[数学]2016-2017年江苏省徐州市高一(上)数学期末试卷带解析word
【最新经典文档】2016-2017年江苏省徐州市高一上学期数学期中试卷带答案

【解答】 解:(1)∵函数 f( x) =| 2x﹣1| ﹣x=
,
函数的图象如下图所示:
第 9 页(共 20 页)
( 2)由图可得:函数的值域为: [ ﹣ , +∞); 单调减区间为:为: (﹣∞, ] ,单调增区间为: [ ,+∞); ( 3)若对任意 x∈R,不等式 | 2x﹣1| ≥a+x 恒成立, 则 a≤| 2x﹣1| ﹣ x 恒成立, 即 a≤﹣ .
表示以 M 为定义域, N 为值域的函数关系是
.
3.( 5 分)已知函数 f( x)与 g( x)分别由如表给出,那么 g( f(2))=
.
x
1234
f( x) 2 3 4 1
x
1
2
3
4
g(x) 2
1
4
3
4.(5 分)化简:
=
.
5.(5 分)用 “< ”将 0.2﹣0.2、 2.3﹣2.3、log0.22.3 从小到大排列是 6.(5 分)函数 f( x)=( )x+1,x∈[ ﹣1,1] 的值域是
所以原函数的定义域为 { x| ﹣ 4≤ x≤2} .
令 t=﹣x2﹣ 2x+8,其图象是开口向下的抛物线,对称轴方程为
.
所以当 x∈[ ﹣4,﹣ 1] 时,函数 t=﹣x2﹣2x+8 为增函数,
且函数
为增函数,
所以复合函数
故答案为 [ ﹣ 4,﹣ 1] .
的单调增区间为 [ ﹣4,﹣ 1] .
12.( 5 分)已知函数 f (x) =
二、解答题(共 6 小题,满分 90 分)
15.( 14 分)已知二次函数 f (x)满足 f(x+1)﹣ f( x) =2x( x∈ R),且 f( 0) =1, ( 1)求 f (x)的解析式; ( 2)当 x∈[ ﹣1,1] 时,求函数 g(x)=f(x)﹣ 2x 的值域. 【解答】 解:(1)设二次函数的解析式为 f (x)=ax2+bx+c (a≠0), 由 f( 0) =1 得 c=1, 故 f( x)=ax2+bx+1. 因为 f (x+1)﹣ f(x)=2x, 所以 a(x+1)2+b(x+1) +1﹣( ax2+bx+1) =2x. 即 2ax+a+b=2x,
江苏省徐州市高一数学上学期期末考试试题(扫描版)

2016—2017学年度第一学期期末抽测高一数学试题参考答案一、填空题 1.{}0,1 2.π23.(2,1) 4.12 5.12- 6.[e,)+∞ 7.108.12 9.6 10.35- 11.1 12.0 13.[1,2)[4,)+∞ 14.{}4,24-二、解答题15.(1)当1a =-时,[)1,1B =-,由于[)0,3A =, 所以[)1,3A B =-.…………6分 (2)由A B B =,得B A ⊆,………………………………………………………9分于是0,23,a a ⎧⎨⎩+≥≤即01a ≤≤,所以,a 的取值范围是[]0,1.…………………………………………………14分16.(1)因为145⋅=-a b ,所以142cos 2sin 5αα-+=, 即7sin cos 5αα-=,……………………………………………………………2分于是22749(sin cos )12sin cos ()525αααα-=-==,从而242sin cos 25αα=-.………………………………………………………4分因此,2241(sin cos )12sin cos 12525αααα+=+=-=.……………………6分 (2)因为//a b ,所以2cos (2)sin 0αα--⋅=,即cos sin 0αα+=,……………8分于是tan 1α=-,………………………………………………………………10分 因此,πsin(π)sin()sin cos 2αααα-⋅+=⋅ …………………………………12分222sin cos tan 1sin cos tan 12αααααα⋅===-++.………14分 17.(1)根据表中已知数据可得:3A =,ππ62ωϕ+=,2π3π32ωϕ+=,解得2ω=,π6ϕ=. 数据补全如下表:x ωϕ+π2 π 3π22π xπ12- π6 5π12 2π3 11π12sin()A x ωϕ+ 0 3 0 3-0 …………………………………………………………………………………………3分函数表达式为π()3sin(2)6f x x =+.……………………………………………5分(2)将函数()f x 的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到函数()g x 的图象,所以π()3sin()6g x x =+.………………………………………7分当ππ[,]33x ∈-时,πππ[,]662x +∈-,所以π1sin()[,1]62x +∈-.于是函数)(x g 的值域为3[,3]2-.………………………………………………9分(3)由(1)可得,π()3sin(22)6h x x q =++, 由()h x 图象的一个对称中心为π(,0)12可得,π()012h =, 所以ππ3sin(22)0126q ?+=,即πsin(2)03q +=,………………………12分从而π2π,3k k Z q +=?,解得ππ,26k k Z q =-?,由0q >可得,当1k =时,q 取得最小值π3.…………………………………14分18.(1)3m =-时,()3,1=--a ,于是3⋅=-a b ,……………………………3分又2=a ,1=b , 所以3cos 2θ⋅==-a b a b ,因为[]0,θ∈π,所以6θ5π=.…………………6分 (2)①因为⊥a b ,所以0⋅=a b ,即()131022m -⨯=+,得3m =.………8分②3m =时,2=a ,1=b ,由()()23t k t ⎡⎤-⊥-⎣⎦++a b a b ,得()()230t k t ⎡⎤-⋅-=⎣⎦++a b a b , 因为0⋅=a b ,所以()22230k t t --=+a b,于是()234t t k -=,…………12分故()()23222341174324444k t t t t t t t t t -==-=+-+++,当2t =-时,2k t t +取最小值74-.…………………………………………16分19.(1)当甲的用水量不超过5吨时,即55x ≤,1x ≤时,乙的用水量也不超过5吨,()2.65320.8y x x x ==+;…………………………………………………2分 当甲的用水量超过5吨,乙的用水量不超过5吨,即55,35,x x >⎧⎨⎩≤513x <≤时,()5 2.64553 2.627.87y x x x =⨯⨯-⨯=-++;……………………………4分当乙的用水量超过5吨,即35x >,53x >时, ()()25 2.6435553214y x x x =⨯⨯⨯⎡--⎤=-⎣⎦++.…………………………6分所以20.8,01,527.87,1,353214,.3x x y x x x x ⎧⎪⎪⎪=-<⎨⎪⎪->⎪⎩≤≤≤ …………………………………………………7分(2)由于()y f x =在各段区间上均单调增,当[]0,1x ∈时,()134.7y f <≤;……………………………………………9分 当5(,)3x ∈∞+时,5()34.73y f >>;…………………………………………11分 当5(1,]3x ∈时,令27.8734.7x -=,解得 1.5x =.…………………………13分 所以甲户用水量为57.5x =(吨), 付费15 2.6 2.5423y =⨯⨯=+(元); 乙户用水量为3 4.5x =(吨),付费2 4.5 2.611.7y =⨯=(元).………………………………………………15分 答:甲户该月的用水量为7.5吨、水费为23元,乙户该月的用水量为4.5吨、水费为11.7元.………………………………16分 20.(1)由函数2()45f x x x a =++-的对称轴是2x =-,知()f x 在区间[]1,1-上是增函数, …………………………………2分 因为函数在区间[]1,1-上存在零点,则必有: ()()1010f f ⎧-⎪⎨⎪⎩≤≥即800a a -⎧⎨⎩≤≥,解得08a ≤≤, 故所求实数a 的取值范围为[]0,8. ………………………………4分 (2)若对任意的[]11,2x ∈,总存在[]21,2x ∈,使12()()f x g x =成立,只需函数()y f x =的值域是函数()y g x =的值域的子集. …………………6分 当0a =时,2()45f x x x =+-,[]1,2x ∈的值域为[]0,7, ………………… 7分 下面求1()427x g x m m -=⋅-+,[]1,2x ∈的值域. 令14x t -= ,则[1,4]t ∈,27y mt m =-+①当0m =时,()7g x =为常数,不符合题意,舍去;②当0m >时,()g x 的值域为[]7,27m m -+,要使[][]0,77,27m m ⊆-+, 需70277m m -⎧⎨+⎩≤≥,解得7m ≥;③当0m <时,()g x 的值域为[]27,7m m +-,要使[][]0,727,7m m ⊆+-, 需2707m m +⎧⎨-⎩≤≥7,解得72m -≤;综上,m 的取值范围为[)7,7,2⎛⎤-∞-+∞ ⎥⎝⎦. ……………………………10分(3)由题意知2640t t <⎧⎨->⎩,可得32t <. ………………………………… 12分①当6t -≤时,在区间[],2t 上,()f t 最大,(2)f -最小, 所以2()(2)4464f t f t t t --=++=-,即2820t t +-=,解得432t =--或432t =-+(舍去); ②当26t -<-≤时,在区间[],2t 上,(2)f 最大,(2)f -最小,所以(2)(2)1664f f t --==-,解得52t =-;③当322t -<<时,在区间[],2t 上,(2)f 最大,()f t 最小, 所以2(2)()41264f f t t t t -=--+=-,即26t =,解得6t =或6t =-,所以此时不存在常数t 满足题意;综上所述,存在常数t 满足题意,432t =--或52t =-.……………………16分。
2016-2017学年江苏省徐州市高一上学期末数学试卷与解析

2016-2017学年江苏省徐州市高一上学期末数学试卷与解析一、填空题(共14小题,每小题5分,满分70分)1.已知集合A={﹣1,0,1},B={0,1,2},则A∩B={0,1} .解:∵集合A={﹣1,0,1},B={0,1,2},∴A∩B={0,1}2.函数y=3tan(2x+)的最小正周期为.(T=)3.已知点A(﹣1,2),B(1,3),则向量的坐标为(2,1).解:点A(﹣1,2),B(1,3),则向量=(1﹣(﹣1),3﹣2)=(2,1)4.若指数函数f(x)=a x(a>0,且a≠1)的图象经过点(3,8),则f(﹣1)的值为.解:指数函数f(x)=a x(a>0且a≠1)的图象经过点(3,8),∴8=a3,解得a=2,∴f(x)=2x,∴f(﹣1)=2﹣1=,5.cos240°的值等于﹣.解:由题意得,cos240°=cos(180°+60°)=﹣cos60°=﹣.6.函数f(x)=的定义域是[e,+∞).解:要使原函数有意义,则﹣1+lnx≥0,即lnx≥1,解得x≥e.∴函数f(x)=的定义域是[e,+∞).7.已知向量,满足||=2,||=,与的夹角为,则||=.解:由题意可得||====,8.若偶函数f(x)满足f(x+π)=f(x),且f(﹣)=,则f()的值为.解:由题意,f(x+π)=f(x),可知函数的周期T=π,则f()=f()∵f(﹣)=,f(x)是偶函数.∴f()=即f()的值为.9.设函数f(x)=则f(log214)+f(﹣4)的值为6.解:∵函数f(x)=,∴f(log214)=7,f(﹣4)=﹣1,∴f(log214)+f(﹣4)=610.已知a>0且a≠1,函数f(x)=4+log a(x+4)的图象恒过定点P,若角α的终边经过点P,则cosα的值为.解:函数f(x)=4+log a(x+4)的图象恒过定点P,即x+4=1,解得:x=﹣3,则y=4故P的坐标为(﹣3,4),角α的终边经过点P,则cosα=.11.将函数f(x)=sinωx(ω>0)的图象向右平移个单位后得到函数g(x)的图象,若对于满足|f(x1)﹣g(x2)|=2的x1,x2,有|x1﹣x2|min=,则f()的值为1.解:将函数f(x)=sinωx(ω>0)的图象向右平移个单位后得到函数g(x)=sinω(x﹣)的图象,若对于满足|f(x1)﹣g(x2)|=2的x1,x2,有|x1﹣x2|min=,则﹣=,∴T==π,∴ω=2,f(x)=sin2x,则f()=sin=1,12.平行四边形ABCD中,||=6,||=4,若点M,N满足:=3,=2,则=9.解:∵=3,=2,∴,,==.∴==,==﹣.∴=()•(﹣)=﹣=36﹣=9.13.设函数f(x)=,若函数f(x)恰有2个零点,则实数a的取值范围是1≤a<2,或a≥4.解:∵y=2x,x<2,0<2x<4,∴0<a<4时,2x﹣a=0,有一个解,a≤0或a≥4,2x﹣a=0无解∵x2﹣3ax+2a2=(x﹣a)(x﹣2a),∴当a∈(0,1)时,方程x2﹣3ax+2a2=0在[1,+∞)上无解;当a∈[1,2)时,方程x2﹣3ax+2a2=0在[1,+∞)上有且仅有一个解;当a∈[2,+∞)时,方程x2﹣3ax+2a2=0在x∈[1,+∞)上有且仅有两个解;综上所述,函数f(x)恰有2个零点,1≤a<2,或a≥414.已知不等式(mx+5)(x2﹣n)≤0对任意x∈(0,+∞)恒成立,其中m,n是整数,则m+n的取值的集合为{﹣4,24} .解:当n≤0 时,由(mx+5)(x2﹣n)≤0,得到mx+5≤0 在x∈(0,+∞)上恒成立,则m不存在;当n>0 时,由(mx+5)(x2﹣n)≤0,可设f(x)=mx+5,g(x)=x2﹣n,那么由题意可知:,再由m,n是整数得到或,因此m+n=24或﹣4.二、解答题(共6小题,满分90分)15.(14分)已知集合A=[0,3),B=[a,a+2).(1)若a=﹣1,求A∪B;(2)若A∩B=B,求实数a的取值范围.解:(1)∵A=[0,3),B=[a,a+2)=[﹣1,1),∴A∪B=[﹣1,3);(2)∵A∩B=B,∴B⊆A,∴,解得:0≤a≤1.16.(14分)(2016秋•徐州期末)已知向量=(cosα,sinα),=(﹣2,2).(1)若=,求(sinα+cosα)2的值;(2)若,求sin(π﹣α)•sin()的值.解:(1)∵向量=(cosα,sinα),=(﹣2,2).=2sinα﹣2cosα=,∴解得:sinα﹣cosα=,两边平方,可得:1﹣2sinαcosα=,解得:2sinαcosα=﹣,∴(sinα+cosα)2=1+2sinαcosα=1﹣=.(2)∵,∴2cosα+2sinα=0,解得:cosα+sinα=0,∴两边平方可得:1+2sinαcosα=0,解得:sinαcosα=﹣,∴sin(π﹣α)•sin()=sinα•cosα=﹣.17.(14分)某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入部分数据,如表:﹣(1)请将表中数据补充完整,并直接写出函数f(x)的解析式;(2)若将函数f(x)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到函数g(x)的图象,求当x∈[﹣,]时,函数g(x)的值域;(3)若将y=f(x)图象上所有点向左平移θ(θ>0)个单位长度,得到y=h(x)的图象,若=h(x)图象的一个对称中心为(),求θ的最小值.解:(1)根据表中已知数据,解得A=3,ω=2,φ=,数据补全如下表:函数表达式为f(x)=3sin(2x+).(2)将函数f(x)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到图象对于的函数解析式为:g(x)=3sin(x+).由x∈[﹣,],可得:x+∈[﹣,],可得:sin(x+)∈[﹣,1],可得:函数g(x)=3sin(x+)∈[﹣,3].(3)若将y=f(x)图象上所有点向左平移θ(θ>0)个单位长度,得到y=h(x)的图象,若h(x)图象的一个对称中心为(),由(1)知f(x)=3sin(2x+),得g(x)=3sin(2x+2θ+).因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+2θ+=kπ,解得x=﹣θ,k∈Z.由于函数y=g(x)的图象关于点(,0)成中心对称,令:﹣θ=,解得θ=﹣,k∈Z.由θ>0可知,当k=1时,θ取得最小值.18.(16分)(2016秋•徐州期末)已知向量=(m,﹣1),=()(1)若m=﹣,求与的夹角θ;(2)设.①求实数m的值;②若存在非零实数k,t,使得[+(t2﹣3)]⊥(﹣k+t),求的最小值.解:(1)向量=(m,﹣1),=(),若m=﹣,与的夹角θ,则有cosθ===﹣,∴θ=.(2)①设,则=﹣=0,∴m=.②由①可得,=(,﹣1),=﹣=0,若存在非零实数k,t,使得[+(t2﹣3)]⊥(﹣k+t),故有[+(t2﹣3)]•(﹣k+t)=0,∴﹣k+[﹣k(t2﹣3)+t] +t(t2﹣3)=﹣k•4+0+t(t2﹣3)=0,∴4k=t(t2﹣3),∴=+t==≥﹣,当且仅当t=﹣2时,取等号,故的最小值为﹣.19.(16分)某市居民自来水收费标准如下:每户每月用水不超过5吨时,每吨为2.6元,当用水超过5吨时,超过部分每吨4元,某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x,3x吨.(1)求y关于x的函数;(2)若甲、乙两户该月共交水费34.7元,分别求甲、乙、该月的用水量和水费.解:(1)由题意知,x≥0,令5x=5,得x=1;令3x=5,得x=.则当0≤x≤1时,y=(5x+3x)×2.6=20.8x当1<x≤时,y=5×2.6+(5x﹣5)×4+3x×2.6=27.8x﹣7,当x>时,y=(5+5)×2.6+(5x+3x﹣5﹣5)×4=32x﹣14;即得y=(2)由于y=f(x)在各段区间上均单增,当x∈[0,1]时,y≤f(1)=20.8<34.7;当x∈(1,]时,y≤f()≈39.3>34.7;令27.8x﹣7=34.7,得x=1.5,所以甲户用水量为5x=7.5吨,付费S1=5×2.6+2.5×4=23元乙户用水量为3x=4.5吨,付费S2=4.5×2.6=11.7元20.(16分)已知函数f(x)=x2+4x+a﹣5,g(x)=m•4x﹣1﹣2m+7.(1)若函数f(x)在区间[﹣1,1]上存在零点,求实数a的取值范围;(2)当a=0时,若对任意的x1∈[1,2],总存在x2∈[1,2],使f(x1)=g(x2)成立,求实数m的取值范围;(3)若y=f(x)(x∈[t,2])的置于为区间D,是否存在常数t,使区间D的长度为6﹣4t?若存在,求出t的值;若不存在,请说明理由.(注:区间[p,q]的长度q﹣p)解:(1)由题意得:f(x)的对称轴是x=﹣2,故f(x)在区间[﹣1,1]递增,∵函数在区间[﹣1,1]存在零点,故有,即,解得:0≤a≤8,故所求实数a的范围是[0,8];(2)若对任意的x1∈[1,2],总存在x2∈[1,2],使f(x1)=g(x2)成立,只需函数y=f(x)的值域是函数y=g(x)的值域的子集,a=0时,f(x)=x2+4x﹣5,x∈[1,2]的值域是[0,7],下面求g(x),x∈[1,2]的值域,令t=4x﹣1,则t∈[1,4],y=mt﹣2m+7,①m=0时,g(x)=7是常数,不合题意,舍去;②m>0时,g(x)的值域是[7﹣m,2m+7],要使[0,7]⊆[7﹣m,2m+7],只需,解得:m≥7;③m<0时,g(x)的值域是[2m+7,7﹣m],要使[0,7]⊆[2m+7,7﹣m],只需,解得:m≤﹣,综上,m的范围是(﹣∞,﹣]∪[7,+∞);(3)由题意得,解得:t<,①t≤﹣6时,在区间[t,2]上,f(t)最大,f(﹣2)最小,∴f(t)﹣f(﹣2)=t2+4t+4=6﹣4t,即t2+8t﹣2=0,解得:t=﹣4﹣3或t=﹣4+3(舍去);②﹣6<t≤﹣2时,在区间[t,2]上,f(2)最大,f(﹣2)最小,∴f(2)﹣f(﹣2)=16=6﹣4t,解得:t=﹣;③﹣2<t<时,在区间[t,2]上,f(2)最大,f(t)最小,∴f(2)﹣f(t)=﹣t2﹣4t+12=6﹣4t,即t2=6,解得:t=或t=﹣,故此时不存在常数t满足题意,综上,存在常数t满足题意,t=﹣4﹣3或t=﹣.。
江苏省徐州市2016-2017学年高一上学期期末考试数学试题(扫描版,含答案)

2016〜2017学年度第-学期期末抽测•高一年级数学试题一、填空题:本大题共14小题,每小题5分,共计70分.i?l把答案填写在等狀堆舉図型辻・1 •己知集合八{-1,0,1}, 2? = {0,1,2},则JCIB= A ・,2.函数y = 3tan(2x + —)的扱小正周期为_4_・« '63・己知点3(1,3),则向量乔的坐标为.▲.・4. 若指数函数f(x) = a x SO,且XI)的图象经过点(3,8),则"-1)的值为▲.5. cos240°的值等于▲ 一.6. 函数/(x) = J-l + lnx的定义域是_4_・!7. 已知向叶,b满足|fl| = 2, |b|M,"与b的夹角为寸’则0 + 6卜▲・8. 若偶函数/(x)满足/(x + n) = /(x),且/(-|)=-,则/(-于)的值为丄_・9. 设函数/⑴屮严2(4-加<0,则/(也14) + /(_4)的他为」・2 二x^09b10. 已知。
函数/(x) = 4 + log u(x + 4)的IYI釧fl过定点/>,若的终边经过点P,则cosa的值力▲・11. 将函数/(x) = sin^>0)的图線向右平移扌个爪位示得到函数曲)的图彖,若对于满足|/(齐)-曲2)|=2的召內,Yf|x,-x2|min=-j>则/(》的ffi为_Jk .高一数学试题笫I页(共4页)12. 设四边形ABCD为平行四边形,\AB\=6t \AD\=4,若点E , F满足BE = EC tDF = 2FC t则乔•丽的值为▲•13. 设函数/⑴』才一必,Y<2,若函数/(x)恰冇2个零点,则实数a的取值范[X2 -3ax + 2a\x^-2.■围是▲.14. 已知不尊式(〃ir + 5Xx2-〃)W0对任意x G(0, +00)恒成立,其中加,n是整数,则m + n 的取值的集合为▲.二、解答题:本大题共6小題,共计90分.请在等題级爭雀够g填内作答,解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)已知集合J = [0,3), B = [a,a + 2).(1) 若a = -1,求(2) 若= 求实数a的取值范围.16. (本小题满分14分)己知向fl: a = (cosa, sin a), A = (-2,2).(1) 若a •力=耳,求(sin a + cos a)2的值;5(2) 若a//〃,求sin(7t-a) sin(-| + a)的值.17・(本小题满分14分)某同学用“五点法”画函数/(x) = As\n(a)x +(p\a)> 0,| cp |< 在某一个周期内的图象时,列表并填入了部分数据,如下表:(1) 请将上表数据补充完整,填写在答题卡相应位置上,并直接写出函数/(x)的解析式;(2) 若将函数/(X)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到函数g(x)的图象.求当xe[~y]W,函数g(x)的值域;(3) 若将y = /(x)图象上所有点向左平移0(&>0)个单位长度,得到y^Kx)的图彖.若y = A(x)图彖的一个对称中心为(―,0),求&的最小值.18-(本小题满分16分)已知向量a = (m,-l) , 6 = (—,—)・(1)若m = ->/3,求a与力的夹角0;(2)设alb.①求实数加的值;②若存在非零实数上,t,使得8 + (厂-3)切丄(-如+忙),求土J•的最小值.19・(本小题满分16分)某市居民自来水收费标准如下:每户每月用水不超过5吨时,每吨为2.6元,当用水超过5吨时,超过部分每吨4元.某月甲、乙两户共交水费y元,己知甲、乙两户该月用水鈕分别为5x, 3x吨.(1) 求y关于x的函数;(2) 若甲、乙两户该月共交水费34.7元,分别求甲、乙两户该月的用水量和水费.20.(本小题满分16分)已知函数/(x) = x2+4x + a-5, g(x) = m-4x_,-2m + 7 ・(1)若函数/(x)在区间卜1,1]上存在零点,求实数°的取值范围;(2)当"0时,若对任意的^6[1,2],总存在X26[1,2],使/(x,)=:g(七)成立,求实数加的取值范围;(3)若y = /(x) (XG[/,2J)的值域为区间D,是否存在常数r,使区间Q的长度为6-4/?若存在,求出f的值;若不存在,请说明理由.(注:区间[p,g]的长度为q_p).2016—2017学年度第一学期期末抽测高一数学试题参考答案、填空题(2,1)1 _6 . [e,…)7. . 1026 1011.1 120 13 . [1,2)U[4,二)14 . \ -4,24;二、解答题15.(1) --1 时, 由于 A- 0,3 ,所以 AUB - 1_1,3 . (2),得 B A ,a > 0, a + 2 < 3,所以, a 的取值范围是0,1].14分16.(1) 因为ab - -14,所以-2cos t -2sin •,二14 , 5 5(2)即si27 2 49疋(sin 用 cos : )1 -2sin : cos :=(—)5 25 从而 2sin _:i cos :;=25224 1因此,(sin :亠COS H ) =1 2sin t cos : =1 -25 25因为 a // b ,所以 2cos .:: -(一2) sin : = 0 ,即 cos _:i 】si n : - 0 , 于是 tan : - -1 ,10分 因此, sin( n-- ) sin(n,二i ) =sin : cos : 2 12分17. (1)根据表中已知数据可得:sin 二 cos 一:匚 tan 一:匚 1 sincos 2: tan1214分数据补全如下表:(2)将函数f(x)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,的图象,所以 g(x) =3sin(x - n ) . ......................................................... 7分 6n n_ n _ n n_ "F ]时,x +n 【u ,n ,所以 sin(x $ • [-1 ,1].6 2于是函数g(x)的值域为[―三3] . .................................................................. 9分2'「冗(3)由(〔)可得,h(x) = 3sin(2 x+ 2q +),6由h(x)图象的一个对称中心为(n ,0)可得,h( n )= 0 ,12 12所以 3sin(2? — 2q + n )= 0 ,即 sin(2q+ —) = 0 , .......................................... 12 分12 63从而 2q+ n = k n ,k? Z ,解得 q= ®- n ,k? Z ,326由q>0可得,当k = 1时,q 取得最小值 n ......................................................... 14分3(1) m = - 3 时,a= - 3, -1,于是 ab=_3 , .......................................................... 3 分又 a =2 , \b= 1 ,所以cos^= 粘=——,因为日丘b,兀】,所以0=— . ......................................... 6分a||b 26(2)①因为a _b ,所以a b =0 ,即卩丄m + -13二。
高一数学上学期期末考试试卷(含解析)-人教版高一全册数学试题

某某省某某第一中学2015-2016学年高一上学期期末考试数学一、选择题:共10题1.下列说法中,正确的是A.幂函数的图象都经过点(1,1)和点(0,0)B.当a=0时,函数y=xα的图象是一条直线C.若幂函数y=xα的图象关于原点对称,则y=xα在定义域内y随x的增大而增大D.幂函数y=xα,当a<0时,在第一象限内函数值随x值的增大而减小【答案】D【解析】本题主要考查幂函数的图象与性质.由幂函数的图象与性质可知,A错误;当x=0时,y=0,故B错误;令a=-1,则y=x-1,显然C错误;故D正确.2.如图所示,则这个几何体的体积等于A.4B.6C.8D.12【答案】A【解析】由三视图可知所求几何体为四棱锥,如图所示,其中SA⊥平面ABCD,SA=2,AB=2,AD=2,CD=4,且四边形ABCD为直角梯形,∠DAB=90°,∴V=SA×(AB+CD)×AD=×2××(2+4)×2=4,故选A.3.下列关于函数y=f(x),x∈[a,b]的叙述中,正确的个数为①若x0∈[a,b]且满足f(x0)=0,则(x0,0)是f(x)的一个零点;②若x0是f(x)在[a,b]上的零点,则可用二分法求x0的近似值;③函数f(x)的零点是方程f(x)=0的根,f(x)=0的根也一定是函数f(x)的零点;④用二分法求方程的根时,得到的都是根的近似值.A.0B.1C.3D.4【答案】B【解析】本题主要考查方程与根、二分法.由零点的定义知,零点是曲线与x轴交点的横坐标,故①错误;当f(a)=0时,无法用二分法求解,故②错误;显然,③正确;若f(x)=2x-x-1,在区间(-1,1)上的零点,用二分法,可得f(0)=0,显然,④错误.4.如图,在三棱锥S-ABC中,E为棱SC的中点,若AC=,SA=SB=SC=AB=BC=2,则异面直线AC与BE所成的角为A.30°B.45°C.60°D.90°【答案】C【解析】本题主要考查异面直线所成的角.取SA的中点D,连接BD、DE,则,是异面直线AC与BE所成的角或补角,由题意可得BD=BE=,DE=,即三角形BDE是等边三角形,所以5.如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是A.AC⊥BEB.EF∥平面ABCDC.直线AB与平面BEF所成的角为定值D.异面直线AE、BF所成的角为定值【答案】D【解析】本题主要考查线面平行与垂直的判定定理、线面所成的角、异面直线所成的角,考查了空间想象能力.易证AC⊥平面BDD1B1,则AC⊥BE,A正确,不选;易知平面A1B1C1D1∥平面ABCD,则EF∥平面ABCD,B正确,不选;因为平面BEF即是平面BDD1B1,所以直线AB 与平面BEF所成的角为定值,故C正确,不选;故选D.6.若函数且)有两个零点,则实数a的取值X围是A. B. C. D.【答案】B【解析】本题主要考查函数的性质与零点.当时,函数是减函数,最多只有1个零点,不符合题意,故排除A、D;令,易判断函数在区间上分别有一个零点,故排除C,所以B正确.7.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥α B.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【答案】D【解析】本题涉及直线与平面的基本知识,意在考查考生的空间想象能力、分析思考能力,难度中等偏下.由于m,n为异面直线,m⊥平面α,n⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m,n,又直线l满足l⊥m,l⊥n,则交线平行于l ,故选D.8.已知直线(1+k)x+y-k-2=0过定点P,则点P关于直线x-y-2=0的对称点的坐标是A.(3,﹣2)B.(2,﹣3)C.(3,﹣1)D.(1,﹣3)【答案】C【解析】本题主要考查直线方程、两条直线的位置关系.将(1+k)x+y-k-2=0整理为:k(x-1)+x+y-2=0,则x-1=0且x+y-2=0,可得P(1,1),设点P的对称点坐标为(a,b),则,则x=3,y=-1,故答案:C.9.如图,平面⊥平面与两平面所成的角分别为和.过分别作两平面交线的垂线,垂足为,则=A. B. C. D.【答案】A【解析】本题主要考查线面与面面垂直的判定与性质、直线与平面所成的角,考查了空间想象能力.根据题意,由面面垂直的性质定理可得,,则,则AB=2,则10.经过点P(1,4)的直线在两坐标轴上的截距都是正值,若截距之和最小,则直线的方程为A.x+2y-6=0 B.2x+y-6=0 C.x-2y+7=0 D.x-2y-7=0【答案】B【解析】本题主要考查直线方程、基本不等式.由直线的斜率为k(k<0),则y-4=k(x-1),分别令x=0、y=0求出直线在两坐标轴上的截距为:4-k,1-,则4-k+1-,当且仅当-k=-,即k=-2时,等号成立,则直线的方程为2x+y-6=0二、填空题:共5题11.已知直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,则经过点A(3,2)且与直线垂直的直线方程为________.【答案】2x-y-4=0【解析】本题主要考查直线方程、两条直线的位置关系.因为直线: x+(1+m)y+m-2=0与直线:mx+2y+8=0平行,所以(m+1)m-2=0,且8-(m-2),则m=1,直线: x+2y-1=0,根据题意,设所求直线方程为2x-y+t=0,将点A(3,2)代入可得t=-4,即:2x-y-4=012.用斜二测画法得到的四边形ABCD是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是________.【答案】8【解析】本题主要考查平面直观图.根据题意,直观图中,梯形的下底长为5,一腰长为,则易求上底为3,高为1,面积为,所以原四边形的面积是13.已知三棱锥A-BCD的所有棱长都为,则该三棱锥的外接球的表面积为________.【答案】3π【解析】本题主要考查空间几何体的表面积与体积,考查了空间想象能力.将正方体截去四个角可得到一个正四面体,由题意,可将该三棱锥补成一个棱长为1的正方体,所以该三棱锥的外接球的直径即为正方体的对角线,所以2r=,则该三棱锥的外接球的表面积为S=14.已知关于x的方程有两根,其中一根在区间内,另一根在区间内,则m的取值X围是________.【答案】【解析】本题主要考查二次函数的性质与二元一次方程的根.设,由题意可知:,求解可得15.甲、乙、丙、丁四个物体同时以某一点出发向同一个方向运动,其路程关于时间的函数关系式分别为,,,,有以下结论:①当时,甲走在最前面;②当时,乙走在最前面;③当时,丁走在最前面,当时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为_________(把正确结论的序号都填上,多填或少填均不得分).【答案】③④⑤【解析】①错误.因为,,所以,所以时,乙在甲的前面.②错误.因为,,所以,所以时,甲在乙的前面.③正确.当时,,的图象在图象的上方.④正确.当时,丙在甲乙前面,在丁后面,时,丙在丁前面,在甲、乙后面,时,甲、乙、丙、丁四人并驾齐驱.⑤正确.指数函数增长速度越来越快,x充分大时,的图象必定在,,上方,所以最终走在最前面的是甲.三、解答题:共5题16.如图(1)所示,在直角梯形中,BC AP,AB BC,CD AP,又分别为线段的中点,现将△折起,使平面平面(图(2)).(1)求证:平面平面;(2)求三棱锥的体积.【答案】证明:(1)分别是的中点,∵平面,AB平面.∴平面.同理,平面,∵,EF平面平面∴平面平面.(2)=.【解析】本题主要考查面面与线面平行与垂直的判定与性质、空间几何体的表面积与体积,考查了空间想象能力与等价转化.(1)根据题意,证明、,再利用线面与面面平行的判定定理即可证明;(2)由题意易知,则结果易得.17.已知两点,直线,求一点使,且点到直线的距离等于2.【答案】设点的坐标为.∵.∴的中点的坐标为.又的斜率.∴的垂直平分线方程为,即.而在直线上.∴.①又已知点到的距离为2.∴点必在于平行且距离为2的直线上,设直线方程为,由两条平行直线之间的距离公式得:∴或.∴点在直线或上.∴或②∴①②得:或.∴点或为所求的点.【解析】本题主要考查直线方程与斜率、两条直线的位置关系、中点坐标公式.设点的坐标为,求出统一线段AB的垂直平分线,即可求出a、b的一个关系式;由题意知,点必在于平行且距离为2的直线上, 设直线方程为,由两条平行直线之间的距离公式得:,求出m的值,又得到a、b的一个关系式,两个关系式联立求解即可.18.(1)已知圆C经过两点,且被直线y=1截得的线段长为.求圆C的方程;(2)已知点P(1,1)和圆过点P的动直线与圆交于A,B两点,求线段AB的中点M的轨迹方程.【答案】(1)设圆方程为.因为点O,Q在圆上,代入:又由已知,联立:解得:由韦达定理知:.所以:.即即:.即:.则.所以所求圆方程为:.(2)设点M (x ,y ), 圆的圆心坐标为C (0,2). 由题意:,又.所以: 化简:所以M 点的轨迹方程为【解析】本题主要考查圆的方程、直线与圆的位置关系、圆的性质、直线的斜率公式、方程思想.(1)设圆方程为,将y =1代入圆的方程,利用韦达定理,求出D 、E 、F 的一个关系式,再由点O 、Q 在圆上,联立求出D 、E 、F 的值,即可得到圆的方程;(2) 设点M (x ,y ), 圆的圆心坐标为C (0,2),由题意:,又,化简求解即可得到结论.19.如图,在四棱锥P —ABCD 中,PA ⊥底面ABCD , AB ⊥AD , AC ⊥CD ,∠ABC =60°,PA =AB =BC ,E 是PC 的中点.C A PB D E(1)求PB 和平面PAD 所成的角的大小;(2)证明:AE ⊥平面PCD ;(3)求二面角A-PD-C的正弦值.【答案】(1)在四棱锥P—ABCD中,∵PA⊥底面ABCD,AB⊂平面ABCD,∴PA⊥A B.又AB⊥AD,PA∩AD=A,从而AB⊥平面PAD,∴PB在平面PAD内的射影为PA,从而∠APB为PB和平面PAD所成的角.在Rt△PAB中,AB=PA,故∠APB=45°.所以PB和平面PAD所成的角的大小为45°.(2)证明:在四棱锥P—ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴CD⊥PA.由条件CD⊥AC,PA∩AC=A∵CD⊥平面PA C.又AE⊂平面PAC,∴AE⊥C D.由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥P C.又PC∩CD=C,综上得AE⊥平面PCD.(3)过点E作EM⊥PD,垂足为M,连接AM,如图所示.由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD.因此∠AME是二面角A—PD—C的平面角.由已知,可得∠CAD=30°.设AC=a,可得PA=a,AD=a,PD=a,AE=在Rt△ADP中,∵AM⊥PD,∴AM·PD=PA·AD,则AM==.在Rt△AEM中,sin∠AME==.所以二面角A—PD—C的正弦值为.【解析】本题主要考查线面垂直的判定定理与性质定理、线面角与二面角,考查了空间想象能力.(1)根据题意,证明AB⊥平面PAD,即可得证∠APB为PB和平面PAD所成的角,则易求结果;(2)由题意,易证CD⊥平面PA C,可得AE⊥C D,由题意易知AC=PA,又因为E是PC 的中点,所以AE⊥P C,则结论易证;(3) 过点E作EM⊥PD,垂足为M,连接AM,如图所示,由(2)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则可证得AM⊥PD,因此∠AME是二面角A—PD—C的平面角,则结论易求.20.诺贝尔奖的奖金发放方式为:每年一发,把奖金总额平均分成6份,分别奖励给在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类作出最有益贡献的人,每年发放奖金的总金额是基金在该年度所获利息的一半;另一半利息计入基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%.资料显示:1999年诺贝尔发放后基金总额约为19 800万美元.设f(x)表示第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依次类推)(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.031 29≈1.32)【答案】(1)由题意知:f(2)=f(1)(1+6.24%)-f(1)·6.24%=f(1)×(1+3.12%),f(3)=f(2)×(1+6.24%)-f(2)×6.24%=f(2)×(1+3.12%)=f(1)×(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9=26136,故2009年度诺贝尔奖各项奖金为·f(10)·6.24%≈136(万美元),与150万美元相比少了约14万美元,是假新闻.【解析】本题主要考查指数函数、函数的解析式与求值,考查了分析问题与解决问题的能力、计算能力.(1)由题意知: f(2)=f(1)(1+6.24%)-f(1)·6.24%,f(3)=f(2)×(1+6.24%)-f(2)×6.24%,化简,即可归纳出函数f(x)的解析式;(2)根据题意,求出2008年诺贝尔奖发放后基金总额为f(10),再求出2009年度诺贝尔奖各项奖金为·f(10)·6.24%,即可判断出结论.。
江苏省徐州市2016-2017学年高一上学期期末考试数学试题 Word版含答案

高一年级数学试题一、填空题:本大题共14个小题,每小题5分,共70分.1.已知集合{}101A =-,,,{}012B =,,,则A B = .2.函数53tan 26y x π⎛⎫=+⎪⎝⎭的最小正周期为 . 3.已知点()12A -,,()13B ,,则向量AB的坐标为 .4.若指数函数()x f x a =(0a >,且1a ≠)的图象经过点()38,,则()1f -的值为 .5.cos 240︒的值等于 .6.函数()f x =的定义域是 .7.已知向量a b ,满足2a =,b = a 与b 的夹角为4π,则a +8.若偶函数()f x 满足()()f x f x π+=,且132f π⎛⎫-= ⎪⎝⎭,则20173f π⎛⎫⎪⎝⎭的值为 .9.设函数()()212log 4020x x x f x x -⎧--<⎪=⎨≥⎪⎩,,,则()()2log 144f f +-的值为 .10.已知0a >且1a ≠,函数()()4log 4a f x x =++的图象恒过定点P ,若角α的终边经过点P ,则cos α的值为 .11.将函数()()sin 0f x x ωω=>的图象向右平移4π个单位后得到函数()g x 的图象,若对于满足()()122f x g x -=的12x x ,,有12min4x x π-=,则4f π⎛⎫⎪⎝⎭的值为 . 12.设四边形ABCD 为平行四边形,6AB = ,4AD =,若点E ,F 满足BE EC = ,2DF FC =,则AF EF ⋅ 的值为 .13.设函数()2222322x a x f x x ax a x ⎧-<⎪=⎨-+≥⎪⎩,,,若函数()f x 恰有2个零点,则实数a 的取值范围是 .14.已知不等式()()250mx x n +-≤对任意()0x ∈+∞,恒成立,其中m n ,是整数,则m n+的取值的集合为 .二、解答题 (本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.)15. (本小题满分14分)已知集合[)03A =,,[)2B a a =+,. (1)若1a =-,求A B ;(2)若A B B = ,求实数a 的取值范围. 16. (本小题满分14分)已知向量()cos sin a αα= ,,()22b =-,.(1)若145a b ⋅= ,求()2sin cos αα+的值;(2)若a b ∥,求()sin sin 2ππαα⎛⎫-⋅+ ⎪⎝⎭的值.17. (本小题满分14分)某同学用“五点法”画函数()()sin 02f x A x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)请将上表数据补充完整,填写在答题卡相应位置上,并直接写出函数()f x 的解析式; (2)若将函数()f x 的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到函数()g x 的图象,求当33x ππ⎡⎤∈-⎢⎥⎣⎦,时,函数()g x 的值域;(3)若将()y f x =图象上所有点向左平移()0θθ>个单位长度,得到()y h x =的图象,若()y h x =图象的一个对称中心为012π⎛⎫⎪⎝⎭,,求θ的最小值.18. (本小题满分16分)已知向量()1a m =- ,,12b ⎛= ⎝ .(1)若m =,求a 与b的夹角θ; (2)设a b ⊥.①求实数m 的值;②若存在非零实数k ,t ,使得()()23a t b ka tb ⎡⎤+-⊥-+⎣⎦ ,求2k t t+的最小值.19. (本小题满分16分)某市居民自来水收费标准如下:每户每月用水不超过5吨时,每吨为2.6元,当用水超过5吨时,超过部分每吨4元.某月甲、乙两户共交水费y 元,已知甲、乙两户该月用水量分别为5x ,3x 吨.(1)求y 关于x 的函数;(2)若甲、乙两户该月共交水费34.7元,分别求甲、乙两户该月的用水量和水费. 20. (本小题满分16分)已知函数()245f x x x a =++-,()1427x g x m m -=⋅-+.(1)若函数()f x 在区间[]11-,上存在零点,求实数a 的取值范围; (2)当0a =时,若对任意的[]112x ∈,,总存在[]212x ∈,,使()()12f x g x =成立,求实数m 的取值范围;(3)若()[]()2y f x x t =∈,的值域为区间D ,是否存在常数t ,使区间D 的长度为64t -?若存在,求出t 的值;若不存在,请说明理由. (注:区间[]p q ,的长度为q p -).2016-2017学年度第一学期期末抽测高一数学试题参考答案一、填空题1.{}0,1 2.π2 3.(2,1) 4.12 5.12- 6.[e,)+∞ 7. 8.12 9.6 10.35- 11.1 12.0 13.[1,2)[4,)+∞ 14.{}4,24- 二、解答题15.(1)当1a =-时,[)1,1B =-,由于[)0,3A =, 所以[)1,3A B =- .…………6分(2)由A B B = ,得B A ⊆,………………………………………………………9分于是0,23,a a ⎧⎨⎩+≥≤即01a ≤≤,所以,a 的取值范围是[]0,1.…………………………………………………14分 16.(1)因为145⋅=-a b ,所以142cos 2sin 5αα-+=, 即7sin cos 5αα-=,……………………………………………………………2分 于是22749(sin cos )12sin cos ()525αααα-=-==, 从而242sin cos 25αα=-.………………………………………………………4分 因此,2241(sin cos )12sin cos 12525αααα+=+=-=.……………………6分 (2)因为//a b ,所以2cos (2)sin 0αα--⋅=,即cos sin 0αα+=,……………8分 于是tan 1α=-,………………………………………………………………10分 因此,πsin(π)sin()sin cos 2αααα-⋅+=⋅ …………………………………12分222sin cos tan 1sin cos tan 12αααααα⋅===-++.………14分17.(1)根据表中已知数据可得:3A =,ππ62ωϕ+=,2π3π32ωϕ+=,解得2ω=,π6ϕ=.数据补全如下表:3分函数表达式为π()3sin(2)6f x x =+.……………………………………………5分(2)将函数()f x 的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到函数()g x 的图象,所以π()3sin()6g x x =+.………………………………………7分当ππ[,]33x ∈-时,πππ[,]662x +∈-,所以π1sin()[,1]62x +∈-.于是函数)(x g 的值域为3[,3]2-.………………………………………………9分 (3)由(1)可得,π()3sin(22)6h x x q =++, 由()h x 图象的一个对称中心为π(,0)12可得,π()012h =, 所以ππ3sin(22)0126q ?+=,即πsin(2)03q +=,………………………12分 从而π2π,3k k Z q +=?,解得ππ,26k k Z q =-?, 由0q >可得,当1k =时,q 取得最小值π3.…………………………………14分18.(1)m =()1=-a ,于是⋅=a b ,……………………………3分 又2=a ,1=b ,所以cos θ⋅==a b a b []0,θ∈π,所以6θ5π=.…………………6分(2)①因为⊥a b ,所以0⋅=a b ,即()1102m -=+,得m =.………8分②m =时,2=a ,1=b ,由()()23t k t ⎡⎤-⊥-⎣⎦++a b a b ,得()()230t k t ⎡⎤-⋅-=⎣⎦++a b a b ,因为0⋅=a b ,所以()22230k t t --=+a b,于是()234t t k -=,…………12分故()()23222341174324444k t t t t t t t t t -==-=+-+++,当2t =-时,2k t t+取最小值74-.…………………………………………16分19.(1)当甲的用水量不超过5吨时,即55x ≤,1x ≤时,乙的用水量也不超过5吨,()2.65320.8y x x x ==+;…………………………………………………2分当甲的用水量超过5吨,乙的用水量不超过5吨,即55,35,x x >⎧⎨⎩≤513x <≤时, ()5 2.64553 2.627.87y x x x =⨯⨯-⨯=-++;……………………………4分当乙的用水量超过5吨,即35x >,53x >时,()()25 2.6435553214y x x x =⨯⨯⨯⎡--⎤=-⎣⎦++.…………………………6分 所以20.8,01,527.87,1,353214,.3x x y x x x x ⎧⎪⎪⎪=-<⎨⎪⎪->⎪⎩≤≤≤ …………………………………………………7分(2)由于()y f x =在各段区间上均单调增,当[]0,1x ∈时,()134.7y f <≤;……………………………………………9分 当5(,)3x ∈∞+时,5()34.73y f >>;…………………………………………11分 当5(1,]3x ∈时,令27.8734.7x -=,解得 1.5x =.…………………………13分 所以甲户用水量为57.5x =(吨), 付费15 2.6 2.5423y =⨯⨯=+(元); 乙户用水量为3 4.5x =(吨),付费2 4.5 2.611.7y =⨯=(元).………………………………………………15分 答:甲户该月的用水量为7.5吨、水费为23元,乙户该月的用水量为4.5吨、水费为11.7元.………………………………16分 20.(1)由函数2()45f x x x a =++-的对称轴是2x =-,知()f x 在区间[]1,1-上是增函数, …………………………………2分 因为函数在区间[]1,1-上存在零点,则必有: ()()1010f f ⎧-⎪⎨⎪⎩≤≥即800a a -⎧⎨⎩≤≥,解得08a ≤≤, 故所求实数a 的取值范围为[]0,8. ………………………………4分 (2)若对任意的[]11,2x ∈,总存在[]21,2x ∈,使12()()f x g x =成立,只需函数()y f x =的值域是函数()y g x =的值域的子集. …………………6分 当0a =时,2()45f x x x =+-,[]1,2x ∈的值域为[]0,7, ………………… 7分 下面求1()427x g x m m -=⋅-+,[]1,2x ∈的值域. 令14x t -= ,则[1,4]t ∈,27y mt m =-+①当0m =时,()7g x =为常数,不符合题意,舍去;②当0m >时,()g x 的值域为[]7,27m m -+,要使[][]0,77,27m m ⊆-+, 需70277m m -⎧⎨+⎩≤≥,解得7m ≥;③当0m <时,()g x 的值域为[]27,7m m +-,要使[][]0,727,7m m ⊆+-, 需2707m m +⎧⎨-⎩≤≥7,解得72m -≤;所以2()(2)4464f t f t t t --=++=-,即2820t t +-=,解得4t =--4t =-+(舍去); ②当26t -<-≤时,在区间[],2t 上,(2)f 最大,(2)f -最小, 所以(2)(2)1664f f t --==-,解得52t =-; ③当322t -<<时,在区间[],2t 上,(2)f 最大,()f t 最小, 所以2(2)()41264f f t t t t -=--+=-,即26t =,解得t =或t =,所以此时不存在常数t 满足题意;综上所述,存在常数t 满足题意,4t =--52t =-.……………………16分。
徐州市20172018学年高一上学期期末考试数学试题(word版)

徐州市 2017~2018学年度第一学期期末抽测高一数学试题注 意 事 项考生在答题前请仔细阅读本注意事项及各题答题要求1.本试卷共 4 页包括填空题(第 1 题——第 14 题)、解答题(第 15 题——第 20 题).本卷满分 160 分,考试时间为 120 分钟.考试结束后请将答题卡交回.2.答题前请您务势必自己的姓名、准考据号用0.5 毫米黑色墨水的署名笔填写在试卷及答题卡的规定地点.3.请在答题卡上依据次序在对应的答题地区内作答在其余地点作答一律无效.作答一定用0. 5 毫米黑色墨水的署名笔.请注意字体工整字迹清楚. 4.如需作图须用 2B 铅笔绘、写清楚线条、符号等须加黑、加粗.5.请保持答题卡卡面洁净不要折叠、损坏.一律禁止使用胶带纸、修正液、可擦洗的圆珠笔.一、填空题(本大题共 14 小题,每题 5 分,共 70 分,将答案填在答题纸上)1. 已知会合A -101,, ,B 0,1,2 ,则 AB▲ .2. sin 405 的值为 ▲ .3. 若幂函数 f x x 的图象过点 9,3 ,则实数的值为▲ .4. 已知角 的终边经过点3,4 ,则 cos 的值为▲ .5. 函数 ylg 3 x 的定义域为▲ .6. 圆心角为 2rad ,半径为 3cm 的扇形的面积为▲ .27. 求值: 8 3log 2log 27▲ .32x 22x, x 0,2 ,则实数 a 的值为8. 已知函数 fxa, x0,若 f ( f (1)) ▲ .x9. 已知点 O 0,0 , A 1,0 , B 0,2 , C 1,4 ,若 OC aOA OB( ,R) ,则的值为 ▲ .10. 若 cos(75x)1 , ,则 sin(x15 ) 的值为 ▲ .,4211. 将函数 yπ个单位长度,再将所获得的图象上的所sin(2 x ) 的图象先向左平移3 6有点的横坐标变成本来的 2 倍(纵坐标不变),那么所得图象的函数分析式为▲ .12. 若 函数 fx1 2aax , x 1,log a x是 R 上 的单 调函 数, 则实 数 a 的 取值 范围是,x1,▲ .13. 已知定义在 R 上的偶函数 f x 的图象对于点 1,0 对称,且当 x1,2 时,f x2x 3 ,若对于 x 的方程 f x log a x(a1)恰巧有 8 个不一样的实数根,则实数 a 的取值范围是 ▲ .14. 已知函数 fx2 x ,若存在实数 m, n ,使得 f x m 2x 对随意的 x2,n 都建立,则 m n 的取值范围是▲ .二、解答题 (本大题共 6 小题,满分 90 分.解答应写出文字说明、证明过程或演算步骤 .)15. (此题满分 14 分)已知函数 f x2sin 2x(2) ,且 f x 的图象过点 0,1 .2( 1)求函数 f x 的最小正周期及的值;( 2)求函数 f x 的最大值及获得最大值时自变量 x 的会合;( 3)求函数 fx 的单一增区间.16. (此题满分14 分)已知向量 a cos ,1,b 1. ,sin2( 1)若a//b,求(sin cos)2的值;( 2)若a b ,求tan及的 4sin cos值 .2sin3cos17.(此题满分 14 分)如图,在 Y ABCD 中, AB = 3 , AD = 2 , ? BAD60o.uuur uuur( 1)求AB×AC的值;D C( 2)求cosD BAC的值 .AB18. (此题满分16 分)如图,某学校有一块直角三角形空地ABC ,此中C,BC20m ,AB40m ,2该校欲在此空地上建筑一平行四边形生物实践基A地BMPN ,点 M , P, N 分别在 BC ,CA, AB 上.(1)若四边形BMPN为菱形,求基地边BM的长;(2)求生物实践基地的最大占地面积.N PBCM19.(本小题满分 16 分)会合 A 由知足以下性质的函数 f x 构成:① f x在 0,上是增函数;②对于任意的 x 0 ,f x3,4. 已知函数f1x x3, f 2x41 2x .( 1)试判断f1x, f 2x 能否属于会合 A ,并说明原因;( 2)将( 1)中你以为属于会合 A 的函数记为 f x.(ⅰ)试用列举法表示会合P x f ( x) 4 f ( x) 3 ;(ⅱ)若函数 f x 在区间 m, n (m 0) 上的值域为2m a,2 n a,务实数 a2m2n 的取值范围.20.(本小题满分 16 分)已知函数 f x a( x 1)2x .( 1)当a0时,求证:函数f x 是偶函数;( 2)若对随意的x1,00,,都有 f x ax1a ,务实数 a 的取值范x围;( 3)若函数 f x 有且仅有4个零点,务实数 a 的取值范围.2017~2018 学年度第一学期期末抽测高一数学参照答案与评分标准一、填空1. {0,1}2.214.3 5. (,3)6. 9 7. 78. 623.52.1.1. y sin x.1 ]13.(3,4)14. (2,12]91041112(0,3二、解答15 .( )函数 f ( x) 的最小正周期T 2. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分121 ,因 f ( x) 的 象 点(0,1) ,所以 f (0)2sin1 ,即 sin2又,所以 . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分226( 2)由( 1)知, f ( x)2sin(2 x) ,所以函数 f ( x) 的最大 是2 .⋯⋯⋯⋯ 8 分6由 2x62k (k Z ) ,得 x6 k (k Z ) ,2所以 f ( x) 获得最大 x 的会合是 { x | xk k Z .⋯⋯⋯⋯⋯⋯⋯ 10 分6( 3)由( 1)知, f ( x)2sin(2 x) .6由2k ≤ 2 x 6≤ 2k , kZ ,得3 k ≤ x ≤k , kZ ,226所以函数 f ( x) 的 增区 [3 k , k ]( k Z ) .⋯⋯⋯⋯⋯⋯⋯ 14 分616.( 1)因 ab ,所以 cossin1 1 0 ,即 sincos1, ⋯⋯⋯⋯⋯⋯ 2 分2 21所以 (sincos ) 2 sin 2cos 22sincos 12 2 .⋯⋯⋯⋯ 6 分2( 2)因 ab ,所以 a b1cos sin 0,所以 tan1 . ⋯⋯⋯⋯⋯ 10 分24 ( 1) 12所以 4sincos4tan 1 1. ⋯⋯⋯⋯⋯⋯⋯⋯⋯214 分2sin3cos2tan3 2 ( 1 3 4)217.( 1)在平行四 形ABCD 中, ACAB AD , ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分所以 AB AC AB ( ABAD)2AB ADAB323 2 cos60 12. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分( 2)由( 1)知, AB AC12 ,又 | AC | | AB AD |22 AB AD2AB AD32232cos602219 ,⋯⋯⋯⋯⋯⋯⋯10 分所以 cos BACAB AC12419.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14 分| AB || AC |3191918.()在△ ABC中,cos BBC201,所以B,⋯⋯⋯⋯⋯⋯⋯⋯2分1AB4023所以CMP3,所以 PM2CM ,BM PM2(20BM ) ,⋯⋯⋯⋯⋯⋯⋯又四形 BMPN 菱形,所以 6 分所以 BM40m.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分3( m ),即基地BM的403( 2) BM x , 0x20 ,PC3CM3(20x) ,⋯⋯⋯⋯⋯⋯⋯⋯10 分所以生物践基地的面S BM PC x3(20x)⋯⋯⋯⋯⋯⋯⋯⋯ 12 分3( x10)2100 3 ,所以当 x10 ,S max1003.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14 分答:生物践基地的最大占地面100 3m2.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯16 分19.( 1)因f1(4)435[3,4] ,不足②,所以f1 ( x) 不属于会合A.⋯⋯⋯2分在 [0,) 内任取两个数x1, x2, x1x2,f2 ( x1 )f2 ( x2 ) (41)(41112x12x2x x)x x x x,212222212122因 y2x是增函数,且x1x2,所以2x12x20,2x12x20 ,所以 f2 ( x1 ) f2 ( x2 )0 ,即 f 2 ( x1 ) f 2 ( x2 ) ,故 f2 (x) 在 [0,) 上是增函数,足①;所以 f2 ( x) 在 [0,) 上的域[3,4)[3,4],足②.故函数 f2 ( x) 属于会合A.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分( 2) (i) 由( 1)知, f ( x)41f ( x)](4112x,所以 f ( x)[42x)2x 3,1111即2)30 ,解得1或 3 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分(x )4(x2x2x22所以 x0或 x log 21,故 P{0,log 2110 分3} .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯31在 [m, n] 上增,所以m a (ii)由()知,f (x)4f (m) 22m,12x anf (n)22,(2 m )2 4(2m) 1 a 0,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分即4(2n )1 a0. (2 n )2所以方程 t 24t1 a 0在 t [1, ) 内有两个不等的 根,⋯⋯⋯⋯⋯14 分2≥所以 1 4 1 a0,解得 2 ≤ a 3 .a)( 4) 24(1 0,故 数 a 的取 范 是 [2,3) . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯16 分20.( 1)当 a0 , f (x)| x | ,定 域 R .因 随意的 x R ,都有 f ( x) | x | | x | f ( x) ,所以函数 f (x) 是偶函数.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分( 2)由 意知, a(x1)2 | x |≤ ax 1 a 在 [ 1,0)(0,) 上恒建立,| x |即 a( x2x) ≤ 1| x | 在 [ 1,0) (0,) 上恒建立.⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分| x |1x1 x( 1 1 )2 1 ,①当 x 0 , a ≤ xx 2 xx 2 x 2 4因 当 x 2 , y(11 )2 1 获得最小1,所以 a ≤1;⋯⋯⋯ 6 分②当 x1x 2 444, a0 ≤ 0 恒建立;x1x 1( 1 1 )2 1 ,1 x 0 , a ≥ x③当x 2xx 2x 24因1 x0 ,所以 y( 1 1 )2 1 的 域 ( , 2) ,所以 a ≥ 2.x 2 14上所述, a 的取 范 [2, ] .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分4( 3)当 a0 , f (x) | x | ,有独一零点 0 ,不切合 意;⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分当 a0 , f (x)ax 2 (2a 1)x a, x ≥ 0,ax2(2a1)x a,x 0.①若 a0 ,2a 1 0 ,所以 f ( x) 在 [0, ) 上 增, f ( x) ≥ f (0) a 0 ,2a 所以 f ( x) 在 [0,) 内无零点,而 f ( x) 在 (,0)内最多有两个零点,不切合 意;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 11 分②若 a0 ,2a 10 ,所以 f ( x) 在 (, 2a 12a2a ) 上 增,在 ( 2a 1 ,0) 上 减,2a而f (2a14a 1)4a 0 , f (0) a 0 ,2a所以 f ( x) 在 (,0) 内有两个零点,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13 分所以 f ( x) 在 [0, ) 内也有两个零点.若 a ≤1,2a1≤ 0 ,所以 f ( x) 在 [0, ) 上 减,又 f (0) a 0 ,22a 此 f ( x) 在 [0,) 内无零点,不切合 意;若1 a 0 , 2a 1 0 ,所以 f (x) 在 (0,2a 1) 上 增,22a 2a在 ( 2a 1,) 上 减,2a要使 f ( x) 在 [0,) 内有两个零点, f (2a1)4a 10 ,2a4a即 4a10 ,故1 a0 .41上所述, a 的取 范(16 分,0) .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4。
2016—2017学年第一学期高一级数学期末考试答案 精品

2016-2017学年度第一学期高一级数学科期末试题答案二、填空题:(本大题共4小题,每小题5分,共20分。
)2y x =或 30x y +-= 16. 1118三、解答题:(本大题共6小题,共70分。
)17.(本题满分10分)【解答】解:(1)∵点O (0,0),点C (1,3),∴OC 所在直线的斜率为.(2)在平行四边形OABC 中,AB ∥OC , ∵CD ⊥AB ,∴CD ⊥OC .∴CD 所在直线的斜率为.∴CD 所在直线方程为,即x+3y ﹣10=0.18. (本题满分12分) 【解答】证明:(Ⅰ)∵AE ⊥平面CDE ,CD ⊂平面CDE , ∴AE ⊥CD ,又在正方形ABCD 中,CD ⊥AD ,AE∩AD =A , ∴CD ⊥平面ADE ,又在正方形ABCD 中,AB ∥CD , ∴AB ⊥平面ADE .…(6分) 解:(Ⅱ)连接BD ,设B 到平面CDE 的距离为h , ∵AB ∥CD ,CD ⊂平面CDE ,∴AB ∥平面CDE ,又AE ⊥平面CDE , ∴h=AE=1,又=,∴=,又==,∴凸多面体ABCDE 的体积V=V B ﹣CDE +V B ﹣ADE =.…(12分)19. (本题满分12分) 解:1)、(0)01x R f a ∈∴=∴=-……………….3分2)、22()1()13131x x f x f x =-∴+=++, 012314x x ≤≤∴≤+≤ ……………….5分1()112f x ∴≤+≤……………….7分 112t ∴≤≤……………….8分 (3)1132)(-+=xx f 在R 上单调递减,…………….9分 )22()(2m x f mx x f -≥-m x mx x 222-≤-…………….10分02)2(2≤++-m x m x0))(2(≤--m x x …………….11分(1)当2>m 时,不等式的解集是{}m x x ≤≤2| (2)当2=m 时,不等式的解集是{}2|=x x(3)当2<m 时,不等式的解集是{}2|≤≤x m x …………….14分20. 解:(1)由题意,112(),(),0;0)f x k x g x k k k x ==≠≥ 又由图知f (1.8)=0.45 ,g(4)=2.5;解得1215,44k k == ………….2分∴1()(0);()0)4f x x x g x x =≥=≥ ……….3分 (不写定义域扣1分)(2)设对股票等风险型产品B 投资x 万元,则对债券等稳键型产品A 投资(10-x )万元, 记家庭进行理财投资获取的收益为y 万元, ……….4分则1(10)0)4y x x =-+≥ ……….6分t =,则2x t =,(0t ≤ ……….8分∴21565()4216y t =--+ ……….10分 当52t =也即254x =时,y 取最大值6516……….11分答:对股票等风险型产品B 投资254万元,对债券等稳键型产品A 投资154万元时,可获最大收益6516万元. ……….12分 21. 解:(1)连接CN .因为ABC A 1B 1C 1是直三棱柱, 所以CC 1⊥平面ABC , 所以AC ⊥CC 1. 因为AC ⊥BC , 所以AC ⊥平面BCC 1B 1.因为MC =1,CN =CC 21+C 1N 2=5, 所以MN = 6.(2)证明:取AB 中点D ,连接DM ,DB 1.在△ABC 中,因为M 为AC 中点,所以DM ∥BC ,DM =12BC .在矩形B 1BCC 1中,因为N 为B 1C 1中点,所以B 1N ∥BC ,B 1N =12BC .所以DM ∥B 1N ,DM =B 1N .所以四边形MDB 1N 为平行四边形,所以MN ∥DB 1. 因为MN ⊄平面ABB 1A 1,DB 1⊂平面ABB 1A 1, 所以MN ∥平面ABB 1A 1.(3)线段CC 1上存在点Q ,且Q 为CC 1中点时,有A 1B ⊥平面MNQ . 证明如下:连接BC 1.在正方形BB 1C 1C 中易证QN ⊥BC 1.又A 1C 1⊥平面BB 1C 1C ,所以A 1C 1⊥QN ,从而NQ ⊥平面A 1BC 1. 所以A 1B ⊥QN .同理可得A 1B ⊥MQ ,所以A 1B ⊥平面MNQ . 故线段CC 1上存在点Q ,使得A 1B ⊥平面MNQ . 22. 解:(I )抛物线的对称轴为2b x a=-, ①当22ba-<时,即4b a >-时, 当2bx a =-时,222max 29()()24248b b b b f x f ac c a a a a -=-=⨯-+=+=, min ()(2)422f x f a b c ==++=-,∴2948422b c a a b ⎧-+=⎪⎨⎪+=-⎩, ∴2,3a b =-=.②当22ba-≥时,即4b a ≥-时, ()f x 在[0,2]上为增函数,min ()(0)0f x f ==与min ()2f x =-矛盾,无解,综合得:2,3a b =-=.(II )()||2f x x ≤对任意[1,2]x ∈恒成立,即1||2ax b x ++≤对任意[1,2]x ∈恒成立, 即122ax b x-≤++≤对任意[1,2]x ∈恒成立,令1()g x ax b x =++,则max min [()]2[()]2g x g x ≤⎧⎨≥-⎩, ∵01a <<1>,2≥,即104a <≤时,()g x 在[1,2]单调递减,此时max min [()](1)2[()](2)2g x g g x g =≤⎧⎨=≥-⎩,即121222a b a b ++≤⎧⎪⎨++≥-⎪⎩,得1522b ab a ≤-⎧⎪⎨≥--⎪⎩,此时57(2)(1)022a a a ----=--<, ∴5(2)(1)2a a --<- ∴5212a b a --≤≤-.(ⅱ)12<<,即114a <<时,()g x在单调递减,在单调递增,此时,min [()]222g x g b b =≥-⇒≥-⇒≥--只要(1)121(2)2222g a b g a b b ⎧=++≤⎪⎪=++≤⎨⎪⎪≥-⎩13222b a b a b ⎧≤-⎪⎪⇒≤-⎨⎪⎪≥-⎩,31(1)(2)22a a a ---=-当112a ≤<时,3122a a -≥-,3222b a -≤≤- 当1142a <<时,3122a a -<-,21b a -≤≤-. 综上得:①104a <≤时,5212a b a --≤≤-;②1142a <<时,21b a -≤≤-; ③112a ≤<时,3222b a -≤≤-.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年江苏省徐州市高一(上)期末数学试卷一、填空题(共14小题,每小题5分,满分70分)1.(5.00分)已知集合A={﹣1,0,1},B={0,1,2},则A∩B=.2.(5.00分)函数y=3tan(2x+)的最小正周期为.3.(5.00分)已知点A(﹣1,2),B(1,3),则向量的坐标为.4.(5.00分)若指数函数f(x)=a x(a>0,且a≠1)的图象经过点(3,8),则f (﹣1)的值为.5.(5.00分)cos240°的值等于.6.(5.00分)函数f(x)=的定义域是.7.(5.00分)已知向量,满足||=2,||=,与的夹角为,则||=.8.(5.00分)若偶函数f(x)满足f(x+π)=f(x),且f(﹣)=,则f()的值为.9.(5.00分)设函数f(x)=则f(log214)+f(﹣4)的值为.10.(5.00分)已知a>0且a≠1,函数f(x)=4+log a(x+4)的图象恒过定点P,若角α的终边经过点P,则cosα的值为.11.(5.00分)将函数f(x)=sinωx(ω>0)的图象向右平移个单位后得到函数g(x)的图象,若对于满足|f(x1)﹣g(x2)|=2的x1,x2,有|x1﹣x2|min=,则f()的值为.12.(5.00分)平行四边形ABCD中,||=6,||=4,若点M,N满足:=3,=2,则=.13.(5.00分)设函数f(x)=,若函数f(x)恰有2个零点,则实数a的取值范围是.14.(5.00分)已知不等式(mx+5)(x2﹣n)≤0对任意x∈(0,+∞)恒成立,其中m,n是整数,则m+n的取值的集合为.二、解答题(共6小题,满分90分)15.(14.00分)已知集合A=[0,3),B=[a,a+2).(1)若a=﹣1,求A∪B;(2)若A∩B=B,求实数a的取值范围.16.(14.00分)已知向量=(cosα,sinα),=(﹣2,2).(1)若=,求(sinα+cosα)2的值;(2)若,求sin(π﹣α)•sin()的值.17.(14.00分)某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:ωx+φ0π2πxf(x)0 30 ﹣30 (1)请将表中数据补充完整,并直接写出函数f(x)的解析式;(2)若将函数f(x)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到函数g(x)的图象,求当x∈[﹣,]时,函数g(x)的值域;(3)若将y=f(x)图象上所有点向左平移θ(θ>0)个单位长度,得到y=h(x)的图象,若=h(x)图象的一个对称中心为(),求θ的最小值.18.(16.00分)已知向量=(m,﹣1),=()(1)若m=﹣,求与的夹角θ;(2)设.①求实数m的值;②若存在非零实数k,t,使得[+(t2﹣3)]⊥(﹣k+t),求的最小值.19.(16.00分)某市居民自来水收费标准如下:每户每月用水不超过5吨时,每吨为2.6元,当用水超过5吨时,超过部分每吨4元,某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x,3x吨.(1)求y关于x的函数;(2)若甲、乙两户该月共交水费34.7元,分别求甲、乙两户该月的用水量和水费.20.(16.00分)已知函数f(x)=x2+4x+a﹣5,g(x)=m•4x﹣1﹣2m+7.(1)若函数f(x)在区间[﹣1,1]上存在零点,求实数a的取值范围;(2)当a=0时,若对任意的x1∈[1,2],总存在x2∈[1,2],使f(x1)=g(x2)成立,求实数m的取值范围;(3)若y=f(x)(x∈[t,2])的值域为区间D,是否存在常数t,使区间D的长度为6﹣4t?若存在,求出t的值;若不存在,请说明理由.(注:区间[p,q]的长度q﹣p)2016-2017学年江苏省徐州市高一(上)期末数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.(5.00分)已知集合A={﹣1,0,1},B={0,1,2},则A∩B={0,1} .【分析】利用交集的性质求解.【解答】解:∵集合A={﹣1,0,1},B={0,1,2},∴A∩B={0,1}.故答案为:{0,1}.2.(5.00分)函数y=3tan(2x+)的最小正周期为.【分析】根据正切函数的周期公式进行求解即可.【解答】解:由正切函数的周期公式得T=,故答案为:3.(5.00分)已知点A(﹣1,2),B(1,3),则向量的坐标为(2,1).【分析】根据平面向量的坐标表示,即可写出向量的坐标.【解答】解:点A(﹣1,2),B(1,3),则向量=(1﹣(﹣1),3﹣2)=(2,1).故答案为:(2,1).4.(5.00分)若指数函数f(x)=a x(a>0,且a≠1)的图象经过点(3,8),则f(﹣1)的值为.【分析】先根据指数函数过点(3,8)求出a的值,再代入计算即可.【解答】解:指数函数f(x)=a x(a>0且a≠1)的图象经过点(3,8),∴8=a3,解得a=2,∴f(x)=2x,∴f(﹣1)=2﹣1=,故答案为:.5.(5.00分)cos240°的值等于﹣.【分析】将240°表示成180°+60°,再由诱导公式化简,再由特殊角的三角函数值求值.【解答】解:由题意得,cos240°=cos(180°+60°)=﹣cos60°=﹣.故答案为:﹣.6.(5.00分)函数f(x)=的定义域是[e,+∞).【分析】由根式内部的代数式大于等于0,求解对数不等式得答案.【解答】解:要使原函数有意义,则﹣1+lnx≥0,即lnx≥1,解得x≥e.∴函数f(x)=的定义域是[e,+∞).故答案为:[e,+∞).7.(5.00分)已知向量,满足||=2,||=,与的夹角为,则||=.【分析】利用两个向量的数量积的定义,根据||==,计算求的结果.【解答】解:由题意可得||====,故答案为:.8.(5.00分)若偶函数f(x)满足f(x+π)=f(x),且f(﹣)=,则f()的值为.【分析】根据偶函数f(x)满足f(x+π)=f(x),可知函数的周期T=π,则f()=f()即可得答案.【解答】解:由题意,f(x+π)=f(x),可知函数的周期T=π,则f()=f()∵f(﹣)=,f(x)是偶函数.∴f()=即f()的值为.故答案为:.9.(5.00分)设函数f(x)=则f(log214)+f(﹣4)的值为6.【分析】由已知中函数f(x)=,将x=log214和x=﹣4代入计算可得答案.【解答】解:∵函数f(x)=,∴f(log214)=7,f(﹣4)=﹣1,∴f(log214)+f(﹣4)=6,故答案为:6.10.(5.00分)已知a>0且a≠1,函数f(x)=4+log a(x+4)的图象恒过定点P,若角α的终边经过点P,则cosα的值为.【分析】根据函数f(x)恒过定点P,求出P点的坐标,利用cosα的定义求值即可.【解答】解:函数f(x)=4+log a(x+4)的图象恒过定点P,即x+4=1,解得:x=﹣3,则y=4故P的坐标为(﹣3,4),角α的终边经过点P,则cosα=.故答案为:.11.(5.00分)将函数f(x)=sinωx(ω>0)的图象向右平移个单位后得到函数g(x)的图象,若对于满足|f(x1)﹣g(x2)|=2的x1,x2,有|x1﹣x2|min=,则f ()的值为1.【分析】由题意可得到函数g(x)=sinω(x﹣),对满足|f(x1)﹣g(x2)|=2的可知,两个函数的最大值与最小值的差为2,有|x1﹣x2|min=﹣,由此求得ω的值,可得f(x)的解析式,从而求得f()的值.【解答】解:将函数f(x)=sinωx(ω>0)的图象向右平移个单位后得到函数g(x)=sinω(x﹣)的图象,若对于满足|f(x1)﹣g(x2)|=2的x1,x2,有|x1﹣x2|min=,则﹣=,∴T==π,∴ω=2,f(x)=sin2x,则f()=sin=1,故答案为:1.12.(5.00分)平行四边形ABCD中,||=6,||=4,若点M,N满足:=3,=2,则=9.【分析】用,表示出,,在进行计算.【解答】解:∵=3,=2,∴,,==.∴==,==﹣.∴=()•(﹣)=﹣=36﹣=9.故答案为:9.13.(5.00分)设函数f(x)=,若函数f(x)恰有2个零点,则实数a的取值范围是1≤a<2,或a≥4.【分析】分段函数求解得出2x﹣a=0,x2﹣3ax+2a2=(x﹣a)(x﹣2a),分类分别判断零点,总结出答案.【解答】解:∵y=2x,x<2,0<2x<4,∴0<a<4时,2x﹣a=0,有一个解,a≤0或a≥4,2x﹣a=0无解∵x2﹣3ax+2a2=(x﹣a)(x﹣2a),∴当a∈(0,1)时,方程x2﹣3ax+2a2=0在[1,+∞)上无解;当a∈[1,2)时,方程x2﹣3ax+2a2=0在[1,+∞)上有且仅有一个解;当a∈[2,+∞)时,方程x2﹣3ax+2a2=0在x∈[1,+∞)上有且仅有两个解;综上所述,函数f(x)恰有2个零点,1≤a<2,或a≥4故答案为:1≤a<2,或a≥414.(5.00分)已知不等式(mx+5)(x2﹣n)≤0对任意x∈(0,+∞)恒成立,其中m,n是整数,则m+n的取值的集合为{﹣4,24} .【分析】对n分类讨论,当n≤0 时,由(mx+5)(x2﹣n)≤0得到mx+5≤0,由一次函数的图象知不存在;当n>0 时,由(mx+5)(x2﹣n)≤0,利用数学结合的思想得出m,n的整数解,进而得到所求和.【解答】解:当n≤0 时,由(mx+5)(x2﹣n)≤0,得到mx+5≤0 在x∈(0,+∞)上恒成立,则m不存在;当n>0 时,由(mx+5)(x2﹣n)≤0,可设f(x)=mx+5,g(x)=x2﹣n,那么由题意可知:,再由m,n是整数得到或,因此m+n=24或﹣4.故答案为:{﹣4,24}.二、解答题(共6小题,满分90分)15.(14.00分)已知集合A=[0,3),B=[a,a+2).(1)若a=﹣1,求A∪B;(2)若A∩B=B,求实数a的取值范围.【分析】(1)吧a的值代入确定出B,求出A与B的并集即可;(2)由A与B的交集为B,得到B为A的子集,确定出a的范围即可.【解答】解:(1)∵A=[0,3),B=[a,a+2)=[﹣1,1),∴A∪B=[﹣1,3);(2)∵A∩B=B,∴B⊆A,∴,解得:0≤a≤1.16.(14.00分)已知向量=(cosα,sinα),=(﹣2,2).(1)若=,求(sinα+cosα)2的值;(2)若,求sin(π﹣α)•sin()的值.【分析】(1)利用数量积运算、同角三角函数基本关系式可求2sinαcosα的值,即可得解.(2)根据平面向量的共线定理,同角三角函数基本关系式可求sinαcosα,进而利用诱导公式化简所求即可得解.【解答】(本题满分为14分)解:(1)∵向量=(cosα,sinα),=(﹣2,2).=2sinα﹣2cosα=,∴解得:sinα﹣cosα=,两边平方,可得:1﹣2sinαcosα=,解得:2sinαcosα=﹣,∴(sinα+cosα)2=1+2sinαcosα=1﹣=.(2)∵,∴2cosα+2sinα=0,解得:cosα+sinα=0,∴两边平方可得:1+2sinαcosα=0,解得:sinαcosα=﹣,∴sin(π﹣α)•sin()=sinα•cosα=﹣.17.(14.00分)某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<)在某一个周期内的图象时,列表并填入了部分数据,如表:ωx+φ0π2πx﹣f(x)0 30 ﹣30 (1)请将表中数据补充完整,并直接写出函数f(x)的解析式;(2)若将函数f(x)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到函数g(x)的图象,求当x∈[﹣,]时,函数g(x)的值域;(3)若将y=f(x)图象上所有点向左平移θ(θ>0)个单位长度,得到y=h(x)的图象,若=h(x)图象的一个对称中心为(),求θ的最小值.【分析】(1)由表中数据列关于ω、φ的二元一次方程组,求得A、ω、φ的值,得到函数解析式,进一步完成数据补充.(2)根据函数y=Asin(ωx+φ)的图象变换规律可求g(x),利用正弦函数的性质可求其值域.(3)由(1)及函数y=Asin(ωx+φ)的图象变换规律得g(x),令2x+2θ+=kπ,解得x=﹣θ,k∈Z.令:﹣θ=,结合θ>0即可解得θ的最小值.【解答】解:(1)根据表中已知数据,解得A=3,ω=2,φ=,数据补全如下表:ωx+φ0π2πx﹣f(x)0 30 ﹣30函数表达式为f(x)=3sin(2x+).(2)将函数f(x)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到图象对于的函数解析式为:g(x)=3sin(x+).由x∈[﹣,],可得:x+∈[﹣,],可得:sin(x+)∈[﹣,1],可得:函数g(x)=3sin(x+)∈[﹣,3].(3)若将y=f(x)图象上所有点向左平移θ(θ>0)个单位长度,得到y=h(x)的图象,若h(x)图象的一个对称中心为(),由(Ⅰ)知f(x)=3sin(2x+),得g(x)=3sin(2x+2θ+).因为y=sinx的对称中心为(kπ,0),k∈Z.令2x+2θ+=kπ,解得x=﹣θ,k∈Z.由于函数y=g(x)的图象关于点(,0)成中心对称,令:﹣θ=,解得θ=﹣,k∈Z.由θ>0可知,当k=1时,θ取得最小值.18.(16.00分)已知向量=(m,﹣1),=()(1)若m=﹣,求与的夹角θ;(2)设.①求实数m的值;②若存在非零实数k,t,使得[+(t2﹣3)]⊥(﹣k+t),求的最小值.【分析】(1)由条件利用两个向量的数量积的定义求得cosθ=的值,可得θ的值.(2)①利用两个向量垂直的性质,求得m的值.②根据[+(t2﹣3)]•(﹣k+t)=0,求得4k=t(t2﹣3),从而求得=,再利用二次函数的性质求得它的最小值.【解答】解:(1)向量=(m,﹣1),=(),若m=﹣,与的夹角θ,则有cosθ===﹣,∴θ=.(2)①设,则=﹣=0,∴m=.②由①可得,=(,﹣1),=﹣=0,若存在非零实数k,t,使得[+(t2﹣3)]⊥(﹣k+t),故有[+(t2﹣3)]•(﹣k+t)=0,∴﹣k+[﹣k(t2﹣3)+t]+t(t2﹣3)=﹣k•4+0+t(t2﹣3)=0,∴4k=t(t2﹣3),∴=+t==≥﹣,当且仅当t=﹣2时,取等号,故的最小值为﹣.19.(16.00分)某市居民自来水收费标准如下:每户每月用水不超过5吨时,每吨为2.6元,当用水超过5吨时,超过部分每吨4元,某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x,3x吨.(1)求y关于x的函数;(2)若甲、乙两户该月共交水费34.7元,分别求甲、乙两户该月的用水量和水费.【分析】(1)由题意知:x≥0,令5x=5,得x=1;令3x=5,得x=.将x取值范围分三段,求对应函数解析式可得答案.(2)在分段函数各定义域上讨论函数值对应的x的值【解答】解:(1)由题意知,x≥0,令5x=5,得x=1;令3x=5,得x=.则当0≤x≤1时,y=(5x+3x)×2.6=20.8x当1<x≤时,y=5×2.6+(5x﹣5)×4+3x×2.6=27.8x﹣7,当x>时,y=(5+5)×2.6+(5x+3x﹣5﹣5)×4=32x﹣14;即得y=(2)由于y=f(x)在各段区间上均单增,当x∈[0,1]时,y≤f(1)=20.8<34.7;当x∈(1,]时,y≤f()≈39.3>34.7;令27.8x﹣7=34.7,得x=1.5,所以甲户用水量为5x=7.5吨,付费S1=5×2.6+2.5×4=23元乙户用水量为3x=4.5吨,付费S2=4.5×2.6=11.7元20.(16.00分)已知函数f(x)=x2+4x+a﹣5,g(x)=m•4x﹣1﹣2m+7.(1)若函数f(x)在区间[﹣1,1]上存在零点,求实数a的取值范围;(2)当a=0时,若对任意的x1∈[1,2],总存在x2∈[1,2],使f(x1)=g(x2)成立,求实数m的取值范围;(3)若y=f(x)(x∈[t,2])的值域为区间D,是否存在常数t,使区间D的长度为6﹣4t?若存在,求出t的值;若不存在,请说明理由.(注:区间[p,q]的长度q﹣p)【分析】(1)求出函数的对称轴,得到函数的单调性,解关于a的不等式组,解出即可;(2)只需函数y=f(x)的值域是函数y=g(x)的值域的子集,通过讨论m=0,m>0,m<0的情况,得到函数的单调性,从而确定m的范围即可;(3)通过讨论t的范围,结合函数的单调性以及f(2),f(﹣2)的值,得到关于t 的方程,解出即可.【解答】解:(1)由题意得:f(x)的对称轴是x=﹣2,故f(x)在区间[﹣1,1]递增,∵函数在区间[﹣1,1]存在零点,故有,即,解得:0≤a≤8,故所求实数a的范围是[0,8];(2)若对任意的x1∈[1,2],总存在x2∈[1,2],使f(x1)=g(x2)成立,只需函数y=f(x)的值域是函数y=g(x)的值域的子集,a=0时,f(x)=x2+4x﹣5,x∈[1,2]的值域是[0,7],下面求g(x),x∈[1,2]的值域,令t=4x﹣1,则t∈[1,4],y=mt﹣2m+7,①m=0时,g(x)=7是常数,不合题意,舍去;②m>0时,g(x)的值域是[7﹣m,2m+7],要使[0,7]⊆[7﹣m,2m+7],只需,解得:m≥7;③m<0时,g(x)的值域是[2m+7,7﹣m],要使[0,7]⊆[2m+7,7﹣m],只需,解得:m≤﹣,综上,m的范围是(﹣∞,﹣]∪[7,+∞);(3)由题意得,解得:t<,①t≤﹣6时,在区间[t,2]上,f(t)最大,f(﹣2)最小,∴f(t)﹣f(﹣2)=t2+4t+4=6﹣4t,即t2+8t﹣2=0,解得:t=﹣4﹣3或t=﹣4+3(舍去);②﹣6<t≤﹣2时,在区间[t,2]上,f(2)最大,f(﹣2)最小,∴f(2)﹣f(﹣2)=16=6﹣4t,解得:t=﹣;③﹣2<t<时,在区间[t,2]上,f(2)最大,f(t)最小,∴f(2)﹣f(t)=﹣t2﹣4t+12=6﹣4t,即t2=6,解得:t=或t=﹣,故此时不存在常数t满足题意,综上,存在常数t满足题意,t=﹣4﹣3或t=﹣.。