相似图形复习教案(5)教师版

合集下载

初中数学相似教案

初中数学相似教案

初中数学相似教案教案标题:初中数学相似教案教学目标:1. 理解相似三角形的概念及其性质。

2. 能够判断两个三角形是否相似。

3. 掌握相似三角形的比例关系。

4. 能够应用相似三角形的性质解决实际问题。

教学准备:1. 教学课件或黑板、白板。

2. 教学素材:相似三角形的图形、实际问题等。

3. 学生练习题和作业。

教学过程:一、导入(5分钟)1. 引入相似三角形的概念,与学生一起回顾并复习三角形的基本知识。

2. 提出一个问题,例如:在生活中,我们经常遇到哪些相似的事物?请举例说明。

二、概念讲解(15分钟)1. 通过教学课件或黑板、白板展示相似三角形的定义和性质。

2. 解释相似三角形的比例关系,例如:对应角相等、对应边成比例。

3. 结合具体的示例,让学生理解相似三角形的性质和比例关系。

三、判断相似三角形(15分钟)1. 给出两个三角形的图形,让学生判断它们是否相似,并解释判断的依据。

2. 引导学生观察对应角和对应边的关系,帮助他们更好地理解相似三角形的判断方法。

3. 给学生一些练习题,让他们巩固判断相似三角形的能力。

四、应用实例(15分钟)1. 提供一些实际问题,例如:根据相似三角形的性质计算高楼的高度、测量无法直接测量的距离等。

2. 引导学生分析问题,找出解决问题的关键步骤,并进行解答。

3. 让学生自己设计一些实际问题,并通过相似三角形的知识进行求解。

五、小结与作业布置(5分钟)1. 对本节课的内容进行小结,强调相似三角形的概念和性质。

2. 布置相似三角形的相关练习题和作业,以巩固学生的学习成果。

3. 鼓励学生积极参与课后讨论和思考,提高他们的问题解决能力。

教学反思:在教学过程中,要注重理论与实践的结合,通过具体的实例让学生更好地理解相似三角形的概念和性质。

同时,要鼓励学生主动思考和解决问题的能力,培养他们的数学思维和创新能力。

在设计教案时,还可以根据学生的实际情况和学习需求进行适当的调整和补充。

北师大版数学九年级上册《位似图形》教案

北师大版数学九年级上册《位似图形》教案

北师大版数学九年级上册《位似图形》教案一. 教材分析北师大版数学九年级上册《位似图形》是学生在学习了相似图形的基础上,进一步研究位似图形的性质和应用。

本节课的内容包括位似图形的定义、位似比、位似变换等,通过这些内容的学习,使学生能够理解位似图形的概念,掌握位似变换的方法,并能够运用位似图形的性质解决实际问题。

二. 学情分析学生在学习本节课之前,已经学习了相似图形的性质,对图形的相似性有一定的认识。

但是,对于位似图形的概念和性质,以及位似变换的方法,可能还比较陌生。

因此,在教学过程中,需要通过具体的实例和活动,帮助学生理解和掌握位似图形的性质和应用。

三. 教学目标1.理解位似图形的概念,掌握位似比的概念和计算方法。

2.掌握位似变换的方法,能够运用位似图形的性质解决实际问题。

3.培养学生的空间想象能力,提高学生的数学思维能力。

四. 教学重难点1.位似图形的概念和性质。

2.位似比的概念和计算方法。

3.位似变换的方法和应用。

五. 教学方法采用问题驱动法、实例教学法、小组合作学习法等教学方法,通过具体的实例和活动,引导学生探究位似图形的性质和应用,激发学生的学习兴趣,培养学生的空间想象能力和数学思维能力。

六. 教学准备1.准备相关的教学实例和图片。

2.准备教学课件和板书设计。

3.准备练习题和作业。

七. 教学过程1.导入(5分钟)通过展示一些相关的实例和图片,引导学生回顾相似图形的性质,为新课的学习做好铺垫。

2.呈现(15分钟)介绍位似图形的定义和性质,通过具体的实例和活动,引导学生探究位似比的概念和计算方法,以及位似变换的方法。

3.操练(15分钟)通过一些练习题,帮助学生巩固位似图形的性质和应用,提高学生的解题能力。

4.巩固(10分钟)通过一些综合性的练习题,帮助学生巩固位似图形的性质和应用,提高学生的综合运用能力。

5.拓展(10分钟)通过一些拓展性的问题和活动,激发学生的学习兴趣,提高学生的数学思维能力。

九年级数学《相似》单元复习课 教案

九年级数学《相似》单元复习课 教案

《第27章相似》复习课教学设计1.教材内容义务教育课程标准实验教科书(人教版)《数学》九年级下册第27章相似的全章复习。

2.知识背景分析本章隶属于“空间与图形”领域,本章共有三节内容第1节图形的相似主要介绍相似图形,相似多边形的概念,并探索相似多边形的性质;第2节相似三角形主要研究相似三角形的判定方法、相似三角形在测量中的应用及相似三角形的周长和面积;第3节位似研究了一种特殊的相似-位似,研究了位似图形的画法及平面直角坐标系中的位似变化。

本节课是在学习前三节的基础上进行的,通过对一些图形性质的探索、证明等,进一步发展学生的探究能力,培养学生的逻辑思维能力等。

3.学情背景分析教学对象是九年级学生,学生的逻辑思维能力得到了一定的发展。

本章正处于学生对于掌握的推理论证方法的进一步巩固和提高阶段,要求学生能熟练运用综合法证明命题,熟悉探索法德推理过程,因此在教学中要注意多帮助学生复习已有的知识,做到以新带旧,新旧结合。

要加强解题思路的分析,帮助学生树立已知与未知,简单与复杂,特殊与一般在一定的条件下可以转换的思想,使学生学会把未知化为已知,把复杂问题化为简单问题,把一般问题化为特殊问题的思考方法。

通过小结对于学生推理证明的训练,进一步提高学生的逻辑思维能力和分析解决问题的能力。

4.学习目标4.1知识与技能目标(1)通过复习,梳理本章知识,构建知识网络.(2)通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边的比的平方。

(3)了解两个三角形相似的概念,探索两个三角形相似的条件。

(4)了解图形的位似,能够利用位似将一个图形放大或缩小。

(5)通过典型实例观察和认识现实生活中物体的相似,使学生综合运用图形的相似解决一些实际问题。

(5)在同一直角坐标系中,感受图形变换后点的坐标的变化特点。

4.2过程与方法目标经历小结的过程,使学生学会建立本章的知识结构图。

相似图形数学教案

相似图形数学教案

相似图形数学教案
标题:相似图形数学教案
一、教学目标
1. 让学生理解并掌握相似图形的基本概念和性质。

2. 培养学生的观察力和空间想象力,提高他们解决实际问题的能力。

3. 通过探究活动,培养学生的合作精神和创新意识。

二、教学内容
1. 相似图形的基本概念:定义、特征、分类。

2. 相似图形的性质:对应角相等、对应边成比例、周长比等于面积比的平方。

三、教学过程
1. 导入新课:利用生活中的实例引入相似图形的概念,激发学生的兴趣。

2. 新课讲解:通过示例、图解等方式详细解释相似图形的基本概念和性质。

3. 学生实践:设计一些与相似图形相关的练习题,让学生进行独立或小组完成。

4. 总结反馈:对学生的解答进行点评,并对学生的学习情况进行总结。

四、教学方法
1. 探究式学习:鼓励学生主动探索,发现相似图形的规律。

2. 合作学习:通过小组讨论,培养学生的团队协作能力。

3. 实践操作:通过绘制图形,加深学生对相似图形的理解。

五、教学评价
1. 过程评价:关注学生在课堂上的参与度,以及他们在解决问题过程中的思考和表现。

2. 结果评价:通过对学生作业的批改,了解他们对相似图形知识的掌握程度。

六、教学反思
教师应反思自己的教学方法是否有效,是否能激发学生的学习兴趣,是否能让学生真正理解和掌握相似图形的知识。

相似图形导学案(教师版)

相似图形导学案(教师版)

第三章 相似图形第一节 线段的比(一) ◆导学目标1、了解线段的比、成比例线段的概念,会判断已知线段是否成比例。

2、掌握比例的基本性质。

3、通过画图、推理等方法,加强探索和合情推理。

◆课前预习预习课本P76~P78。

完成下列各题:1、在Rt △ABC 中,︒=∠90C ,︒=∠30A ,则A C ︰AB= ,AC ︰BC= 。

2、已知M 是线段AB 延长线上一点,且AM :BM =5:2则AB :BM 为( ) A.3:2 B .2:3 C .3:5 D .5:23、两条线段长度的比与所采用的长度单位有没有关系?4、什么是两条线段的比?比值有单位吗?5、什么是成比例线段(简称:比例线段)?比例的基本性质是什么?6、请提出预习过程中不能理解的问题?◆课堂导学若选用同一个长度单位量得两条线段AB 、CD 的长度分别为m 、n ,那么就说这两条线段的比AB ︰CD=m ︰n ,或写成nmCD AB =。

AB 、CD 分别叫做这个线段比的前项和后项。

(注意:两条线段的比不仅单位要统一、而且要有顺序)。

若把n m 表示为比值k ,那么k CDAB=,或CD k AB ∙= 例1:在某县比例尺为1︰400 000的地图上,量得甲、乙两地的距离是4cm 出甲乙两地的实际距离。

分析:比例尺=图上距离︰实际距离四条线段d c b a ,,,中,如果a 与b 的比等于c 与d 的比,即a:b=c:d,或dc b a =,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段。

这四条线段是有顺序的,其中a 和d 叫做比例外项,b 与c 叫做比例内项。

如果比例内项是相等的线段,即cbb a =,那么b 叫做a 和c 的比例中项。

比例的基本性质: 如果dcb a =,则有bc ad =。

即比例的外项之积等于比例的内项之积。

如果bc ad =(d c b a ,,,都不等于0),那么dcb a =他的比例式)。

数学教案-相似三角形的判定数学教学教案5篇

数学教案-相似三角形的判定数学教学教案5篇

相似三角形的判定数学教学教案5篇两角对应相等,两个三角形相似。

两边对应成比例且夹角相等,两个三角形相似。

三边对应成比例,两个三角形相似。

三边对应平行,两个三角形相似。

斜边与直角边对应成比例,两个直角三角形相似。

都是三角形相似的判定。

下面是小编为大家整理的相似三角形的判定数学教学教案5篇,希望大家能有所收获!相似三角形的判定数学教学教案1教学目标(一)教学知识点1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.2.能根据相似比进行计算.(二)能力训练要求1.能根据定义判断两个三角形是否相似,训练学生的判断能力.2.能根据相似比求长度和角度,培养学生的运用能力.(三)情感与价值观要求通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.教学重点相似三角形的定义及运用.教学难点根据定义求线段长或角的度数.教学方法类比讨论法教具准备投影片三张第一张(记作§4.5 A)第二张(记作§4.5 B)第三张(记作§4.5 C)教学过程Ⅰ.创设问题情境,引入新课[师]上节课我们学习了相似多边形的定义及记法.现在请大家回忆一下.[生]对应角相等,对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.[师]很好.请问相似多边形指的是哪些多边形呢?[生]只要边数相同,满足对应角相等、对应边成比例的多边形都包括.比如相似三角形,相似五边形等.[师]由此看来,相似三角形是相似多边形的一种.今天,我们就来研究相似三角形.相似三角形的判定数学教学教案2一、教学目标1.使学生了解判定定理1及直角三角形相似定理的证明方法并会应用,掌握例2的结论.2.继续渗透和培养学生对类比数学思想的认识和理解.3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.4.通过学习,了解由特殊到一般的唯物辩证法的观点.二、教学设计类比学习,探讨发现三、重点及难点1.教学重点:是判定定理l及直角三角形相似定理的应用,以及例2的结论.2.教学难点:是了解判定定理1的证题方法与思路.四、课时安排1课时五、教具学具准备多媒体、常用画图工具、六、教学步骤[复习提问]1.什么叫相似三角形?什么叫相似比?2.叙述预备定理.由预备定理的题所构成的三角形是哪两种情况.[讲解新课]我们知道,用相似三角形的定义可以判定两个三角形相似,但涉及的条件较多,需要有三对对应角相等,三条对应边的比也都相等,显然用起来很不方便.那么从本节课开始我们来研究能不能用较少的几个条件就能判定三角形相似呢?上节课讲的预备定理实际上就是一个判定三角形相似的方法,现在再来学习几种三角形相似的判定方法.我们已经知道,全等三角形是相似三角形当相似比为1时的特殊情况,判定两个三角形全等的三个公理和判定两个三角形相似的三个定理之间有内在的联系,不同处仅在于前者是后者相似比等于1的情况,教学时可先指出全等三角形与相似三角形之间的关系,然后引导学生自己用类比的方法找出新的命题,如:问:判定两个三角形全等的方法有哪几种?答:SAS、ASA(AAS)、SSS、HL.问:全等三角形判定中的“对应角相等”及“对应边相等”的语句,用到三角形相似的判定中应如何说?答:“对应角相等”不变,“对应边相等”说成“对应边成比例”.问:我们知道,一条边是写不出比的,那么你能否由“ASA”或“AAS”,采用类比的方法,引出一个关于三角形相似判定的新的命题呢?答:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.强调:(1)学生在回答中,如出现问题,教师要予以启发、引导、纠正.(2)用类比方法找出的新命题一定要加以证明.如图5-53,在ⅠABC和Ⅰ 中,,.问:ⅠABC和Ⅰ 是否相似?分析:可采用问答式以启发学生了解证明方法.问:我们现在已经学习了哪几个判定三角形相似的方法?答:①三角形的定义,②上一节学习的预备定理.问:根据本命题条件,探讨时应采用哪种方法?为什么?答:预备定理,因为用定义条件明显不够.问:采用预备定理,必须构造出怎样的图形?答:或.问:应如何添加辅助线,才能构造出上一问的图形?此问学生回答如有困难,教师可领学生共同探讨,注意告诉学生作辅助线一定要合理.(1)在ⅠABC边AB(或延长线)上,截取,过D作DEⅠBC交AC于E.“作相似.证全等”.(2)在ⅠABC边AB(或延长线上)上,截取,在边AC(或延长线上)截取AE= ,连结DE,“作全等,证相似”.(教师向学生解释清楚“或延长线”的情况)虽然定理的证明不作要求,但通过刚才的分析让学生了解定理的证明思路与方法,这样有利于培养和提高学生利用已学知识证明新命题的能力.判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简单说成:两角对应相等,两三角形相似.,,Ⅰ .例1 已知和中,,,.求证:Ⅰ .此例题是判定定理的直拉应用,应使学生熟练掌握.例2 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似.已知:如图5-54,在中,CD是斜边上的高.求证:Ⅰ Ⅰ .该例题很重要,它一方面可以起到巩固、掌握判定定理1的作用;另一方面它的应用很广泛,并且可以直接用它判定直角三角形相似,教材上排了黑体字,所以可以当作定理直接使用.即ⅠⅠⅠⅠ.[小结]1判定定理1的引出及证明思路与方法的分析,要求学生掌握两种辅助线作法的思路.2.判定定理1的应用以及记住例2的结论并会应用.七、布置作业教材P238中A组3、4.相似三角形的判定数学教学教案31、教学引入照顾到了到多数的同学,培养了学生的动手测量和计算能力。

相似三角形判定-教师版

相似三角形判定-教师版

1 / 222.相似三角形的基本图形产生的结论结论: (1)、A 字型:①正A 字型 ②斜A 字型 ③其它A 字型BDEBCDEBCEABC ∽∆∆ADE ACB ∽∆∆ADE ACB ∽∆∆ABEAC AE AB AD = AB AE AC AD = ACABAB AE = AB AE AC AD ⋅=⋅ AC AE AB AD ⋅=⋅ AC AE AB ⋅=2(2)、X 型:①正X 字型 ②斜X 字型A DEBADBAED ∽∆∆ABC ADE ∽∆∆ABCAB AE AC AD = ACAEAB AD = 相似三角形判定AC AE AB AD ⋅=⋅ AB AE AC AD ⋅=⋅ (3)、直角三角形:CDB ∽ACB ∽∆∆∆ADC①AB AD AC AB ACADC ⋅=⇒=⇒∆∆2AC AD ACB ∽②AB BD BC BC BDBDC ⋅=⇒=⇒∆∆2AB BC BCA ∽③BD AD CD BDCDADC ⋅=⇒=⇒∆∆2CD AD CDB ∽(4)、直线型(一线三角): (5)、其他基本型:CBCEF ∽∆∆BDE AEB ∽∆∆ADC 和ACB ∽∆∆ADECF BE CE BD = ABAEAC AD = BE CE CF BD ⋅=⋅ AC AE AB AD ⋅=⋅3 / 221、平行线与相似三角形利用平行线构造的相似主要有两个基本的模型,即:“A ”字型和“X ”字型.【例1】过ABC ∆的顶点C 任作一直线,与边AB 及中线AD 分别交于点F 、E .求证:2AE AFED FB= .模块一:平行线与相似三角形知识精讲例题解析ABCEF【例1】过ABC ∆的顶点C 任作一直线,与边AB 及中线AD 分别交于点F 、E .求证:2AE AFED FB = .【解析】过点D 作//DG AB 交CF 于点G .Q //DG AB ∴AE AF ED GD =,DG CDBF CB =; Q AD 是中线, ∴2BC CD =, ∴12DG BF =;∴2AE AFED BF =.【例2】如图,已知ABC ∆中,AD 、BE 相交于G ,:3:1BD DC =,:1:2AG GD =.求:BG GE 的值.【例2】如图,已知ABC ∆中,AD 、BE 相交于G ,:3:1BD DC =,:1:2AG GD =.求:BG GE 的值.【解析】点G 作//GM BC 交AC 于点M .Q //GM BC ∴AG GM AD CD =,EG GMEB CB =; Q :1:2AG GD =, ∴13AG GM AD CD ==, Q :3:1BD DC =,∴14DC BC =,∴112GM BC =, ∴112GE EB =,∴:BG GE 的值为11.BD = 2DC,求AC的长.AB CD8 / 22B AC DAB CD 图1图2MBD = 2DC ,求AC 的长.【解析】过点D 作//DM AB 交AC 于点M . Q //DM AB , ∴75BAD ADM ∠=∠=o ;又Q 180ADM AMD DAM ∠+∠+∠=o ,30CAD ∠=o ∴75AMD ∠=o , ∴AMD ADM ∠=∠, ∴2AD AM ==.Q //DM AB , ∴AM BDAC BC=.又Q 2BD DC =, ∴23BD AM BC AC ==. ∴3AC =.1、a 2 = b·c 与相似三角形 常见及扩展模型如下:由图1可证:2AB BD BC =g ;由图2可证:2AB BD BC =g ,2AD BD DC =g ,2AC CD CB =g . 【例4】如图,Rt ABC ∆中,90BAC ∠=︒,AD BC ⊥于点D . 求证:2AD BD DC =g .【解析】Q AD BC ⊥, ∴90ADB ADC ∠=∠=o . ∴90BAD B ∠+∠=o . Q 90BAC ∠=o ,∴90C B ∠+∠=o , ∴BAD C ∠=∠.∴ABD CAD ∆∆∽ ,∴AD BDCD AD=. ∴2AD BD CD =•.模块三:a 2 = b·c 与相似三角形知识精讲AB D ABDABCDE H求证:4DH DA BC g .ABCDE HA BCDEF求证:4DH DA BC =g .【解析】Q AD 、BE 是高, ∴90ADB BEC ∠=∠=o. ∴90HBD C ∠+∠=o , 90CAH C ∠+∠=o .∴HBD CAH ∠=∠, ∴HBD CAD ∆∆∽. ∴HD BDCD AD=即DH AD BD CD =g g Q AB AC AD BC =⊥,, ∴12BD DC BC ==.∴BAD C ∠=∠. ∴214DH AD BC =g , ∴24DH AD BC =g . 【例6】如图,在直角梯形ABCD 中,AB // CD ,AB ⊥BC ,对角线AC ⊥BD ,垂足为E , AD = BD ,过E 的直线EF // AB 交AD 于点F . (1)AF = BE ;(2)AF 2 = AE ·EC .A BCDEF【例6】如图,在直角梯形ABCD 中,AB // CD ,AB ⊥BC ,对角线AC ⊥BD ,垂足为E , AD = BD ,过E 的直线EF // AB 交AD 于点F . (1)AF = BE ;(2)AF 2 = AE ·EC .【解析】(1)Q //EF AB ,AF 不平行EB ,∴四边形FABE 是梯形.又Q AD BD =, ∴DAB DBA ∠=∠. ∴四边形FABE 是等腰梯形, ∴AF BE =; (2)Q 90AEB CEB ∠=∠=o,∴90EBA EAB ∠+∠=o , 90ECB EAB ∠+∠=o .∴EBA ECB ∠=∠. ∴EBA ECB ∆∆∽.∴EB EAEC EB =. ∴2EB EA EC =•,∴2AF EA EC =•.【例7】如图,在ABC ∆中,AD 平分BAC ∠,AD 的垂直平分线交AB 于点E ,交AD 于点 H ,交AC 于点G ,交BC 的延长线于点F .求证:2DF CF BF =g .AEGHAB CDEF【例7】如图,在ABC∆中,AD平分BAC∠,AD的垂直平分线交AB于点E,交AD于点H,交AC于点G,交BC的延长线于点F.求证:2DF CF BF=g.【解析】联结AFQ点F在AD的垂直平分线上,∴AF FD=,FAD ADF∠=∠.Q FAD FAC DAC∠=∠+∠,ADF BAD B∠=∠+∠∴FAC DAC BAD B∠+∠=∠+∠.又Q AD平分BAC∠,∴BAD DAC∠=∠,∴FAC B∠=∠.又Q AFC AFB∠=∠,∴EBA ECB∆∆∽,∴AF FCFB AF=.∴2AF CF BF=•,∴2DF CF BF=•.1、一线三等角与相似三角形相关模型如下图所示:【例8】已知,在等腰ABC∆中,AB = AC = 10,以BC的中点D为顶点作EDF B∠=∠,分别交AB、AC于点E、F,AE = 6,AF = 4,求底边BC的长.AB CDEFGH模块四:一线三等角与相似三角形13 / 22AB CDEF【例8】已知,在等腰ABC ∆中,AB = AC = 10,以BC 的中点D 为顶点作EDF B ∠=∠, 分别交AB 、AC 于点E 、F ,AE = 6,AF = 4,求底边BC 的长. 【解析】Q EDC B BED ∠=∠+∠, 而EDC EDF FDC ∠=∠+∠, ∴B BED EDF FDC ∠+∠=∠+∠.又Q EDF B ∠=∠,∴BED FDC ∠=∠.Q AB AC =,∴B C ∠=∠.EDB DCF ∴∆∆∽. BE BDDC CF ∴=.106104BDDC -∴=-, 24DC BD ∴=g .又12CD DB BC ==Q , 46BC ∴=. 练习1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.证明:∵AD ∥BC ,∴=OA ODOC OB, ∵BE ∥CD ∴=OC OD OE OB ,∴=OA OC OC OE,∴OE OA OC ⋅=22:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠. 证明:∵ABC DEB ∠=∠,BDE ADB ∠=∠∴∆∆:EDB BDA ,∴=DB DE DA BD ,∴DA DE DB ⋅=2(2)∵DB CD =,∴2DC DE DA =⋅,∴∆∆:EDC CDA∴DAC DCE ∠=∠ACDEB14 / 223:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ⋅=2.证明:4、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ⋅=2.5、已知:如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,E 是AC 上一点,CF ⊥BE 于F 。

相似三角形的判定教案模板

相似三角形的判定教案模板

相似三角形的判定教案模板教案能够展现出教师在备课中的思维过程,并且显示出教师对课标、教材、学生的理解和把握的水平以及运用有关教育理论和教学原则组织教学活动的能力。

下面是给大家整理的相似三角形的判定教案5篇,希望大家能有所收获!相似三角形的判定教案1掌握三边成比例的两个三角形相似和两边成比例且夹角相等的两个三角形相似这两个判定三角形相似的定理.阅读教材P32-34,自学“探究2”、“探究3”、“思考”与“例1”,掌握相似三角形判定定理1与判定定理2. 自学反馈学生独立完成后集体订正①如果两个三角形的三组边对应成比例,那么这两个三角形. ②如果两个三角形的两组对应边的比相等,并且相等,那么这两个三角形相似. ③下列是两位同学运用相似三角形的定义判定两个三角形是否相似,你认为他们的说法是否正确?为什么?并写出你的解答. 判断如图所示的两个三角形是否相似,简单说明理由.甲同学:这两个三角形的三个内角虽然分别相等,但是它们的边的比不相等,ACAB≠≠IJHJBC,所以他们不相似. HI乙同学:这两个三角形的三个内角分别相等,对应边之比也相等,所以它们相似. 注意对应关系,可类比全等三角形中找对应边和对应角的方法.活动1 小组讨论例2 如图,DE与△ABC的边AB、AC分别相交于D、E两点,若AE=2 cm,AC=3 cm,AD=2.4 cm,AB=3.6 cm,DE=4cm,则BC的长为多少? 3解:∵AE=2 cm,AC=3 cm,AD=2.4 cm,AB=3.6 cm, ∴AEAD2==,而∠A=∠A,ACAB3∴△ADE∽△ABC. DEAE=. BCAC4又∵DE= cm,342∴3=, BC3∴∴BC=2 cm. 运用相似三角形可以进行边的计算. 活动2 跟踪训练(独立完成后展示学习成果) 1.如图,在□ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF和△CDE 相似,则BF长为多少?在要使判断的两个三角形相似时,有一个角相等的情况下,夹这角的两边的比相等时有两种情形,不要只考虑一种情形,而忽视了另一种情形. 2.如图所示,DE∥FG∥BC,图中共有相似三角形( )A.1对B.2对C.3对D.4对按照一定的顺序去寻找相似三角形. 活动3 课堂小结学生试述:这节课你学到了些什么?相似三角形的判定教案2相似三角形的判定1.两个三角形的两个角对应相等2.两边对应成比例,且夹角相等3.三边对应成比例4.平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似图形复习教案(5)姓名分数家长评价涵养与智慧一次,前民主德国柏林空军俱乐部举行盛宴招待空战英雄,一位年轻的士兵斟酒时不慎将酒泼到乌戴特将军的秃头上。

顿时,士兵悚然,会场寂静,倒是这位将军轻抚士兵肩头,说:“老弟,你以为这种治疗能再生头发吗?”全场立即爆发出了笑声,人们紧绷的心弦松弛下来了,盛宴保持了热烈欢乐的气氛。

感悟:〖常规回顾〗已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.考点:相似三角形的性质;比例的性质。

专题:计算题。

分析:解答:(2)设一个三角形周长为Ccm,则另一个三角形周长为(C+560)cm,则,∴C=240,C+560=800,即它们的周长分别为240cm,800cm.点评:(1)解此类题目先设一个末知量,再根据已知条件列方程求得末知量的值,从而代入求解;(2)此题注意熟悉相似三角形的性质:相似三角形周长比等于对应高的比.【经典导航1】解答题例1.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.考点:相似三角形的判定;三角形中位线定理;梯形。

专题:几何综合题。

分析:(1)利用平行线的性质可证明△CDF∽△BGF.(2)根据点F是BC的中点这一已知条件,可得△CDF≌△BGF,则CD=BG,只要求出BG的长即可解题.解答:(1)证明:∵梯形ABCD,AB∥CD,∴∠CDF=∠FGB,∠DCF=∠GBF,(2分)∴△CDF∽△BGF.(3分)(2)解:由(1)△CDF∽△BGF,又F是BC的中点,BF=FC,∴△CDF≌△BGF,∴DF=GF,CD=BG,(6分)∵AB∥DC∥EF,F为BC中点,∴E为AD中点,∴EF是△DAG的中位线,∴2EF=AG=AB+BG.∴BG=2E F﹣AB=2×4﹣6=2,∴CD=BG=2cm.(8分)点评:本题主要考查了相似三角形的判定定理及性质,全等三角形的判定及线段的等量代换,比较复杂.例2.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.考点:相似三角形的判定;全等三角形的判定;等腰三角形的判定;旋转的性质。

专题:几何综合题。

分析:(1)因为∠BAC=∠DAE,所以∠BAE=∠CAD,又因为AB=AC,AD=AE,利用SAS可证出△BAE≌△CAD,可知BE、CD是对应边,根据全等三角形对应边上的中线相等,可证△AMN是等腰三角形.(2)利用(1)中的证明方法仍然可以得出(1)中的结论,思路不变.(3)先证出△ABM≌△ACN(SAS),可得出∠CAN=∠BAM,所以∠BAC=∠MAN(等角加等角和相等),又∵∠BAC=∠DAE,所以∠MAN=∠DAE=∠BAC,所以△AMN,△ADE和△ABC都是顶角相等的等腰三角形,所以∠PBD=∠AMN,所以△PBD∽△AMN(两个角对应相等,两三角形相似).解答:(1)证明:①∵∠BAC=∠DAE,∴∠BAE=∠CAD,∵AB=AC,AD=AE,∴△ABE≌△ACD,∴BE=CD.②由△ABE≌△ACD,得∠ABE=∠ACD,BE=CD,∵M、N分别是BE,CD的中点,∴BM=CN.又∵AB=AC,∴△ABM≌△ACN.∴AM=AN,即△AMN为等腰三角形.(2)解:(1)中的两个结论仍然成立.(3)证明:在图②中正确画出线段PD,由(1)同理可证△ABM≌△ACN,∴∠CAN=∠BAM∴∠BAC=∠MAN.又∵∠BAC=∠DAE,∴∠MAN=∠DAE=∠BAC.∴△AMN,△ADE和△ABC都是顶角相等的等腰三角形.∴△PBD和△AMN都为顶角相等的等腰三角形,∴∠PBD=∠AMN,∠PDB=∠ANM,∴△PBD∽△AMN.点评:本题利用了全等三角形的判定和性质,以及等腰三角形一个顶角相等,则底角相等的性质,还有相似三角形的判定(两个角对应相等的两个三角形相似).例3.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.考点:相似三角形的判定;一元二次方程的应用;分式方程的应用;正方形的性质。

专题:动点型。

分析:(1)关于动点问题,可设时间为x,根据速度表示出所涉及到的线段的长度,找到相等关系,列方程求解即可,如本题中利用,△AMN的面积等于矩形ABCD面积的作为相等关系;(2)先假设相似,利用相似中的比例线段列出方程,有解的且符合题意的t值即可说明存在,反之则不存在.解答:解:(1)设经过x秒后,△AMN的面积等于矩形ABCD面积的,则有:(6﹣2x)x=×3×6,即x2﹣3x+2=0,(2分)解方程,得x1=1,x2=2,(3分)经检验,可知x1=1,x2=2符合题意,所以经过1秒或2秒后,△AMN的面积等于矩形ABCD面积的.(4分)(2)假设经过t秒时,以A,M,N为顶点的三角形与△ACD相似,由矩形ABCD,可得∠CDA=∠MAN=90°,因此有或(5分)即①,或②(6分)解①,得t=;解②,得t=(7分)经检验,t=或t=都符合题意,所以动点M,N同时出发后,经过秒或秒时,以A,M,N为顶点的三角形与△ACD相似.(8分)点评:主要考查了相似三角形的判定,正方形的性质和一元二次方程的运用以及解分式方程.要掌握正方形和相似三角形的性质,才会灵活的运用.注意:一般关于动点问题,可设时间为x,根据速度表示出所涉及到的线段的长度,找到相等关系,列方程求解即可.例4.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.考点:相似三角形的判定;概率公式。

专题:开放型。

分析:(1)采用列举法,列举出所有可能出现的情况,再找出相似三角形即可求得;①与③,②与④相似;(2)利用相似三角形的判定定理即可证得.解答:解:(1)任选两个三角形的所有可能情况如下六种情况:①②,①③,①④,②③,②④,③④(2分)其中有两组(①③,②④)是相似的.∴选取到的二个三角形是相似三角形的概率是P=(4分)证明:(2)选择①、③证明.在△AOB与△COD中,∵AB∥CD,∴∠CDB=∠DBA,∠DCA=∠CAB,∴△AOB∽△COD(8分)选择②、④证明.∵四边形ABCD是等腰梯形,∴∠DAB=∠CBA,∴在△DAB与△CBA中有AD=BC,∠DAB=∠CAB,AB=AB,∴△DAB≌△CBA,(6分)∴∠ADO=∠BCO.又∠DOA=∠COB,∴△DOA∽△COB(8分).点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m 种结果,那么事件A的概率P(A)=,即相似三角形的证明.还考查了相似三角形的判定.例5.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.考点:相似三角形的判定;三角形的面积;含30度角的直角三角形。

专题:综合题。

分析:(1)根据直角三角形中30度角所对的直角边是斜边的一半,可知CD=2ED,则可写出相等的线段;(2)两角对应相等的两个三角形相似则可判断△ADE∽△AEC;(3)要求△BEC与△BEA的面积之比,从图中可看出两三角形有一公共边可作为底边,若求得高之比可知面积之比,由此需作△BEA的边BE边上的高即可求解.解答:解:(1)AD=DE,AE=CE.∵CE⊥BD,∠BDC=60°,∴在Rt△CED中,∠ECD=30°.∴CD=2ED.∵CD=2DA,∴AD=DE,∴∠DAE=∠DEA=30°=∠ECD.∴AE=CE.(2)图中有三角形相似,△ADE∽△AEC;∵∠CAE=∠CAE,∠ADE=∠AEC,∴△ADE∽△AEC;(3)作AF⊥BD的延长线于F,设AD=DE=x,在Rt△CED中,可得CE=,故AE=.∠ECD=30°.在Rt△AEF中,AE=,∠AED=∠DAE=30°,∴sin∠AEF=,∴AF=AE•sin∠AEF=.∴.点评:本题主要考查了直角三角形的性质,相似三角形的判定及三角形面积的求法等,范围较广.例6.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.考点:相似三角形的判定;菱形的判定。

专题:综合题。

分析:(1)根据平行四边形的性质可得到对应角相等对应边相等,从而不难求得其周长;(2)因为∠B=∠C=∠PMC=∠QMB,所以△PMC∽△QMB∽△ABC;(3)根据中位线的性质及菱形的判定不难求得四边形AQMP为菱形.解答:解:(1)∵AB∥MP,QM∥AC,∴四边形APMQ是平行四边形,∠B=∠PMC,∠C=∠QMB.∵AB=AC,∴∠B=∠C,∴∠PMC=∠QMB.∴BQ=QM,PM=PC.∴四边形AQMP的周长=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a.(2)∵PM∥AB,∴△PCM∽△ACB,∵QM∥AC,∴△BMQ∽△BCA;(3)当点M中BC的中点时,四边形APMQ是菱形,∵点M是BC的中点,AB∥MP,QM∥AC,∴QM,PM是三角形ABC的中位线.∵AB=AC,∴QM=PM=AB=AC.又由(1)知四边形APMQ是平行四边形,∴平行四边形APMQ是菱形.点评:此题主要考查了平行四边形的判定和性质,中位线的性质,菱形的判定等知识点的综合运用.例7.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.考点:相似三角形的判定;正方形的性质。

相关文档
最新文档