2证明三角形全等的基本思路

合集下载

全等三角形证明方法总结

全等三角形证明方法总结

❸由中点想到的辅助线 在三角形中,如果已知一点是三角形某一边上的中点,那么首先应该联想到三角形的中线加倍延长及其相关性质 (等腰三角形底边中线性质),然后通过探索,找到解决问题的方法。
8
(1)中线把原三角形分成两个面积相等的小三角形 即如图 1,AD 是 ΔABC 的中线,则 SΔABD=SΔACD= SΔABC(因为 ΔABD 与 ΔACD 是等底同高的)。
成全等三角形
全等
造全等,则 P 是中点
三角形
图中有角平分线,可向两边 图中有角平分线,沿它对折 角平分线加垂线,“三线合 角平分线+平行线,等腰三
作垂线
关系现
一”试试看
角形必呈现
角平分线的常见倒角模型及相关结论 已知△ABC 中,BP,CP 分别为角平分线且交于点 P,探讨∠BPC 与∠A 的关系
角平 分线 倒角 模型
证法二:连接 AD,并延长交 BC 于 F
G
E
D
∵∠BDF 是△ABD 的外角 ∴∠BDF>∠BAD,同理,∠CDF>∠CAD ∴∠BDF+∠CDF>∠BAD+∠CAD
B
F
C
图2 1
即:∠BDC>∠BAC。
注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内 角位置上,再利用不等式性质证明。
分析:因为∠BDC 与∠BAC 不在同一个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠
BDC 处于在外角的位置,∠BAC 处于在内角的位置;
证法一:延长 BD 交 AC 于点 E,这时∠BDC 是△EDC 的外角,
A
∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC

有答案-直角三角形全等判定(基础)知识讲解

有答案-直角三角形全等判定(基础)知识讲解

有答案-直角三角形全等判定(基础)知识讲解本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March直角三角形全等判定要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS ”,“ASA ”或“SAS ”判定定理.要点二、判定直角三角形全等的特殊方法——斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”.【典型例题】类型一、直角三角形全等的判定——“HL”1、 已知:如图,AB ⊥BD ,CD ⊥BD ,AD =BC .求证:(1)AB =CD :(2)AD ∥BC .【思路点拨】先由“HL ”证Rt △ABD ≌Rt △CDB ,再由内错角相等证两直线平行.【答案与解析】证明:(1)∵AB ⊥BD ,CD ⊥BD ,∴∠ABD =∠CDB =90°在Rt △ABD 和Rt △CDB 中,AD BC BD DB⎧⎨=⎩=∴Rt △ABD ≌Rt △CDB (HL )∴AB =CD (全等三角形对应边相等)(2)由∠ADB =∠CBD∴AD ∥BC .【总结升华】证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .【答案】证明:∵AE ⊥AB ,BC ⊥AB ,∴∠DAE =∠CBA =90°在Rt △DAE 与Rt △CBA 中,ED AC AE AB ⎧⎨⎩==,∴Rt △DAE ≌Rt △CBA (HL )∴∠E =∠CAB∵∠CAB +∠EAF =90°,∴∠E+∠EAF=90°,即∠AFE=90°即ED ⊥AC .2、 判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;( )(2)一个锐角和斜边对应相等; ( )(3)两直角边对应相等; ( )(4)一条直角边和斜边对应相等. ( )【答案】(1)全等,“AAS ”;(2)全等,“AAS ”;(3)全等,“SAS ”;(4)全等,“HL ”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【变式】下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.( )(2)有两边和其中一边上的高对应相等的两个三角形全等.( )(3)有两边和第三边上的高对应相等的两个三角形全等.( )【答案】(1)√;(2)×;在△ABC 和△DBC 中,AB =DB ,AE 和DF 是其中一边上的高,AE =DF(3)×. 在△ABC 和△ABD 中,AB =AB ,AD =AC ,AE 为第三边上的高,3、已知:如图,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;【答案与解析】证明:连接DC∵AD ⊥AC ,BC ⊥BD∴∠DAC =∠CBD =90°在Rt △ADC 与Rt △BCD 中,DC CD AC BD=⎧⎨⎩=∴Rt △ADC ≌Rt △BCD (HL )∴AD =BC .(全等三角形对应边相等)【变式】已知,如图,AC 、BD 相交于O ,AC =BD ,∠C =∠D =90° .求证:OC =OD.【答案】∵∠C =∠D =90°∴△ABD 、△ACB 为直角三角形在Rt △ABD 和Rt △BAC 中AB BA BD AC =⎧⎨=⎩∴Rt △ABD ≌Rt △BAC(HL)∴AD =BC在△AOD 和△BOC 中D C AOD BOC AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOD ≌△BOC(AAS)∴OD =OC .4、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【答案与解析】解:全等三角形为:△ACD ≌△CBE.证明:由题意知∠CAD+∠ACD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE在△ACD 与△CBE 中,90ADC CEB CAD BCEAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBE (AAS ).【总结升华】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【巩固练习】一、选择题1.下列说法正确的是 ( )A .一直角边对应相等的两个直角三角形全等B .斜边相等的两个直角三角形全等C .斜边相等的两个等腰直角三角形全等D .一边长相等的两等腰直角三角形全等2.如图,AB =AC ,AD ⊥ BC 于D ,E 、F 为AD 上的点,则图中共有( )对全等三角形.A .3B .4C .5D .63. 能使两个直角三角形全等的条件是( )A.斜边相等B.一锐角对应相等C.两锐角对应相等D.两直角边对应相等4. 在Rt △ABC 与Rt △'''A B C 中, ∠C = ∠'C = 90, A = ∠'B , AB =''A B , 那么下列结论中正确的是( ) A. AC = ''A C = ''B C C. AC = ''B C D. ∠A = ∠'A5. 直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是( )A .形状相同B .周长相等C .面积相等D .全等6. 在两个直角三角形中,若有一对角对应相等,一对边对应相等,则两个直角三角形( )A.一定全等B.一定不全等C.可能全等D.以上都不是二、填空题7.如图,BE ,CD 是△ABC 的高,且BD =EC ,判定△BCD ≌△CBE 的依据是“______”.8. 已知,如图,∠A =∠D =90°,BE =CF ,AC =DE ,则△ABC ≌_______.9. 如图,BA ∥DC ,∠A =90°,AB =CE ,BC =ED ,则AC =_________.10. 如图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,EC ⊥AC ,AC =EC ,若DE =2,AB =4,则DB =______.11.有两个长度相同的滑梯,即BC =EF ,左边滑梯的高度AC 与右边滑梯的水平方向的长度DF 相等,则∠ABC +∠DFE =________.12. 如图,已知AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且BF =AC ,FD =CD.则∠BAD =_______.三、解答题13. 如图,工人师傅要在墙壁的O 处用钻打孔,要使孔口从墙壁对面的B 点处打开,墙壁厚是35cm ,B点与O 点的铅直距离AB 长是20cm ,工人师傅在旁边墙上与AO 水平的线上截取OC =35cm ,画CD ⊥OC ,使CD =20cm ,连接OD ,然后沿着DO 的方向打孔,结果钻头正好从B 点处打出,这是什么道理呢请你说出理由.13.【解析】解:在Rt △AOB 与Rt △COD 中,(3590AOB COD AO CO A C ∠=∠⎧⎪==⎨⎪∠=∠=︒⎩对顶角相等) ∴Rt △AOB ≌Rt △COD (ASA ) ∴AB =CD =20cm14. 如图,已知AB ⊥BC 于B ,EF ⊥AC 于G ,DF ⊥BC 于D ,BC =DF. 求证:AC =EF.证明:由EF ⊥AC 于G ,DF ⊥BC 于D ,AC 和DF 相交,可得:∠F +∠FED =∠C +∠FED =90°即 ∠C =∠F (同角或等角的余角相等),在Rt △ABC 与Rt △EDF 中B EDF BC DF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△EDF (ASA ),∴AC =EF (全等三角形的对应边相等).15. 如图,已知AB =AC ,AE =AF ,AE ⊥EC ,AF ⊥BF ,垂足分别是点E 、F.求证:∠1=∠ 2.证明:∵AE ⊥EC ,AF ⊥BF ,∴△AEC 、△AFB 为直角三角形在Rt △AEC 与Rt △AFB 中AB AC AE AF⎧⎨⎩==∴Rt △AEC ≌Rt △AFB (HL )∴∠EAC =∠FAB∴∠EAC -∠BAC =∠FAB -∠BAC ,即∠1=∠2.【答案与解析】一、选择题1. 【答案】C ; 【解析】等腰直角三角形确定了两个锐角是45°,可由AAS 定理证明全等.2. 【答案】D ;【解析】△ABD ≌△ACD ;△ABF ≌△ACF ;△ABE ≌△ACE ;△EBF ≌△ECF ;△EBD ≌△ECD ;△FBD ≌△FCD.3. 【答案】D ;4. 【答案】C ;【解析】注意看清对应顶点,A 对应'B ,B 对应'A .5. 【答案】C ;【解析】等底等高的两个三角形面积相等.6. 【答案】C ;【解析】如果这对角不是直角,那么全等,如果这对角是直角,那么不全等.二、填空题7. 【答案】HL ;8. 【答案】△DFE9. 【答案】CD ;【解析】通过HL 证Rt △ABC ≌Rt △CDE.10.【答案】6;【解析】DB =DC +CB =AB +ED =4+2=6;11.【答案】90°;【解析】通过HL 证Rt △ABC ≌Rt △DEF ,∠BCA =∠DFE.12.【答案】45°;【解析】证△ADC 与△BDF 全等,AD =BD ,△ABD 为等腰直角三角形.。

三角形全等的判定(含例题)

三角形全等的判定(含例题)

1.判定两个三角形全等的基本事实:边边边(SSS)(1)基本事实:三边分别相等的两个三角形全等,简写成“__________”或“SSS”.(2)这个基本事实告诉我们:当三角形的三边确定后,其形状、大小也随之确定.这也是三角形具有稳定性的原因.2.判定两个三角形全等的基本事实:边角边(SAS)(1)基本事实:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“__________”.(2)此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【注意】(1)此方法是证明两个三角形全等最常用的方法之一,应用时,可以从图形上直接观察到三个对应元素必须符合“两边夹角”,即“SAS”,不要误认为有两边一角就能判定两个三角形全等.(2)在书写时也要按照“边→角→边”的顺序排列条件,必须牢记“边边角”不能作为判定两个三角形全等的条件.3.判定两个三角形全等的基本事实:角边角(ASA)(1)基本事实:两角和它们的夹边分别相等的两个三角形全等,简写成“角边角”或“__________”.(2)用“ASA”来判定两个三角形全等,一定要证明这两个三角形有两个角以及这两个角的夹边分别相等,证明时要加强对夹边的认识.4.判定两个三角形全等的基本事实:角角边(AAS)(1)基本事实:两角和其中一个角的对边分别相等的两个三角形全等,简写成“角角边”或“__________”.(2)这一结论很容易由“ASA”推得,将这一结论与“ASA”结合起来,即可得出:两个三角形如果具备两角和一条边对应相等,就可判定其全等.5.直角三角形全等的判定方法:斜边、直角边(HL)(1)基本事实:斜边和一条直角边分别相等的两个直角三角形全等,简写成“斜边、直角边”或“________”.(2)“HL ”定理是直角三角形所独有的,对于一般三角形不成立. 【归纳】判定两个三角形全等常用的思路方法如下: HL SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎪⎩一直角边一斜边—已知两边找夹角—找另一边—边为角的对边—找任一角—找夹角的另一边—已知一边一角边为角的邻边找夹边的另一角—找边的对角—找夹边—已知两角找任一角的对边—K 知识参考答案:1.(1)边边边2.(1)SAS 3.(1)ASA4.(1)AAS5.(1)HLK —重点 三角形全等的判定K —难点 三角形全等的判定和性质的综合运用 K —易错三角形全等的判定一、用边边边(SSS )证明三角形全等明确要证明全等的两个三角形,在书写两个三角形全等时,“≌”左边三角形的三边与“≌”右边三角形的三边的前后顺序要保持一致.【例1】如图,ABC △中,AB AC =,EB EC =,则由“SSS ”可判定A .ABD △≌ACD △B .ABE △≌ACE △△D.以上答案都不对C.BDE△≌CDE【答案】B二、用边角边(SAS)证明三角形全等此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【例2】如图,AB=AC,添加下列条件,能用SAS判断△ABE≌△ACD的是A.∠B=∠C B.∠AEB=∠ADC C.AE=AD D.BE=DC【答案】C【解析】∵AB=AC(已知),∠A=∠A(公共角),∴只需要AE=AD,∴△ABE≌△ACD,故选C.三、用角边角、角角边(ASA、AAS)证明三角形全等1.不能说“有两角和一边分别相等的两个三角形全等”,这是因为:假设这条边是两角的夹边,则根据角边角可知正确;假设一个三角形的一边是两角的夹边,而与另一个三角形相等的边是其中一等角的对边,则两个三角形不一定全等.2.有三个角对应相等的两个三角形不一定全等.【例3】如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长,就得出AB的长,判定△EDC≌△ABC的理由是A.SSS B.SASC.SAA D.ASA【答案】D【解析】∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE.又∵CD=BC,∠ACB=∠DCE,∴△EDC≌△ABC(ASA).故选D.【例4】如图,已知点B、C、F、E在同一直线上,∠A=∠D,BF=EC,AB∥DE,若∠1=80°,求∠BFD 的度数.四、用斜边、直角边(HL)证明直角三角形全等1.当证明两个直角三角形全等时,若不适合应用“HL”,也可考虑用“SAS”“ASA”或“AAS”来证明.2.在用一般方法证明时,因为两个直角三角形中已具备一对直角相等的条件,故只需找另外两个条件即可,在实际证明中可根据条件灵活选用不同的方法.【例5】如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌△Rt△DCF,则还需要添加一个条件是A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC【答案】D五、全等三角形的判定和性质的综合寻找解决问题的思路方法可以从求证的结论出发,结合已知条件,逐步寻求解决问题所需要的条件.同时要注意对图形本身隐含条件的挖掘,如对顶角、公共角、公共边等.【例6】如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为A.50°B.30°C.80°D.100°【答案】B【解析】∵OA=OC,OD=OB,∠AOD=∠COB,∴△AOD≌△COB(SAS),∴∠D=∠B=30°.故选B.【例7】如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.【解析】∵∠CAB=∠DBA,∠CBD=∠DAC,∴∠DAB=∠CBA.在△ADB与△BCA中,CAB DBA AB ABDAB CBA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADB≌△BCA(ASA),∴BC=AD.。

求证全等三角形的几种方法

求证全等三角形的几种方法

求证全等三角形的几种方法求证全等三角形的几种方法课程解读全等三角形是初中数学中的重要内容之一,是今后学习其他知识的基础。

判断三角形全等的公理有SAS、ASA、AAS、SSS和HL,如果所给条件充足,则可直接根据相应的公理证明,但是如果给出的条件不全,就需要根据已知的条件结合相应的公理进行分析,先推导出所缺的条件然后再证明。

一些较难的证明题要构造合适的全等三角形,把条件相对集中起来,再进行等量代换,就可以化难为易了。

典型例题全等三角形辅助线找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。

常见辅助线的作法有以下几种:(1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

例1:如图,ΔABC是等腰直角三角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延长线于点E。

求证:BD=2CE。

解答过程:证明:延长BA,CE交于点F,在ΔBEF 和ΔBEC中,∵∠1=∠2,BE=BE,∠BEF=∠BEC=90°,∴ΔBEF≌ΔBEC,∴EF=EC,从而CF=2CE。

又∠1+∠F=∠3+∠F=90°,故∠1=∠3。

在ΔABD和ΔACF中,∵∠1=∠3,AB=AC,∠BAD=∠CAF=90°,∴ΔABD≌ΔACF,∴BD=CF,∴BD=2CE。

(2)若遇到三角形的中线,可倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

三角形全等的判定

三角形全等的判定

三角形全等的判定一、判定两个三角形全等的方法一般有以下4种:1、三边对应相等的两个三角形全等(可以简写成“边边边”或“SSS”)。

2、两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”)。

3、两角和它们夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”)。

4、两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)。

二、判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”:斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)。

三、尺规作图运用尺规作图作相等角、相等线段以及全等三角形。

四、应用三角形的判定方法三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢?(1)条件充足时直接应用在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.(2)条件不足,会增加条件用判别方法此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案.(3)条件比较隐蔽时,可通过添加辅助线用判别方法在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.常见的隐藏条件有:①公共边,公共角,对顶角;②线段的相加减;③角度的互余,互补,三角形的外角等于与它不相邻的内角和。

证明三角形全等的思路归纳

证明三角形全等的思路归纳

证明三角形全等的思路归纳三角形全等的识别方法是三角形一章的重点内容,在具体应用三角形全等的识别方法时,要认真分析已知条件,仔细观察图形,弄清已具备了那些条件,从中找出已知条件和所要说明的结论之间的内在联系,从而选择适当的说明方法。

现将其思路归纳如下:一、已知有两角对应相等时的思路:思路一、找出夹边相等,用(ASA)例1.如图1,在△ABC中,MN⊥AC,垂足为N,,且MN平分∠AMC,△ABM的周长为9cm,AN=2cm,求△ABC的周长。

解析:只要求出CM和AC的长即得△ABC的周长,而△AMN≌△CMN可实现这一目的。

因为MN平分∠AMC,所以∠AMN=∠CMN,因为MN⊥AC,所以∠AMNA=∠CMNC=900,这样有两角对应相等,再找出它的夹边对应相等(MN为公共边)即可。

在△AMN和△CMN中AMN CMNMN MNMNA MNC∠=∠⎧⎪=⎨⎪∠=∠⎩,所以△AMN≌△CMN(ASA)所以AC=NC,AM=CM(全等三角形的对应角相等),AN=2cm,所以AC=2AN=4 cm,而△ABM的周长为9cm,所以△ABC的周长为9+4=13 cm。

思路二、找出任意一组角的对边对应相等,用(AAS):例2.如图2,在在△ABC中,∠B=∠C,说明AB=AC析解:作∠BAC的平分线AD,交BC于D,由∠BAD=∠CAD,∠B=∠C,再找出∠B和∠C 的对边AD=AD,得△ABD≌△ACD(AAS),所以AB=AC。

二、已知两组对应边相等时的思路:思路一、找夹角相等,用(SAS)例3.已知如图3,AB=AC,AD=AE,∠BAC=∠DAE,试说明BD=CE。

析解:已知AB=AC,AD=AE,若BD=CE ,则△ABD≌△ACE,结合∠BAC=∠DAE易得两已知边的夹角∠BAD=∠CAE ,于是,建立了已知与结论的联系, 应用(SAS )可说明△ABD ≌△ACE ,于是BD=CE 。

思路二、找第三边相等,用(SSS )例4.如图4,是一个风筝模型的框架,由DE=DF ,EH=FH ,就说明∠DEH=∠DFH 。

三角形全等的五种判定方法及如何构造三角形全等

三角形全等的五种判定方法及如何构造三角形全等

全等三角形综合复习1. 全等三角形的概念及性质;2. 三角形全等的判定;3. 角平分线的性质及判定。

知识点一:证明三角形全等的思路通过对问题的分析,将解决的问题归结到证明某两个三角形的全等后,采用哪个全等判定定理加以证明,可以按下图思路进行分析:⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩SAS SSSHL AAS SAS ASA AAS ASA AAS 找夹角已知两边找第三边找直角边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一对边 例1. 如图,,,,A F E B 四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =。

求证:ACF BDE ∆≅∆。

知识点二:构造全等三角形例 2. 如图,在ABC ∆中,BE 是∠ABC 的平分线,AD BE ⊥,垂足为D 。

求证:21C ∠=∠+∠。

例3. 如图,在ABC ∆中,AB BC =,90ABC ∠=。

F 为AB 延长线上一点,点E 在BC 上,BE BF =,连接,AE EF 和CF 。

求证:AE CF =。

知识点三:常见辅助线的作法1. 连接四边形的对角线例4. 如图,AB //CD ,AD //BC ,求证:AB CD =。

解题后的思考:连接四边形的对角线,是构造全等三角形的常用方法。

2. 作垂线,利用角平分线的知识例5.如图,,AP CP分别是ABC∆外角MAC∠和NCA∠的平分线,它们交于点P。

求证:BP为MBN∠的平分线。

解题后的思考:题目已知中有角平分线的条件,或者有要证明角平分线的结论时,常过角平分线上的一点向角的两边作垂线,利用角平分线的性质或判定来解答问题。

3. “截长补短”构造全等三角形例 6.如图,在ABC∆中,AB AC>,12∠=∠,P为AD上任意一点。

求证:AB AC PB PC->-。

全等三角形证明方法

全等三角形证明方法

全等三角形证明方法1. 引言在初等数学中,全等三角形是指具有完全相同的形状和大小的三角形。

证明两个三角形全等是数学中的基本技能之一。

本文将介绍三种常用的全等三角形证明方法,包括SSS(边-边-边)、SAS(边-角-边)和ASA(角-边-角)证明方法。

2. SSS证明方法(边-边-边)SSS证明方法是基于三角形的三条边相等来推断两个三角形全等的方法。

2.1 定义与引理在此之前,我们先介绍一些定义和引理: - 定义1:三角形的边是指连接两个顶点的线段。

- 定义2:相等的边是指具有相同长度的边。

- 定义3:全等三角形是指具有完全相同的形状和大小的三角形。

- 引理1:若两个三角形的对应边相等,则两个三角形的对应顶点所在直线相等。

2.2 SSS证明方法步骤SSS证明方法的步骤如下: 1. 给定两个三角形ABC和DEF,已知三角形ABC的边AB与DEF的边DE相等,边BC与边EF相等,边AC与边DF相等。

2. 根据引理1可得,由AB和DE所在直线,BC和EF所在直线,AC和DF所在直线相等。

3. 推断三角形ABC和DEF的对应顶点A、B、C和D、E、F相等。

4. 结合引理1的推断,得出三角形ABC与三角形DEF全等。

2.3 示例2.3.1 例题1已知三角形ABC与三角形DEF的边长分别如下: - AB =DE = 5cm - BC = EF = 7cm - AC = DF = 9cm我们通过SSS证明方法证明三角形ABC与三角形DEF全等。

证明过程如下: 1. 根据给定边长,可得AB与DE相等,BC与EF相等,AC与DF相等。

2. 由引理1,能够推断出三角形ABC与三角形DEF的对应顶点A、B、C和D、E、F相等。

3.结合引理1的推断,得出三角形ABC与三角形DEF全等。

由此可得,三角形ABC与三角形DEF全等。

2.4 注意事项在使用SSS证明方法时,需要确保给定的边长满足边-边-边的条件,即三条边分别相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8. 如图M12-18,AB∥CD,BP和CP分别平分∠ABC和 ∠DCB,AD过点P,且与AB垂直,若AD=8,则点P到BC的 4 距离是________.
9. 如图M12-19,已知AD=CD,BD 平分∠ADC,∠A=∠C
吗?试证明. 解:∠A=∠C.
证明:∵ BD 平分∠ADC,
∴ ∠ADB=∠CDB. 在△ABD和△CBD中, AD=CD, ∠ADB=∠CDB, BD=BD, ∴△ABD≌△CBD(SAS). ∴∠A=∠C.
3. 如图M12-24,两根长度为12 m的绳子,一端系在旗杆上,
另一端分别固定在地面的两个木桩上,两个木桩离旗杆底部
的距离BD与CD间的关系是(
)C
A. BD>CD
B. BD<CD
C. BD=CD
D. 不能确定
4. 如图M12-25,某同学把一块三角形的玻璃打碎成了三块,
现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办
∵∠FAD+∠ADF=∠NAD+∠ADN=90°,∠FAD=∠NAD, ∴∠ADF=∠ADN. 又∵∠ADF=∠ADE+∠EDF,∠ADN=∠ADM+∠MDN, ∴∠ADE=∠ADM. 在△ADE和△ADM中, ∠EAD=∠MAD, AD=AD, ∠ADE=∠ADM, ∴△ADE≌△ADM(ASA). ∵△ADG和△AED的面积分别为50和39,
∴△ABC≌△DEF(SAS)
∴AC=DF
类型一:全等三角形的基本模型(平移型、翻折型、旋转型)
如图A、B分别为OM、ON上的点,点P在∠AOB的平分线上,且∠PAM=
∠PBN,求证:AO = BO 证明:∵∠PAM=∠PBN ∴∠PAO=∠PBO 在△AOP和△BOP中 ∠PAO=∠PBO
M
A
∵点P在∠AOB的平分线上 ∠MOP=∠NOP
立一根标杆,然后继续朝前走50 m到点D处,在点D处右转
90°,沿DE方向再走17 m,到达点E处,使点A,C,E在
17 一条直线上,那么测得点A,B间的距离为_______m.
7. 有一座锥形小山,如图M12-28,要测量锥形小山两端A,B
的距离,先在平地上取一个可以直接到达A和B的点C,连接
AC并延长到点D,使CD=CA,连接BC并延长到点E,使
证明:∵△ABC和△ECD都是等腰直角
三角形,∴AC=BC,CD=CE.
∵∠ACB=∠DCE=90°,
∴∠ACE+∠ACD=∠BCD+∠ACD.∴∠ACE=∠BCD. 在△ACE和△BCD中, AC=BC, ∠ACE=∠BCD, CE=CD, ∴△ACE≌△BCD(SAS).
12. (1)如图M12-11①,△DCE和△ACB均为等腰直角三角
测得视线PC与地面夹角∠DPC=36°,视线PA与地面夹角
∠APB=54°,量得点P到楼底距离PB与旗杆高度相等,等 于10 m,量得旗杆与楼之间距离为DB=36 m. 利用这些数据 小强计算出了楼高,请问楼高AB是多少米?
解:在△PCD和△APB中,
∠PCD=90°-36°= 54°=∠APB,
10. (2017广州)如图M12-9,点E,F在AB上,AD=BC,
∠A=∠B,AE=BF. 求证:△ADF≌△BCE. 证明:∵AE=BF,
∴AE+EF=BF+EF. ∴AF=BE.
在△ADF和△BCE中,
AD=BC,
∠A=∠B, AF=BE, ∴△ADF≌△BCE(SAS).
11. 已知,如图M12-10,△ACB和△ECD都是等腰直角三角 形,∠ACB=∠ECD=90°,D为AB边上一点. 求证:△ACE≌△BCD.
7. 如图M12-6,在平面直角坐标系中,四边形OBCD是正方 (-1,2) 形,B点的坐标为(2,1),则D点的坐标为_________.
8. 如图M12-7,AC⊥BC,AD⊥DB,下列条件中,能使 ①②③ △ABC≌△BAD的有_________. (填序号) ①∠ABD=∠BAC;②∠DAB=∠CBA;③AD=BC;④
11. 如图M12-21,BE=CF,DE⊥AB的延长线于点E,
DF⊥AC于点F,且DB=DC,求证:AD是∠EAC的平分线. 证明:∵DE⊥AB的延长线于点E,DF⊥AC于点F, ∴∠BED=∠CFD. ∴△BDE与△CDE是直角三角形.
在Rt△BDE和Rt△CDF中,
EB=CF,
BD=CD,
∴Rt△BDE≌Rt△CDF(HL).
∠DAC=∠CBD.
9. (2017武汉)如图M12-8,点C,F,E,B在一条直线上,
∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关
系,并证明你的结论. 解:CD∥AB,CD=AB. 证明:∵CE=BF,∴CE-EF=BF-EF. ∴CF=BE. 在△DFC和△AEB中, CF=BE, ∠CFD=∠BEA, DF=AE, ∴△DFC≌△AEB(SAS). ∴CD=AB,∠C=∠B. ∴CD∥AB.
P
∴∠MOP=∠NOP
OP=OP ∴△AOP≌△BOP(AAS) ∴AO = BO
O
B
N
类型一:全等三角形的基本模型(平移型、翻折型、旋转型) 如图,已知四边形ABCD中,AB=CD且AB∥CD,连接BD,在BD上截取BE= DF,连接AE,CF. 求证:AE=CF
是(
A
)
①△APC≌△BPD;②△ADO≌△BCO;③ △AOP≌△BOP;④△OCP≌△ODP. A. ①②③④ C. ②③④ B. ①②③ D. ①③④
4. 如图M12-15,在Rt△ABC中,∠C=90°,以顶点A为圆
心,适当长为半径画弧,分别交AC,AB于点M,N,再分
别以点M,N为圆心,大于
∴DE=DF. ∵DE⊥AB的延长线于点E,DF⊥AC于点F, ∴AD是∠BAC的平分线.
12. 如图M12-22,AD是△ABC的角平分线,DF⊥AB,垂
足为F,DE=DG,△ADG和△AED的面积分别为50和39,
求△EDF的面积. 解:如答图M12-1,作DM=DE交AC于 点M,作DN⊥AC交AC于点N. ∵DE=DG,∴DM=DG. ∵AD是△ABC的角平分线,DF⊥AB, DN⊥AC, ∴DF=DN. 在Rt△DEF和Rt△DMN中, DF=DN, DE=DM, ∴Rt△DEF≌Rt△DMN (HL). ∴∠EDF=∠MDN.
形,求证:AE=BD;
(2)如图M12-11②,△DCE和△ACB均为等腰直角三角形,
若AC=DC,在不添加任何辅助线的情况下,请写出图M1211②中四对全等的直角三角形.
(1)证明:∵△ACB和△DCE都是等腰直角三角
形,∠ACB=∠DCE=90°, ∴AC=BC,DC=EC. ∴∠ACB+∠ACD=∠DCE+∠ACD. ∴∠BCD=∠ACE. 在△ACE与△BCD中, AC=BC,
6. 如图M12-5,点B,E,C,F在同一直线上,且AB=DE,
AC=DF,BE=CF,请将下面证明△ABC≌△DEF的过程和
理由补充完整. 已知 证明:∵BE=CF (___),
∴BE+EC=CF+EC,即BC=EF. 在△ABC和△DEF中, DE 已知 AB=___(___), AC =DF(___), 已知 ___ EF 已证 BC=___(___), SSS ∴△ABC≌△DEF (___) .
2. 如图M12-23,两棵大树间相距13 m,小华从点B沿BC走
向点C,行走一段时间后他到达点E,此时他仰望两棵大树
的顶点A和D,两条视线的夹角正好为90°,且EA=ED. 已
知大树AB的高为5 m,小华行走的速度为1 m/s,则小华走 的时间是( A. 13 s
B)
B. 8 s C. 6 s D. 5 s
CE=CB,连接DE,量出DE的长为50 m,你能求出锥形小 山两端A,B间的距离吗? 解:在△DEC和△ABC中, CD=CA, ∠DCE=∠ACB,
CE=CB,
∴△DEC≌△ABC (SAS). ∴AB=DE=50(m).
8. 小强为了测量一幢高楼AB的高,在旗杆CD与楼之间选定
一点P. 在P点仰望旗杆顶点C和高楼顶点A(身高忽略不计),
D. OC=OD
2. (2017台州)如图M12-13,点P是∠AOB平分线OC上一点,
PD⊥OB,垂足为点D,若PD=2,则点P到边OA的距离是( A)
A. 2 B. 3 C. D. 4
3. 如图M12-14所示,在∠AOB的两边上截取AO=BO,OC
=OD,连接AD,BC交于点P,连接OP,则下列结论正确的
B. 互补
D. 和为165°
6. 已知△ABC中,∠A=60°,∠ABC,∠ACB的平分线交于 120° 点O,则∠BOC的度数为_______.
7. 如图M12-17,△ABC的三边AB,BC,CA的长分别为20,
30,40,其三条角平分线的交点为O,则
2∶ 3∶ 4 =______________.
∠ACE=∠BCD,
CE=CD,
∴△ACE≌△BCD(SAS). ∴AE=BD.
(2)解:∵AC=DC,∴AC=DC=EC=BC.
又∵∠ACB=∠DCE=90°,
∴△ACB≌△DCE(SAS). ∴AB=DE. 由(1)可知,∠AEC=∠BDC,∠EAC=∠DBC, ∴∠DOM=∠AON=90°. ∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BNC(ASA). ∴CM=CN,DM=AN. ∴△AON≌△DOM(AAS). ∴AO=DO. ∵AB=DE,AO=DO,∴Rt△AOB≌Rt△DOE(HL).
法是(
A. 带①去 C. 带③去
) C
B. பைடு நூலகம்②去 D. 带①和②去
相关文档
最新文档