2﹣1 的图象经过原点, ∴a 2﹣1=0, ∴a =±1, ∵a ﹣1≠0, ∴a≠1, ∴a 的值为﹣1. 故选:C . 【点睛】本题考查了二次函数,二次函数图像上的点满足二次函数解析式,熟练掌握这一点是解题的关键,同时解题过程中要注意二次项系数不为0.7.C解析:C 【解析】 【分析】先把数据从小到大排列,然后根据算术平均数,中位数,众数的定义得出这组数据的平均数、中位数、众数,再利用求方差的计算公式求出这组数据的方差,再逐项判定即可. 【详解】解:数据从小到大排列为:1,2,6,6,10, 中位数为:6; 众数为:6;平均数为:()112661055⨯++++=; 方差为:()()()()()2222211525656510510.45⎡⎤⨯-+-+-+-+-=⎣⎦. 故选:C .【点睛】本题考查的知识点是平均数,中位数,众数,方差的概念定义,熟记定义以及方差公式是解此题的关键.8.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案.【详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.9.A解析:A【解析】【详解】解:∵四边形ABCO 是平行四边形,且OA=OC ,∴四边形ABCO 是菱形,∴AB=OA=OB ,∴△OAB 是等边三角形,∴∠AOB=60°,∵BD 是⊙O 的直径,∴点B 、D 、O 在同一直线上,∴∠ADB=12∠AOB=30° 故选A . 10.C解析:C试题解析:因为A,B,D给出的角40,50,70可能是顶角也可能是底角,所以不对应,则不能判定两个等腰三角形相似;故A,B,D错误;C. 有一个60的内角的等腰三角形是等边三角形,所有的等边三角形相似,故C正确.故选C.11.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.12.D解析:D【解析】【分析】利用平均数的求法求解即可.【详解】这组数据10,9,10,12,9的平均数是1(10910129)10 5++++=故选:D.【点睛】本题主要考查平均数,掌握平均数的求法是解题的关键.二、填空题13.5【解析】根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是解析:5【解析】【分析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.【详解】∵12,x x 是方程2410x x -+=的两根∴12x x +=-b a =4,12x x ⋅=c a=1 ∴122(1)x x x =1122x x x x ++=1212x x x x ++=4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a的运用. 14.a >0.【解析】试题分析:∵方程没有实数根,∴△=﹣4a <0,解得:a >0,故答案为a >0. 考点:根的判别式.解析:a >0.【解析】试题分析:∵方程20x a +=没有实数根,∴△=﹣4a <0,解得:a >0,故答案为a >0. 考点:根的判别式.15.点C 在圆外【解析】【分析】由r 和CA ,AB 、DA 的大小关系即可判断各点与⊙A 的位置关系.【详解】解:∵AB =3厘米,AD =5厘米,∴AC=厘米,∵半径为4厘米,∴点C在圆A外【点解析:点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=22+=厘米,3534∵半径为4厘米,∴点C在圆A外【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.16.50【解析】【分析】连接AC,根据圆内接四边形的性质求出,再利用圆周角定理求出,,计算即可. 【详解】解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∵DC=CB∴∵AB是直解析:50【解析】【分析】连接AC ,根据圆内接四边形的性质求出DAB ∠,再利用圆周角定理求出ACB ∠,CAB ∠,计算即可.【详解】解:连接AC ,∵四边形ABCD 是半圆的内接四边形,∴DAB 180DCB 80∠∠=︒-=︒∵DC=CB∴1CAB 402DAB ∠=∠=︒ ∵AB 是直径∴ACB 90∠=︒∴ABC 90CAB 50∠∠=︒-=︒故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键. 17.1, ,【解析】【分析】分别利用当DP ∥AB 时,当DP ∥AC 时,当∠CDP=∠A 时,当∠BPD=∠BAC 时求出相似三角形,进而得出结果.【详解】BC =6,CD=2,∴BD=4,①如图解析:1,83 ,32【解析】【分析】分别利用当DP ∥AB 时,当DP ∥AC 时,当∠CDP=∠A 时,当∠BPD=∠BAC 时求出相似三角形,进而得出结果.【详解】BC =6,CD=2,∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,∴PD CDAB BC=,∴236DP=,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.∴PD BDAC BC=,∴446DP=,∴DP=83;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴DP DCAB AC=,∴234DP=,∴DP=32;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。

2015-2016学年深圳南山区九年级上数学期末模拟卷含答案

2015-2016学年深圳南山区九年级上数学期末模拟卷含答案

的价格如图所
17.(6 分)计算:
1 2 2
1
4 x2 1

x 1
2 x

1.
3 (
2014 1) 2 tan 60
0
28 . 18.(6 分)解方程:
19.(7 分)为积极响应南山区“我的中国梦”征文活动,我校在八,九年级开展征文活动,校学生会对这两个 年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图. (1)求扇形统计图中投稿篇数为 2 所对应的扇形的圆心角的度数: (2)求该校八,九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整. (3)在投稿篇数为 9 篇的两个班级中,八,九年级各有两个班,校学生会准备从这四个中选出两个班参加全市 的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.
A. 2a + 3b = 5ab
B.3x 2 y - 2x 2 y = 1
C. (2a 2 )3 = 6a 6


D.5x ÷ x = 5x
5.纳米是非常小的长度单位,1 纳米=109 米. 某种病菌的长度约为 50 纳米,用科学3 记数2法表示该病菌的长
度,结果正确的是


A. 51010 米
23.(9 分)如图,在平面直角坐标系 xOy 中,抛物线 y=ax2+bx+3 的顶点为 M(2,-1),交 x 轴于 A、B 两
点,交 y 轴于点 C,其中点 B 的坐标为(3,0).
(1)求该抛物线的解析式; (2)设经过点 C 的直线与该抛物线的另一个交点为 D,且直线 CD 和直线 CA 关于直线 BC 对称,求直线 CD
的解析式;
(3)点 E 为线段 BC 上的动点

[模拟]2016-2017学年深圳市九上期末数学试卷

[模拟]2016-2017学年深圳市九上期末数学试卷

[模拟]2016-2017学年深圳市罗湖区九上期末数学试卷一、选择题(共12小题;共60分)1. 一元二次方程的根为A. B。

C. ,D。

,2。

在下列网格中,小正方形的边长为,点,, 都在格点上,求的余弦值A. B。

C。

D。

3。

有一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是A。

B.C. D.4. 在下列命题中,正确的是A。

一组对边平行的四边形是平行四边形B. 有一组邻边相等的平行四边形是菱形C. 有一个角是直角的四边形是矩形D. 对角线互相垂直平分的四边形是正方形5. 如图,阳光从教室的窗户射入室内,窗户框在地面上的影长,窗户下檐到地面的距离,,那么窗户的高为A。

C。

D。

6。

一元二次方程的根的情况是A. 没有实数根B。

只有一个实数根C。

有两个相等的实数根D. 有两个不相等的实数根7。

近年来,欧债危机严重影响了世界经济,受欧债危机的影响,某商品原价为元,连续两次降价后售价为元,下面所列方程正确的是A。

B。

C。

D。

8. 已知三角形两边长分别为和,第三边的长为二次方程的一根,则这个三角形的周长为A. B。

C. 或 D。

9. 已知为矩形的对角线,则图中与一定不相等的是A。

B.C. D.10。

如图是二次函数图象的一部分,对称轴为直线,且经过点,有下列说法:;;;若,是抛物线上的两点,则.上述说法正确的是A。

B. C。

D。

11. 菱形的边长为 ,有一个内角为,则较长的对角线的长为A. B. C. D。

12。

如图,在以为原点的平面直角坐标系中,矩形的两边 , 分别在轴,轴的正半轴上,反比例函数与相交于点,与相交于点,若,且的面积是,则的值为A. B。

C。

D。

二、填空题(共4小题;共20分)13. 在一个暗箱里放有个除颜色外其余完全相同的球,这个球中红球只有个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在,那么可以推测出大约是.14. 如果一元二次方程有一个根为,则.15。

2023-2024学年广东省深圳市南山区九年级(上)期末数学试卷及答案解析

2023-2024学年广东省深圳市南山区九年级(上)期末数学试卷及答案解析

2023-2024学年广东省深圳市南山区九年级(上)期末数学试卷一、选择题(本题有10小题,每题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用2B铅笔填涂在答题卡上)1.(3分)如图所示,该几何体的主视图是()A.B.C.D.2.(3分)已知关于x的方程x2+mx+3=0的一个根为x=1,则实数m的值为()A.4B.﹣4C.3D.﹣33.(3分)下列平行四边形中,根据图中所标出的数据,不能判定是菱形的是()A.B.C.D.4.(3分)如图,在平面直角坐标系xOy中,两个“E”字是位似图形,位似中心点O,①号“E”与②号“E”的位似比为2:1.点P(﹣6,9)在①号“E”上,则点P在②号“E”上的对应点Q的坐标为()A.(﹣3,)B.(﹣2,3)C.(﹣,3)D.(﹣3,2)5.(3分)近几年,二维码逐渐进入了人们的生活,成为广大民众生活中不可或缺的一部分.小刚将二维码打印在面积为20的正方形纸片上,如图,为了估计黑色阴影部分的面积,他在纸内随机掷点,经过大量重复实验,发现点落在黑色阴影的频率稳定在0.6左右,则据此估计此二维码中黑色阴影的面积为()A.8B.12C.0.4D.0.66.(3分)如图,嘉嘉在A时测得一棵4m高的树的影长DF为8m,若A时和B时两次日照的光线互相垂直,则B时的影长DE为()A.2m B.C.4m D.7.(3分)下面说法正确的是()A.两条直线被一组平行线所截,所得的线段成比例B.对于反比例函数,y随x的增大而减小C.关于x的方程ax2+b=0是一元二次方程D.顺次连接对角线相等的四边形各边中点所组成的图形是菱形8.(3分)近年来,由于新能源汽车的崛起,燃油汽车的销量出现了不同程度的下滑,经销商纷纷开展降价促销活动.某款燃油汽车今年3月份售价为23万元,5月份售价为16万元.设该款汽车这两月售价的月均下降率是x,则所列方程正确的是()A.16(1+x)2=23B.23(1﹣x)2=16C.16(1+2x)2=23D.23(1﹣2x)2=169.(3分)如图,在矩形ABCD中,以A为圆心,AD长为半径画圆弧,交BC于点E,以E 为圆心AE长为半径画圆弧与BC的延长线交于点F,连接AF分别与DE、DC交于点M、N,连接DF,下列结论中错误的是()A.四边形AEFD为菱形B.CN=CEC.△CFN∽△DAN D.△ABE≌△DCF10.(3分)某学习小组用绘图软件绘制出了函数如图所示的图象,根据你学习函数的经验,下列对a,b大小的判断,正确的是()A.a>0,b<0B.a>0,b>0C.a<0,b>0D.a<0,b<0二、填空题:(本大题共5小题,每小题3分,共15分)11.(3分)若,则=.12.(3分)大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”的美.如图,点P为AB的黄金分割点(AP>PB).如果BP的长度为2cm,那么AP的长度为_____cm.13.(3分)如图,在△ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为.14.(3分)如图,在矩形OABC中,OA=12,OC=10,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(x>0)的图象与BC边交于点E,若S△AEF=k 时,则k=.15.(3分)如图,△ABC为直角三角形,∠ACB=90°,AC=1,BC=3,D是AB边上的中点,将△ACB绕着点A逆时针旋转,使点C落在线段CD上的点E处,点B的对应点为F,边EF与边AB交于点G,则DG的长是.三、解答题:(本题共7小题,其中第16题6分,第17题6分,第18题8分,第19题8分,第20题8分,第21题9分,第20题10分,共55分)16.(6分)解下列方程:(1)(x﹣3)2=4x(x﹣3);(2)x2+8x﹣9=0.17.(6分)已知:▱ABCD的两邻边AB,AD的长是关于x的方程x2﹣mx+2m=0的两个实数根.(1)当m为何值时,▱ABCD是菱形?(2)若AB的长为3,求▱ABCD的周长.18.(8分)某校在九年级随机抽取了20名学生分成甲、乙两组,每组各10人,进行“网络安全”知识竞赛.把甲、乙两组的成绩进行整理分析(满分100分,竞赛得分用x表示:90≤x≤100为网络安全意识非常强,80≤x<90为网络安全意识比较强,x<80为网络安全意识一般).收集整理的数据制成了如下统计图表:平均数中位数众数甲组a8080乙组83b c根据以上信息回答下列问题:(1)填空:a=,b=,c=;(2)已知该校九年级有500人,估计九年级网络安全意识非常强的人数一共是多少?(3)现在准备从甲乙两组满分人数中抽取两名同学参加全区比赛,用树状图或者列表法求抽取的两名同学恰好一人来自甲组,另一人来自乙组的概率.19.(8分)如图,在正方形ABCD中,点E,F分别在AD,CD上,AF⊥BE,垂足为M.(1)求证:AE=DF;(2)若正方形ABCD的边长是8,,点N是BF的中点,求MN的长.20.(8分)园林部门计划在公园建一个如图(甲)所示的长方形花圃ABCD,花圃的一面靠墙(墙足够长),另外三边用木栏围成,BC=2AB,建成后所用木栏总长120米,在图(甲)总面积不变的情况下,在花圃内部设计了一个如图(乙)所示的正方形网红打卡点和两条宽度相等的小路,其中,小路的宽度是正方形网红打卡点边长的,其余部分种植花卉,花卉种植的面积为1728平方米.(1)求长方形ABCD花圃的长和宽;(2)求出网红打卡点的面积.21.(9分)【综合与实践】:北师大版九年级上册数学教材第122页第21题:“怎样把一块三角形的木板加工成一个面积最大的正方形桌面?”某小组同学对此展开了思考.=1.5m2,AB=【特例感知】:(1)若木板的形状是如图(甲)所示的直角三角形,S△ABC1.5m,根据“相似三角形对应的高的比等于相似比”可以求得此时正方形DEFG的边长是.【问题解决】:若木板是面积仍然为1.5m2的锐角三角形ABC,按照如图(乙)所示的方式加工,记所得的正方形DEFG的面积为S,如何求S的最大值呢?某学习小组做了如下思考:=ah,∴h=,由△BDE∽△BAC 设DE=x,AC=a,AC边上的高BH=h,则S△ABC得:,从而可以求得x=,若要内接正方形面积S最大,即就是求x的最大值.因为S=1.5为定值,因此只需要分母最小即可.(2)小组同学借鉴研究函数的经验,令y=a+h=a+(a>0).探索函数y=a+的图象和性质:①下表列出了y与a的几组对应值,其中m=;a…1234…y…129m43344…②在如图(丙)所示的平面直角坐标系中画出该函数的大致图象;③结合表格观察函数y=a+图象,以下说法正确的是.A.当a>1时,y随a的增大而增大.B.该函数的图象可能与坐标轴相交.C.该函数图象关于直线y=a对称.D.当该函数取最小值时,所对应的自变量a的取值范围在1~2之间.22.(10分)某数学学习小组学习完四边形后进行了如下探究,已知四边形EFGH为矩形,请你帮助他们解决下列问题:(1)【初步尝试】:他们将矩形EFGH的顶点E、G分别在如图(1)所示的▱ABCD的边AD、BC上,顶点F、H恰好落在▱ABCD的对角线BD上,求证:BF=DH;(2)【深入探究】:如图2,若▱ABCD为菱形,∠ABC=60°,若AE=ED,求的值;(3)【拓展延伸】:如图(3),若▱ABCD为矩形,AD=m,AB=n且AE=ED,请直接写出此时的值是(用含有m,n的代数式表示).2023-2024学年广东省深圳市南山区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每题3分,共30分。

2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017学年度第一学期九年级数学期末检测试卷一、选择题(本大题8小题,每小题3分,共24分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1. 民族图案是数学文化中的一块瑰宝,下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.一元二次方程240+=x x 的解为( )A .4=xB .4=-xC .121,3=-=x xD .120,4==-x x 3.如果关于x 的一元二次方程ax 2+x ﹣1=0有实数根,则a 的取值范围是( ) A .14a >-B .14a ≥- C .14a ≥-且a ≠0 D .14a >且a ≠0 4.抛物线262y x x =-+的顶点坐标是( )A .(-3,7)B .(3,2)C .(3,-7)D .(6,2)5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( ) A .20° B .30° C .40° D . 50°6. 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .197.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A . 0B . 0或23 C . 0或23- D . 4 8. 已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示正确的是( )9.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .80°或140°C .70°D .70°或80° 10.如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE∥AC,交BC 于点E ;过点E 作EF⊥DE,交AB 的延长线于点F.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x函数关学校 班级 姓名 座位号系的图象是( )二、填空题(本题共4小题,每小题4分,共16分)11.某药品2013年的销售价为50元/盒,2015年降价为42元/盒,若平均每年降价百分率是x ,则可以列方程 ; 12.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为__________;13.如图,在平面直角坐标系xOy 中,直线AB 经过点A(6,0)、B(0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为= ;14. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 .三、解答题(本大题2小题,每小题8分,共16分)15. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?16.设点A 的坐标为(x ,y ),其中横坐标x 可取﹣1、2,纵坐标y 可取﹣1、1、2. (1)求出点A 的坐标的所有等可能结果(用树状图或列表法求解); (2)试求点A 与点B (1,﹣1)关于原点对称的概率.四、(本大题2小题,每小题8分,共16分)17. 如图,正比例函数12y x =-与反比例函数2y 相交于点E (m ,2). (1)求反比例函数2y 的解析式.(2)观察图象直接写出当120y y >>时,x 的取值范围.18.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.五、(本大题2小题,每小题10分,共20分)19.如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0),C (﹣1,0). (1)点A 关于原点O 对称的点的坐标为 ;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形并求A 点经过的路径长; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20. 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数2200400y x x =-+;1.5小时后(含1.5小时)y 与x 可近似地用反比例函数(0ky k x=>)刻画,如图.(1)喝酒后血液中酒精含量达到最大值?最大值是多少? (2)当x=5时,y=45,求k 的值;(3)按照国家规定,驾驶员血液中酒精含量大于或等于20毫克/百毫升时,属于“酒后驾驶”,不能驾车,假设某驾驶员晚上20:00在家喝了半斤低度白酒,第二天早上7:00能否驾车去上班?说明理由.六、本题12分21. 如图,△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若∠A =30°,连接EF ,求证:EF ∥AB ;(3)在(2)的条件下,若AE =2,求图中阴影部分的面积.七、本题12分22. 操作:在△ABC 中,AC=BC=2,∠C =90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:y (毫克/百毫升)455x (时)(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.八、本题14分23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2016-2017九年级数学参考答案一、选择题: 1-10:C D CCD D A C B A二、填空题11、250(1)42x -=; 12、4; 13、 14; 14、513三、解答题:15、解:设每件衬衫应降价x 元,可使商场每天盈利2100元.根据题意得(45﹣x )(20+4x )=2100, 化简得:2403000x x -+=…………………………..5分 解得x 1=10,x 2=30.因尽快减少库存,故x=30.(未作讨论的酌情扣1-2分) 答:每件衬衫应降价30元.…………………………..10分16、(1)列举所有等可能结果,画出树状图如下由上图可知,点A 的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、 (2,1)、(2,2),共有6种,…………………………6分 (2)点B (1,﹣1)关于原点对称点的坐标为(-1,1). ∴P (点A 与点B 关于原点对称)=16…………………………10分 四、17、解:(1)设反比例函数解析式为xky =2………………1分 ∵x y 21-=过点)2,(m E ∴122-==-m m ∴)2,1(-E …………4分∵xky =2过)2,1(-E ∴2-=k ∴反比例函数解析式为xy 22-=……………7分 (2)当x <-1时,120y y >>.………………………10分18. 解:过点M 作MF ⊥CD 于点F ,过点C 作CE ⊥x 轴于点E ,连接CM. 在Rt △CMF 中,CF =12CD =12OB =4,CM =12OA =5,∴MF =CM 2-CF 2=3.∴CE =MF =3.又EM =CF =4,OM =12OA =5,∴OE =OM -EM =1. ∴C(1,3).五、19、解:(1)点A 关于原点O 对称的点的坐标为(2,﹣3);…………………………..1分(2)△ABC 旋转后的△A ′B ′C ′如图所示,…………………………..4分 点A ′的对应点的坐标为(﹣3,﹣2); OA ′,即点A;…………..7分(3)若AB 是对角线,则点D (﹣7,3), 若BC 是对角线,则点D (﹣5,﹣3), 若AC 是对角线,则点D (3,3).…………………………..10分 20.解:(1)证明:连接OE.∵OB =OE ,∴∠BEO =∠EBO.∵BE 平分∠CBO ,∴∠EBO =∠CBE. ∴∠BEO =∠CBE.∴EO ∥BC.∵∠C =90°,∴∠AEO =∠C =90°. ∴AC 是⊙O 的切线.(2)证明:∵∠A =30°,∴∠ABC =60°. ∴∠OBE =∠FBE =30°.∴∠BEC =90°-∠FBE =60°. ∵∠CEF =∠FBE =30°,∴∠BEF =∠BEC -∠CEF =60°-30°=30°. ∴∠BEF =∠OBE.∴EF ∥AB. (3)连接OF.∵EF ∥AB ,BF ∥OE ,OB =OE ,∴四边形OBFE 是菱形. ∴S △EFB =S △EOF. ∴S 阴影=S 扇EOF.设圆的半径为r ,在Rt △AEO 中,AE =2,∠A =30°,∴r =OE =233.∴S 阴影=S 扇EOF =60π×(233)2360=2π9.六、21、解:(1)22200400200(1)200y x x x =-+=--+,∴饮酒后1小时血液中酒精含量达到最大值,最大值为200(毫克/百毫升)(2)k=225(3)不能驾车上班,理由:晚上20:00到第二天早上7:00共计11小时,把x=11代入22522511y y x ==得,>20,所以不能.七、22、解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE .y (毫克/百毫升)455x (时)理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE.(2)△PBE是等腰三角形,①当PE=PB时,此时点C与点E重合,CE=0;②当BP=BE时,E在线段BC上,;E在CB的延长线上,;③当EP=EB时,CE=1.八、23、解(1)由图象可知,300=a×302,解得a=,n=700,b×(30﹣90)2+700=300,解得b=﹣,∴y=,(2)由题意﹣(x﹣90)2+700=684,解得x=78,∴=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省深圳市南山区2016届九年级上学期期末数学模拟试卷一、选择题(本题12小题,每题3分,共36分)1.﹣5的绝对值是()A.﹣B.C.﹣5 D.52.下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.如图下面几何体的左视图是()A.B.C.D.4.下列运算正确的是()A.2a+3b=5ab B.3x2y﹣2x2y=1 C.(2a2)3=6a6D.5x3÷x2=5x5.纳米是非常小的长度单位,1纳米=10﹣9米.某种病菌的长度约为50纳米,用科学记数法表示该病菌的长度,结果正确的是()A.5×10﹣10米B.5×10﹣9米 C.5×10﹣8米 D.5×10﹣7米6.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2 B.(6a+15)cm2C.(6a+9)cm2D.(3a+15)cm2则关于这10个小区的绿化率情况,下列说法错误的是()A.方差是13% B.众数是25%C.中位数是25% D.平均数是26.2%8.如图,AB是⊙O的直径,AB垂直于弦CD,∠BOC=70°,则∠ABD=()A.20°B.46°C.55°D.70°9.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.1510.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.﹣3 B.3 C.﹣6 D.911.对于点A(x1,y1)、B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(﹣5,4),B(2,﹣3),A⊕B=(﹣5+2)+(4﹣3)=﹣2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E=E⊕F=F⊕D,则C,D,E,F四点()A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点12.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分).则下列结论错误的是()A.AD=BE=5cm B.cos∠ABE=C.当0<t≤5时,D.当秒时,△ABE∽△QBP二、填空题(本题4小题,每题3分,共12分)13.函数的自变量x的取值范围是.14.分解因式:9ax2﹣6ax+a=.15.已知m和n是方程2x2﹣5x﹣3=0的两根,则=.16.如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B.BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1.B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C n的坐标是.三、解答题17.(﹣)﹣2﹣|1﹣|﹣()0+2tan60°+.18.解方程:.19.为积极响应市委,市政府提出的“实现伟大中国梦,建设美丽攀枝花”的号召,我市某校在八,2016届九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)求扇形统计图中投稿篇数为2所对应的扇形的圆心角的度数:(2)求该校八,2016届九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整.(3)在投稿篇数为9篇的4个班级中,八,2016届九年级各有两个班,校学生会准备从这四个中选出两个班参加全市的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.20.已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中点,连接AE、AC.(1)点F是DC上一点,连接EF,交AC于点O(如图1),求证:△AOE∽△COF;(2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证:四边形EFDG是菱形.21.为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)()设产品的采购数量为(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.22.如图,将边长为4的等边三角形AOB放置于平面直角坐标系xoy中,F是AB边上的动点(不与端点A、B重合),过点F的反比例函数y=(k>0,x>0)与OA边交于点E,过点F作FC⊥x 轴于点C,连结EF、OF.(1)若S△OCF=,求反比例函数的解析式;(2)在(1)的条件下,试判断以点E为圆心,EA长为半径的圆与y轴的位置关系,并说明理由;(3)AB边上是否存在点F,使得EF⊥AE?若存在,请求出BF:FA的值;若不存在,请说明理由.23.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,﹣1),交x轴于A、B 两点,交y轴于点C,其中点B的坐标为(3,0).(1)求该抛物线的解析式;(2)设经过点C的直线与该抛物线的另一个交点为D,且直线CD和直线CA关于直线BC对称,求直线CD的解析式;(3)点E为线段BC上的动点(点E不与点C,B重合),以E为顶点作∠OEF=45°,射线EF交线段OC于点F,当△EOF为等腰三角形时,求此时点E的坐标;(4)在该抛物线的对称轴上存在点P,满足PM2+PB2+PC2=35,求点P的坐标;并直接写出此时直线OP与该抛物线交点的个数.广东省深圳市南山区2016届九年级上学期期末数学模拟试卷参考答案与试题解析一、选择题(本题12小题,每题3分,共36分)1.﹣5的绝对值是()A.﹣B.C.﹣5 D.5【考点】绝对值.【专题】计算题.【分析】根据负数的绝对值等于它的相反数计算即可.【解答】解:﹣5的绝对值是5,故选D【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.2.下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义:旋转180°后能够与原图形完全重合即是中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.【解答】解:A、此图形是轴对称图形,不是中心对称图形,故此选项错误;B、此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形是中心对称图形,不是轴对称图形,故此选项错误;D、此图形是中心对称图形,不是轴对称图形,故此选项错误.故选B.【点评】本题考查了中心对称图形与轴对称图形,掌握中心对称图形与轴对称图形的概念即可,属于基础题.3.如图下面几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】左视图即从物体左面看到的图形,找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得三个竖直排列的长方形,且上下两个长方形的长大于宽,比较小,中间的长方形的宽大于长,比较大.故选B.【点评】本题考查了三视图的知识,难度一般,注意左视图是从物体的左面看得到的视图.4.下列运算正确的是()A.2a+3b=5ab B.3x2y﹣2x2y=1 C.(2a2)3=6a6D.5x3÷x2=5x【考点】整式的除法;合并同类项;幂的乘方与积的乘方.【分析】根据整式的除法,幂的乘方与积的乘方,合并同类项分别进行计算,即可得出答案.【解答】解:A、不是同类项,不能相加,故本选项错误;B、3x2y﹣2x2y=x2y,故本选项错误;C、(2a2)3=8a6,故本选项错误;D、5x3÷x2=5x,故本选项正确.故选D.【点评】此题考查了整式的除法,幂的乘方与积的乘方,合并同类项,掌握运算法则是本题的关键.5.纳米是非常小的长度单位,1纳米=10﹣9米.某种病菌的长度约为50纳米,用科学记数法表示该病菌的长度,结果正确的是()A.5×10﹣10米B.5×10﹣9米 C.5×10﹣8米 D.5×10﹣7米【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:50纳米=50×10﹣9米=5×10﹣8米.故选C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2 B.(6a+15)cm2C.(6a+9)cm2D.(3a+15)cm2【考点】平方差公式的几何背景.【分析】大正方形与小正方形的面积的差就是矩形的面积,据此即可求解.【解答】解:矩形的面积是:(a+4)2﹣(a+1)2=(a+4+a+1)(a+4﹣a﹣1)=3(2a+5)=6a+15(cm2).故选B.【点评】本题考查了平方差公式的几何背景,理解大正方形与小正方形的面积的差就是矩形的面积是关键.)A.方差是13% B.众数是25%C.中位数是25% D.平均数是26.2%【考点】方差;加权平均数;中位数;众数.【分析】根据方差、众数、中位数、平均数的定义求解即可.【解答】解:根据题意得:平均数是:=26.2%,方差是:[2×2+4×(25%﹣26.2%)2+3×(30%﹣26.2%)2+(32%﹣26.2%)2]=15.96%;众数为:25%,中位数为:25%,则说法错误的是A;故选A.【点评】本题考查了方差、众数、中位数、平均数的知识,属于基础题,解题的关键是掌握各知识点的定义.8.如图,AB是⊙O的直径,AB垂直于弦CD,∠BOC=70°,则∠ABD=()A.20°B.46°C.55°D.70°【考点】圆周角定理;垂径定理.【分析】连接BC,根据等腰三角形的性质求得∠OBC的度数,然后根据等弧所对的圆周角相等即可求解.【解答】解:连接BC,∵OC=OB,∴∠OBC=∠OCB===55°,∵AB⊥CD,∴=,∴∠ABD=∠OBC=55°.故选C.【点评】本题考查了垂径定理以及圆周角定理,根据圆周角定理把求∠ABD的问题转化成求等腰三角形的底角的问题.9.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15【考点】二元一次方程组的应用.【分析】要求出第三束气球的价格,先求出笑脸形和爱心形的气球的单价就可以求出结论.【解答】解:设笑脸形的气球x元一个,爱心形的气球y元一个,由题意,得:,解得:2x+2y=16.故选:C.【点评】本题考查了学生观察能力和识图能力,列二元一次方程组解实际问题的运用和数学整体思想的运用,解答本题时根据单价×数量=总价的数量关系建立方程是关键.10.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.﹣3 B.3 C.﹣6 D.9【考点】抛物线与x轴的交点.【专题】探究型.【分析】先根据抛物线的开口向上可知a>0,由顶点纵坐标为﹣3得出b与a关系,再根据一元二次方程ax2+bx+m=0有实数根可得到关于m的不等式,求出m的取值范围即可.【解答】解:(法1)∵抛物线的开口向上,顶点纵坐标为﹣3,∴a>0,=﹣3,即b2=12a,∵一元二次方程ax2+bx+m=0有实数根,∴△=b2﹣4am≥0,即12a﹣4am≥0,即12﹣4m≥0,解得m≤3,∴m的最大值为3.(法2)一元二次方程ax2+bx+m=0有实数根,可以理解为y=ax2+bx和y=﹣m有交点,可见﹣m≥﹣3,∴m≤3,∴m的最大值为3.故选B.【点评】本题考查的是抛物线与x轴的交点,根据题意判断出a的符号及a、b的关系是解答此题的关键.11.对于点A(x1,y1)、B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(﹣5,4),B(2,﹣3),A⊕B=(﹣5+2)+(4﹣3)=﹣2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E=E⊕F=F⊕D,则C,D,E,F四点()A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点【考点】一次函数图象上点的坐标特征.【专题】压轴题;新定义.【分析】如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),先根据新定义运算得出(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),则x3+y3=x4+y4=x5+y5=x6+y6,若令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上.【解答】解:∵对于点A(x1,y1),B(x2,y2),A⊕B=(x1+x2)+(y1+y2),如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么C⊕D=(x3+x4)+(y3+y4),D⊕E=(x4+x5)+(y4+y5),E⊕F=(x5+x6)+(y5+y6),F⊕D=(x4+x6)+(y4+y6),又∵C⊕D=D⊕E=E⊕F=F⊕D,∴(x3+x4)+(y3+y4)=(x4+x5)+(y4+y5)=(x5+x6)+(y5+y6)=(x4+x6)+(y4+y6),∴x3+y3=x4+y4=x5+y5=x6+y6,令x3+y3=x4+y4=x5+y5=x6+y6=k,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线y=﹣x+k上,∴互不重合的四点C,D,E,F在同一条直线上.故选A.【点评】本题考查了一次函数图象上点的坐标特征,以及学生的阅读理解能力,有一定难度.12.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分).则下列结论错误的是()A.AD=BE=5cm B.cos∠ABE=C.当0<t≤5时,D.当秒时,△ABE∽△QBP【考点】二次函数综合题;动点问题的函数图象.【分析】根据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P到达点E时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.【解答】解:根据图(2)可得,当点P到达点E时点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故A正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,在Rt△ABE中,AB===4,∴cos∠ABE==,故B错误;如图(1)过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB==,∴PF=PBsin∠PBF=t,∴当0<t≤5时,y=BQ•PF=t•t=t2,故C正确;当秒时,点P在CD上,此时,PD=﹣BE﹣ED=﹣5﹣2=,PQ=CD﹣PD=4﹣=,∵=,=,∴=,又∵∠A=∠Q=90°,∴△ABE∽△QBP,故D正确.由于该题选择错误的,故选:B.【点评】本题考查了动点问题的函数图象,根据图(2)判断出点P到达点E时点Q到达点C是解题的关键,也是本题的突破口.二、填空题(本题4小题,每题3分,共12分)13.函数的自变量x的取值范围是x≤2.【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【解答】解:依题意,得2﹣x≥0,解得x≤2.故答案为:x≤2.【点评】本题考查的知识点为:二次根式的被开方数是非负数.14.分解因式:9ax2﹣6ax+a=a(3x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【解答】解:9ax2﹣6ax+a,=a(3x)2﹣6x+1,=a(3x﹣1)2.故答案为:a(3x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.已知m和n是方程2x2﹣5x﹣3=0的两根,则=﹣.【考点】根与系数的关系.【分析】利用根与系数的关系可以求得m+n=﹣,m•n=代入代数式求解即可.【解答】解:∵m和n是方程2x2﹣5x﹣3=0的两根,∴m+n=﹣=﹣=,m•n==﹣,∴+===﹣故答案为﹣.【点评】本题考查了根与系数的关系,解题的关键是牢记根与系数的关系并对代数式进行正确的变形.16.如图,在平面直角坐标中,直线l经过原点,且与y轴正半轴所夹的锐角为60°,过点A(0,1)作y轴的垂线l于点B,过点B1作直线l的垂线交y轴于点A1,以A1B.BA为邻边作▱ABA1C1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2,以A2B1.B1A1为邻边作▱A1B1A2C2;…;按此作法继续下去,则C n的坐标是(﹣×4n﹣1,4n).【考点】一次函数综合题;平行四边形的性质.【专题】压轴题;规律型.【分析】先求出直线l的解析式为y=x,设B点坐标为(x,1),根据直线l经过点B,求出B点坐标为(,1),解Rt△A1AB,得出AA1=3,OA1=4,由平行四边形的性质得出A1C1=AB=,则C1点的坐标为(﹣,4),即(﹣×40,41);根据直线l经过点B1,求出B1点坐标为(4,4),解Rt△A2A1B1,得出A1A2=12,OA2=16,由平行四边形的性质得出A2C2=A1B1=4,则C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);进而得出规律,求得C n的坐标是(﹣×4n﹣1,4n).【解答】解:∵直线l经过原点,且与y轴正半轴所夹的锐角为60°,∴直线l的解析式为y=x.∵AB⊥y轴,点A(0,1),∴可设B点坐标为(x,1),将B(x,1)代入y=x,得1=x,解得x=,∴B点坐标为(,1),AB=.在Rt△A1AB中,∠AA1B=90°﹣60°=30°,∠A1AB=90°,∴AA1=AB=3,OA1=OA+AA1=1+3=4,∵▱ABA1C1中,A1C1=AB=,∴C1点的坐标为(﹣,4),即(﹣×40,41);由x=4,解得x=4,∴B1点坐标为(4,4),A1B1=4.在Rt△A2A1B1中,∠A1A2B1=30°,∠A2A1B1=90°,∴A1A2=A1B1=12,OA2=OA1+A1A2=4+12=16,∵▱A1B1A2C2中,A2C2=A1B1=4,∴C2点的坐标为(﹣4,16),即(﹣×41,42);同理,可得C3点的坐标为(﹣16,64),即(﹣×42,43);以此类推,则C n的坐标是(﹣×4n﹣1,4n).故答案为(﹣×4n﹣1,4n).【点评】本题考查了平行四边形的性质,解直角三角形以及一次函数的综合应用,先分别求出C1、C2、C3点的坐标,从而发现规律是解题的关键.三、解答题17.(﹣)﹣2﹣|1﹣|﹣()0+2tan60°+.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用负整数指数幂法则计算,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,第四项利用特殊角的三角函数值计算,最后一项化简后,计算即可得到结果.【解答】解:原式=4﹣+1﹣1+2+=++4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解方程:.【考点】解分式方程.【分析】观察可得最简公分母是(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边都乘以(x+1)(x﹣1),得4﹣(x+1)(x+2)=﹣(x2﹣1),整理,3x=1,解得x=.经检验,x=是原方程的解.故原方程的解是x=.【点评】本题考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.为积极响应市委,市政府提出的“实现伟大中国梦,建设美丽攀枝花”的号召,我市某校在八,2016届九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)求扇形统计图中投稿篇数为2所对应的扇形的圆心角的度数:(2)求该校八,2016届九年级各班在这一周内投稿的平均篇数,并将该条形统计图补充完整.(3)在投稿篇数为9篇的4个班级中,八,2016届九年级各有两个班,校学生会准备从这四个中选出两个班参加全市的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.【考点】条形统计图;扇形统计图;列表法与树状图法.【分析】(1)根据投稿6篇的班级个数是3个,所占的比例是25%,可求总共班级个数,利用投稿篇数为2的比例乘以360°即可求解;(2)根据加权平均数公式可求该校八,2016届九年级各班在这一周内投稿的平均篇数,再用总共班级个数﹣不同投稿情况的班级个数即可求解:(3)利用树状图法,然后利用概率的计算公式即可求解.【解答】解:(1)3÷25%=12(个),×360°=30°.故投稿篇数为2所对应的扇形的圆心角的度数为30°;(2)12﹣1﹣2﹣3﹣4=2(个),(2+3×2+5×2+6×3+9×4)÷12=72÷12=6(篇),将该条形统计图补充完整为:(3)画树状图如下:总共12种情况,不在同一年级的有8种情况,所选两个班正好不在同一年级的概率为:8÷12=.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.已知:在梯形ABCD中,AD∥BC,∠ABC=90°,BC=2AD,E是BC的中点,连接AE、AC.(1)点F是DC上一点,连接EF,交AC于点O(如图1),求证:△AOE∽△COF;(2)若点F是DC的中点,连接BD,交AE与点G(如图2),求证:四边形EFDG是菱形.【考点】相似三角形的判定;菱形的判定.【专题】证明题.【分析】(1)由点E是BC的中点,BC=2AD,可证得四边形AECD为平行四边形,即可得△AOE∽△COF;(2)连接DE,易得四边形ABED是平行四边形,又由∠ABE=90°,可证得四边形ABED是矩形,根据矩形的性质,易证得EF=GD=GE=DF,则可得四边形EFDG是菱形.【解答】证明:(1)∵点E是BC的中点,BC=2AD,∴EC=BE=BC=AD,又∵AD∥BC,∴四边形AECD为平行四边形,∴AE∥DC,∴△AOE∽△COF;(2)连接DE,∵AD∥BE,AD=BE,∴四边形ABED是平行四边形,又∠ABE=90°,∴四边形ABED是矩形,∴GE=GA=GB=GD=BD=AE,∴E、F分别是BC、CD的中点,∴EF、GE是△CBD的两条中位线,∴EF=BD=GD,GE=CD=DF,又GE=GD,∴EF=GD=GE=DF,∴四边形EFDG是菱形.【点评】此题考查了相似三角形的判定与性质,平行四边形的判定与性质,矩形与菱形的判定与性质等知识.此题综合性较强,难度适中,解题的关键是要注意数形结合思想的应用.21.为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)()设产品的采购数量为(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.【考点】二次函数的应用.【分析】(1)设y1与x的关系式y1=kx+b,由表列出k和b的二元一次方程,求出k和b的值,函数关系式即可求出;(2)首先根据题意求出x的取值范围,结合x为整数,即可判断出商家的几种进货方案;(3)令总利润为W,根据利润=售价﹣成本列出W与x的函数关系式W=30x2﹣540x+12000,把一般式写成顶点坐标式,求出二次函数的最值即可.【解答】解:(1)设y1与x的关系式y1=kx+b,由表知,解得k=﹣20,b=1500,即y1=﹣20x+1500(0<x≤20,x为整数),(2)根据题意可得,解得11≤x≤15,∵x为整数,∴x可取的值为:11,12,13,14,15,∴该商家共有5种进货方案;(3)解法一:y2=﹣10+1300=10x+1100,令总利润为W,则W=(1760﹣y1)x+×[1700﹣(10x+1100)]=30x2﹣540x+12000,=30(x﹣9)2+9570,∵a=30>0,∴当x≥9时,W随x的增大而增大,∵11≤x≤15,=10650;∴当x=15时,W最大解法二:根据题意可得B产品的采购单价可表示为:y2=﹣10+1300=10x+1100,则A、B两种产品的每件利润可分别表示为:1760﹣y1=20x+260,1700﹣y2=﹣10x+600,则当20x+260>﹣10x+600时,A产品的利润高于B产品的利润,即x>=11时,A产品越多,总利润越高,∵11≤x≤15,∴当x=15时,总利润最高,此时的总利润为×15+(﹣10×15+600)×5=10650.答:采购A种产品15件时总利润最大,最大利润为10650元.【点评】本题主要考查二次函数的应用的知识点,解答本题的关键是明确销售单价与销售件数之间的函数关系式,会表达单件的利润及总利润,此题难度一般.22.如图,将边长为4的等边三角形AOB放置于平面直角坐标系xoy中,F是AB边上的动点(不与端点A、B重合),过点F的反比例函数y=(k>0,x>0)与OA边交于点E,过点F作FC⊥x 轴于点C,连结EF、OF.(1)若S△OCF=,求反比例函数的解析式;(2)在(1)的条件下,试判断以点E为圆心,EA长为半径的圆与y轴的位置关系,并说明理由;(3)AB边上是否存在点F,使得EF⊥AE?若存在,请求出BF:FA的值;若不存在,请说明理由.【考点】反比例函数综合题.【专题】计算题;压轴题.【分析】(1)设F(x,y),得到OC=x与CF=y,表示出三角形OCF的面积,求出xy的值,即为k 的值,进而确定出反比例解析式;(2)过E作EH垂直于x轴,EG垂直于y轴,设OH为m,利用等边三角形的性质及锐角三角函数定义表示出EH与OE,进而表示出E的坐标,代入反比例解析式中求出m的值,确定出EG,OE,EH的长,根据EA与EG的大小关系即可对于圆E与y轴的位置关系作出判断;(3)过E作EH垂直于x轴,设FB=x,利用等边三角形的性质及锐角三角函数定义表示出FC与BC,进而表示出AF与OC,表示出AE与OE的长,得出OE与EH的长,表示出E与F坐标,根据E与F都在反比例图象上,得到横纵坐标乘积相等列出方程,求出方程的解得到x的值,即可求出BF与FA的比值.【解答】解:(1)设F(x,y),(x>0,y>0),则OC=x,CF=y,∴S△OCF=xy=,∴xy=2,∴k=2,∴反比例函数解析式为y=(x>0);(2)该圆与y轴相离,理由为:过点E作EH⊥x轴,垂足为H,过点E作EG⊥y轴,垂足为G,在△AOB中,OA=AB=4,∠AOB=∠ABO=∠A=60°,设OH=m,则tan∠AOB==,∴EH=m,OE=2m,∴E坐标为(m,m),∵E在反比例y=图象上,∴m=,∴m1=,m2=﹣(舍去),∴OE=2,EA=4﹣2,EG=,∵4﹣2<,∴EA<EG,∴以E为圆心,EA长为半径的圆与y轴相离;(3)存在.假设存在点F,使AE⊥FE,过E点作EH⊥OB于点H,设BF=x.∵△AOB是等边三角形,∴AB=OA=OB=4,∠AOB=∠ABO=∠A=60°,∴BC=FB•cos∠FBC=x,FC=FB•sin∠FBC=x,∴AF=4﹣x,OC=OB﹣BC=4﹣x,∵AE⊥FE,∴AE=AF•cosA=2﹣x,∴OE=OA﹣AE=x+2,∴OH=OE•cos∠AOB=x+1,EH=OE•sin∠AOB=x+,∴E(x+1,x+),F(4﹣x,x),∵E、F都在双曲线y=的图象上,∴(x+1)(x+)=(4﹣x)•x,解得:x1=4,x2=,当BF=4时,AF=0,不存在,舍去;当BF=时,AF=,BF:AF=1:4.【点评】此题属于反比例函数综合题,涉及的知识有:反比例函数的图象与性质,坐标与图形性质,等边三角形的性质,锐角三角函数定义,熟练掌握反比例函数的图象与性质是解本题的关键.23.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,﹣1),交x轴于A、B 两点,交y轴于点C,其中点B的坐标为(3,0).(1)求该抛物线的解析式;(2)设经过点C的直线与该抛物线的另一个交点为D,且直线CD和直线CA关于直线BC对称,求直线CD的解析式;(3)点E为线段BC上的动点(点E不与点C,B重合),以E为顶点作∠OEF=45°,射线EF交线段OC于点F,当△EOF为等腰三角形时,求此时点E的坐标;(4)在该抛物线的对称轴上存在点P,满足PM2+PB2+PC2=35,求点P的坐标;并直接写出此时直线OP与该抛物线交点的个数.【考点】二次函数综合题.【分析】(1)利用顶点式,将已知的两点坐标代入其中进行求解即可;(2)由C、B两点的坐标不难判断出OB=OC,即∠CBO=45°,那么若取BN⊥x轴交CD于N,结合“直线CD和直线CA关于直线CB对称”可得出A、N关于直线BC对称,结合点B的坐标以及AB的长即可得到点N的坐标,在明确C、N两点坐标的情况下,直线CD的解析式即可由待定系数法求得;(4)先设出点P的坐标,而M、B、C三点坐标已知,即可得到PM2、PB2、PC2的表达式,结合题干的已知条件即可求出点P的坐标,从而进一步判断出直线OP与抛物线的交点个数.【解答】解:(1)设抛物线的解析式为线Y=a(x﹣2)2﹣1.∵点B(3,0)在抛物线上,∴0=a(3﹣2)2﹣1,解得:a=1.则该抛物线的解析式为:y=(x﹣2)2﹣1,即y=x2﹣4x+3;(2)在y=x2﹣4x+3中令x=0,得y=3.故C(0,3).则OB=OC=3.则∠ABC=45°.过点B作BN⊥x轴交CD于点N(如图1),则∠ABC=∠NBC=45°.∵直线CD和直线CA关于直线BC对称,∴∠ACB=∠NCB,在△ACB和△NCB中,∴△ACB≌△NCB(ASA).∴BN=BA.∵A,B关于抛物线的对称轴x=2对称,B(3,0),。

相关文档
最新文档