苏科版数学九下《正切》word学案
21正切 学案3数学苏科版九年级下册.doc

响水县双语学校九(8)班数学导学案(051)课题:7.1正切第一课时主备人:张亚元学生姓名____________学习目标:1.理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值“2.了解计算一个锐角的正切值的方法学习过程:—、自主探究1.观察:如图,是某体育馆,为了方便不同需求的观众,该体育馆设计了多种形式的台阶.(1)如图,一般地,如果锐角A的大小已确定,我们可以作出无数个相似的RtAAB^Ci, Rt△ABO, RtAAB;!C3........ ,那么有:RtAABiCi^ ___________ s................... ......根据相似三角形的性质,得:............................... ..AC,(2)由上可知:如果直角三角形的一个锐角的大小已确定,那么这个锐角的对边与这个角的邻边的比值也__________ .2 .正切的定义如图,在RtAABC中,ZC=90°, a. b分别是ZA的对边和邻边. 我们将ZA的对边a与邻边b的比叫做”ZA ______________________________________ ,记作 _______ •即:tanA= _________ = __________ (你能写出ZB.的正切表达式吗?)试试看.3.牛刀小试根据下列图「中所给条件分别求出下列图中ZA. ZB的正切值.”(通过上述计算,你有什么发现? _____________________________________ .)4 .思考与探索三:怎样计算任意一个锐角的正切值呢?(1)我们可以这样来确定tan65°的近似值:当一个点从点0出发沿着65°线移动到点P时,这个点向右水平方向前进了1个单位,那么在垂直方向上升了约2. 14个单位.于是可知,tan65°的近似值为2. 14.从点0出发,点P沿65°线移动,当在水平方向上向右前进了一个.单位时,它在垂直方向上向上前进了________________________________ 个单位.P点的坐标是_____ tan65° ~.(2)思考:当锐角a越来越大时,a的正切值有什么变化?二' 自主合作1.某楼梯的踏板宽为30cm, 一个台阶的高度为15cm,求楼梯倾斜角的正切值.2.如图,在RtAABC 中,ZC=90° , AB=5, BC=J^,求tanA 与tanB 的值.43.如图,在RtAABC 中,ZC=90° , BC=12, tanA=—,求AB 的值.3三' 自主展示1.如图,在在RtAABC中,ZACB=90° , CD是AB边上的高,①tanA= _____= ”;②tanB”=___ = _______ ;③tanZACD= _________ ;④tanZBCD= _________ ;2.如图,身高为1. 6m的某学生想测量一棵大树的高度,她沿着树影BA由B到A走去,当走.到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3. 2m , CA=0. 8m,求树的高度是多少?四、自主拓展1.如图是一个梯形大坝的横断面,根据图中的尺寸,请你通过计算判断左右两个坡的倾斜程度更大一些?2.在直角坐标系中,Z\ABC的三个顶点的坐标分别为A (-4, 1) , B (-1, 3) , C (-4,3), 试求tanB的值.2、 在 RtAABC 中,ZC=90° , BC= 贝 V tanA= ACy【课后练习】一、知识要点1、如果直角三角形的一个锐角的大小确定,那么这个锐角的对边与这个角的邻边的比值也2、在RtAABC 中,ZC=90° , a 、b 分别是ZA 的对边和邻边,我们把ZA 的对边a 与邻 边 b 的比叫做ZA 的 ________________________ , 记作 ____________ , 即tanA= _____________ = __________3、当锐角a 越来越大时,a 的正切值越来越 ______________二、基础训练1、在 RtAABC 中,ZC=90°, AC=12, AB = 13,贝!j tanA= _______________ , tanB= ________ 4、 在 RtAABC 中,ZC=90° , a 、b 、c 分别是ZA 、ZB 、ZC 的对边. (1) 若 a=5, c=13,贝!j tanA= ____________ , tanB= ______________ ;(2) 若a=6,tanA=-^> 贝 ___________ ,c= _________125、 如图,在 RtAABC 中,ZC=90° , CD 丄AB 于 D, AC=5, tanA= y ,贝J BC= ______________ ___ , CD= ______________6、 如图,点E(0, 4), 0(0, 0), C(5, 0)在©A±, BE 是OA 上的一条弦,则tanZOBE=_7、 如图,在 RtAABC 中,ZA=90° , AC=AB,则 tanB 的值为( )4、1B 、£C 、忑D 、+ 8、 如图,在等腰Z\ABC 中,AB = AC = 3, BC = 2, AD 是BC 边上的中线,则tanZBAD的值为( ) _ 4s | £、* C 、2 旳 D 、芈・AB, 3、在RtAABC 中,CD 丄AB 于D,第1010、如图,A 、B 、C 三点在正方形网格线的若将AACB 绕着点A 逆时针旋转△AC'B ,,则tanB 泊A . B.- C.丄 D .9、RtAABC 的三边长分别为3, 2,頁,则其中最小角的正切值是( )11、如图,把矩形纸OABC 放入平面直角坐标系中,使OA 、OC 分别落在x 、y 轴上,连 结OB,将纸片OABC 沿OB 折叠,使点A 落在点A 啲位置,若OB= ^5 , tanZBOC=丄,2求点A'的坐标。
苏科版数学九年级下册《7.1 正切》教学设计

苏科版数学九年级下册《7.1 正切》教学设计一. 教材分析《苏科版数学九年级下册》第七章第一节“正切”是学生在学习了锐角三角函数、直角三角形的性质等知识的基础上进行学习的。
本节课的主要内容是正切的定义、正切的性质和正切函数的图像。
通过本节课的学习,学生能够掌握正切的概念,理解正切的性质,会用正切函数的图像来解决一些实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了锐角三角函数的概念和性质,对直角三角形的性质也有一定的了解。
但是,对于正切的概念和性质,学生可能还比较陌生。
因此,在教学过程中,教师需要通过具体的例子和形象的图像,帮助学生理解和掌握正切的概念和性质。
三. 教学目标1.知识与技能:掌握正切的定义,理解正切的性质,会用正切函数的图像来解决一些实际问题。
2.过程与方法:通过观察、思考、交流等方法,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和探究精神。
四. 教学重难点1.重点:正切的定义,正切的性质。
2.难点:正切函数的图像,正切在实际问题中的应用。
五. 教学方法1.情境教学法:通过具体的例子和形象的图像,让学生在实际情境中理解和掌握正切的概念和性质。
2.小组合作学习法:通过小组讨论和合作,培养学生的团队合作意识和探究精神。
3.引导发现法:教师引导学生发现问题,激发学生的思考,培养学生的逻辑思维能力。
六. 教学准备1.教材:《苏科版数学九年级下册》2.课件:正切的概念和性质,正切函数的图像3.练习题:用于巩固所学知识七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题——正切。
例如,一个物体从地面开始上升,其高度h(米)与时间t(秒)的关系可以表示为h=2t-5,当t=0时,h=1。
问:物体在地面上方5米时,已经上升了多少时间?2.呈现(15分钟)教师通过课件呈现正切的概念和性质,正切函数的图像。
让学生观察和思考,引导发现正切的性质。
新苏科版九年级数学下册《7章 锐角三角函数 7.1 正切》教案_6

教学时间________;总课时___________。
教学内容:第七章锐角三角函数7.1正切教学目标:1、理解正切的概念,能通过画图求出一个角的正切的近似值。
能运用正切解决与直角三角形有关的简单问题;2、经历探索表示物体倾斜程度,形成正切的概念的过程,练就创造性解决问题的能力。
教学重点:正切的概念;教学难点:计算一个锐角的正切值的方法。
教学方法:自主先学,小组讨论,交流展示,质疑拓展,检测反馈,小结反思。
教学用具:小黑板,直尺。
教学过程:一.导入新课1.情景创设(1)观察:如图,某体育馆,为了方便不同需求的观众,该体育馆设计了多种形式的台阶。
(2)问题:下列图中的两个台阶哪个更陡?你是怎么判断的?2.板书课题:7.1正切3.学习目标:(1)理解正切的概念,能通过画图求出一个角的正切的近似值。
能运用正切解决与直角三角形有关的简单问题;(2)经历探索表示物体倾斜程度,形成正切的概念的过程,练就创造性解决问题的能力。
二.自主学习1、思考与探索一:如何描述台阶的倾斜程度呢?2、思考与探索二:(1)如图,一般地,如果锐角A 的大小已确定,我们可以作出无数个相似的RtAB 1C 1,RtAB 2C 2,RtAB 3C 3……,那么有:Rt △AB 1C 1∽________∽________……根据相似三角形的性质,得:111AC C B =_________=_________=…… (2)由上可知:如果直角三角形的一个锐角的大小已确定,那么这个锐角的对边与这个角的邻边的比值也_________。
3、正切的定义如图,在Rt △ABC 中,∠C =90°,a 、b 分别是∠A 的对边和邻边。
我们将∠A 的对边a 与邻边b 的比叫做∠A_______,记作______。
即:tanA =________=__________(你能写出∠B 的正切表达式吗?)试试看.4、思考与探索三:怎样计算任意一个锐角的正切值呢? A C 1 C 2C 3 B 1 B 2 B 3 A b Ca BA 2 C 1B BC A 13 1 B A C 3 5 (1)如图,从点O 出发,点P 沿65°线移动,当在水平方向上向右前进了一个单位时,它在垂直方向上向上前进了约 单位。
九年级数学下册正切学案苏科

§7.1 正切(2)学习目标:1.会利用计算器求一个锐角的正切;2.了解锐角的正切值随锐角的增大而增大.学习重点:体会任意锐角的正切值的特点;会用计算器求任意一个锐角的正切值.学习难点:任意锐角的正切值的变化特点.学习过程一.【情境创设】(1)如图1,在Rt△ABC中,∠C=90°,a、b 分别是∠A的对边和邻边.①∠A=30°,a=1,求tanA.②∠A=45°,求tan A.③∠A=60°,求tanA.(2)怎样计算任意一个锐角的正切值呢?二.【问题探究】(1)如图2,我们可以这样来确定tan65°的近似值:当一个点从点O出发沿着65°线移动到点P时,这个点沿水平方向前进了1个单位长度,沿垂直方向上升了约2.14个单位长度.于是,可知tan65°的近似值为2.14.你知道为什么吗?(2)请用同样的方法,写出下表中各角正切的近似值.αtanα10°20°30°45°55°65° 2.14(3)思考与探索:当锐角α越来越大时,α的正切值有图2什么变化?例1 如图3,当光线与水平线的夹角为32°时,测得学校旗杆的影长为28m,求旗杆的高度(精确到0.01m).例2 如图4,这是一个梯形大坝的横断面,根据图中的尺寸,请你通过计算判断左右两个坡的倾斜程度哪一个更大一些?三.【拓展提升】例3 如图5,在Rt △ABC 中,∠CAB =90°,AD 是∠CAB 的平分线,tanB =31,则BDCD = _______ .四.【课堂小结】五.【反馈练习】如图6,在Rt △ABC 中,∠ACB =90°,CD 是AB 边上的高,AC =3,AB =5,求∠ACD 、∠BCD 的正切值.1.2m2.5m 1m (单位:m)图4 图5 图6中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE 的度数是()A.20°B.35°C.40°D.70°【答案】B【解析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°.【详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=12∠ACB=35°.故选B.【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.2.如图,已知线段AB,分别以A,B为圆心,大于12AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至点M,则∠BCM的度数为( )A.40°B.50°C.60°D.70°【答案】B【解析】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.3.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB 边上的点D处,已知MN∥AB,MC=6,NC=23,则四边形MABN的面积是()A.63B.123C.183D.243【答案】C【解析】连接CD,交MN于E,∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,∴MN ⊥CD ,且CE=DE .∴CD=2CE .∵MN ∥AB ,∴CD ⊥AB .∴△CMN ∽△CAB . ∴2CMN CAB S CE 1S CD 4∆∆⎛⎫== ⎪⎝⎭. ∵在△CMN 中,∠C=90°,MC=6,NC=∴CMN 11S ?CM CN 622∆=⋅=⨯⨯=∴CAB CMN S 4S 4∆∆==⨯=∴CAB CMN MABN S S S ∆∆=-==四边形C .4.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( )A .x(x+1)=1035B .x(x-1)=1035C .12x(x+1)=1035D .12x(x-1)=1035 【答案】B【解析】试题分析:如果全班有x 名同学,那么每名同学要送出(x-1)张,共有x 名学生,那么总共送的张数应该是x (x-1)张,即可列出方程.∵全班有x 名同学,∴每名同学要送出(x-1)张;又∵是互送照片,∴总共送的张数应该是x (x-1)=1.故选B考点:由实际问题抽象出一元二次方程.5.如果1∠与2∠互补,2∠与3∠互余,则1∠与3∠的关系是( )A .13∠=∠B .11803∠=-∠C .1903∠=+∠D .以上都不对【答案】C【解析】根据∠1与∠2互补,∠2与∠1互余,先把∠1、∠1都用∠2来表示,再进行运算.【详解】∵∠1+∠2=180°∴∠1=180°-∠2又∵∠2+∠1=90°∴∠1=90°-∠2∴∠1-∠1=90°,即∠1=90°+∠1. 故选C .【点睛】此题主要记住互为余角的两个角的和为90°,互为补角的两个角的和为180度. 6.如图,一次函数1y ax b 和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x >【答案】B 【解析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方,∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B.【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键. 7.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个B.2个C.3个D.4个【答案】A【解析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.8.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <1【答案】C 【解析】试题分析:当x >1时,x+b >kx+4,即不等式x+b >kx+4的解集为x >1.故选C .考点:一次函数与一元一次不等式.9.平面直角坐标系内一点()2, 3P -关于原点对称点的坐标是( )A .()3,2-B .()2,3C .()2,3--D .()2,3- 【答案】D【解析】根据“平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:根据关于原点对称的点的坐标的特点,∴点A (-2,3)关于原点对称的点的坐标是(2,-3), 故选D .【点睛】本题主要考查点关于原点对称的特征,解决本题的关键是要熟练掌握点关于原点对称的特征.10.下列各组单项式中,不是同类项的一组是( )A .2x y 和22xyB .3xy 和2xy -C .25x y 和22yx -D .23-和3【答案】A【解析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【详解】根据题意可知:x2y和2xy2不是同类项.故答案选:A.【点睛】本题考查了单项式与多项式,解题的关键是熟练的掌握单项式与多项式的相关知识点. 二、填空题(本题包括8个小题)11.已知,在同一平面内,∠ABC=50°,AD∥BC,∠BAD的平分线交直线BC于点E,那么∠AEB的度数为__________.【答案】65°或25°【解析】首先根据角平分线的定义得出∠EAD=∠EAB,再分情况讨论计算即可.【详解】解:分情况讨论:(1)∵AE平分∠BAD,∴∠EAD=∠EAB,∵AD∥BC,∴∠EAD=∠AEB,∴∠BAD=∠AEB,∵∠ABC=50°,∴∠AEB=12•(180°-50°)=65°.(2)∵AE平分∠BAD,∴∠EAD=∠EAB=12DAB ∠,∵AD∥BC,∴∠AEB=∠DAE=12DAB∠,∠DAB=∠ABC,∵∠ABC=50°,∴∠AEB= 12×50°=25°.故答案为:65°或25°.【点睛】本题考查平行线的性质、角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.不等式组2x+1x{4x3x+2>≤的解集是▲ .【答案】﹣1<x≤1【解析】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,解第一个不等式得,x>﹣1,解第二个不等式得,x≤1,∴不等式组的解集是﹣1<x≤1.13.关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,则实数k的取值范围是_______.【答案】k<2且k≠1【解析】试题解析:∵关于x的一元二次方程(k-1)x2-2x+1=0有两个不相等的实数根,∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k<2且k≠1.考点:1.根的判别式;2.一元二次方程的定义.14.如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为_________海里.(结果保留根号)【答案】52【解析】如图,作BH⊥AC于H.在Rt△ABH中,求出BH,再在Rt△BCH中,利用等腰直角三角形的性质求出BC即可.【详解】如图,作BH⊥AC于H.在Rt△ABH中,∵AB=10海里,∠BAH=30°,∴∠ABH=60°,BH=12AB=5(海里),在Rt△BCH中,∵∠CBH=∠C=45°,BH=5(海里),∴BH=CH=5海里,∴2.故答案为:52.【点睛】本题考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题.15.如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点.若DE=1,则DF的长为________.【答案】1.1【解析】求出EC,根据菱形的性质得出AD∥BC,得出相似三角形,根据相似三角形的性质得出比例式,代入求出即可.【详解】∵DE=1,DC=3,∴EC=3-1=2,∵四边形ABCD是菱形,∴AD∥BC,∴△DEF∽△CEB,∴DF DE BC CE=,∴1 32 DF=,∴DF=1.1,故答案为1.1.【点睛】此题主要考查了相似三角形的判定与性质,解题关键是根据菱形的性质证明△DEF∽△CEB,然后根据相似三角形的性质可求解.16.如图,在△PAB中,PA=PB,M、N、K分别是PA,PB,AB上的点,且AM=BK,BN =AK .若∠MKN =40°,则∠P 的度数为___【答案】100°【解析】由条件可证明△AMK ≌△BKN ,再结合外角的性质可求得∠A =∠MKN ,再利用三角形内角和可求得∠P .【详解】解:∵PA =PB ,∴∠A =∠B ,在△AMK 和△BKN 中,AM BK A B AK BN =⎧⎪∠=∠⎨⎪=⎩,∴△AMK ≌△BKN (SAS ),∴∠AMK =∠BKN ,∵∠A+∠AMK =∠MKN+∠BKN ,∴∠A =∠MKN =40°,∴∠P =180°﹣∠A ﹣∠B =180°﹣40°﹣40°=100°,故答案为100°【点睛】本题主要考查全等三角形的判定和性质及三角形内角和定理,利用条件证得△AMK ≌△BKN 是解题的关键.17.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是 .【答案】0或1【解析】分析:需要分类讨论:①若m=0,则函数y=2x+1是一次函数,与x 轴只有一个交点;②若m≠0,则函数y=mx2+2x+1是二次函数,根据题意得:△=4﹣4m=0,解得:m=1。
苏科版数学九年级下册教案-7.1 正切

7.1 正切一、教材分析1.教材内容本节课是义务教育课程标准苏科版教科书九年级 (下) 第七章《锐角三角函数》的第一课时,主要内容是:理解正切的概念,会进行简单的计算.2.地位及作用正切在生活中的运用非常广泛,如物体的倾斜程度、山的坡度等都往往用正切来刻画.同时正切也是学生接触的第一个三角函数.学好正切,既为正弦余弦的学习打下基础,又为高中系统学习三角函数做好铺垫.因此本节内容极其重要.二、学情分析1.知识基础九年级学生已经学习了直角三角形,函数和相似三角形的相关知识,具备了学习锐角三角函数的知识基础.但是,锐角三角函数和学生以前学习过的一次函数、反比例函数有所不同,它揭示的是角度与线段比值之间的对应关系.学生是第一次接触用符号表示的函数,因此学生对锐角三角函数的理解仍然比较抽象和困难.2.能力基础学生已经经历了多次小组合作,探索新知的过程,对探究性学习掌握了一定的方法,具有一定的活动学习的经验,这为本节课采用小组活动来感知概念打下了基础.3.任教学生特点我班学生数学基础较扎实,求知欲强,想象力丰富.能较好地运用所学的知识解决问题.三、目标分析1.教学目标:(1)经历探索直角三角形边角关系的过程,理解正切的概念并能进行简单的计算.(2)经历数学活动过程,发展合情推理能力,能有条理的、清晰的阐述自己的观点.2.教学重点理解正切概念.3.教学难点正切概念的形成过程.4.突出重点、突破难点的策略抓住学生的认知盲点,教师加以启发诱导,抽象出本节课重要的数学模型——直角三角形,配合实验直观展示,帮助学生理解一个锐角和它的对边与邻边的比值之间的对应关系,确定这是一种函数关系,给出正切概念,突破本节课的难点.理解概念后,通过小组合作辨析、应用概念,突出本节课重点.四、教法、学法教法:启发式与自主探究结合的教法.学法:自主探究、合作交流的学法.五、教学过程:(一)情境创设生活中处处都有数学,生活中经常遇到爬坡,你如何判断坡的陡峭程度?(二)探索活动问题1:(展示两张山坡台阶图片)这两个台阶哪个更陡?为什么?【设计意图】从生活情境入手,激发学生兴趣,情境贴近学生生活,让学生感知数学与生活密切相关,学生的感性认识直接感知第2个台阶陡,说明理由正是从感性走向理性的逐步渗透。
九年级数学下册正切学案苏科版

§7.1 正切(1)学习目标:1.认识锐角的正切的概念;2.经历操作、观察、思考、求解等过程,感受数形结合的数学思想方法,培养学生理性思维的习惯,提高学生运用数学知识解决实际问题的能力;3.激发学生学习的积极性和主动性,引导学生自主探索、合作交流,培养学生的创新意识.学习重点:计算一个锐角的正切值的方法. 学习难点:计算一个锐角的正切值的方法. 学习过程 一.【情境创设】问题1:人们在行走的过程中,自行车、汽车在行驶的过程中免不了爬坡. 如图1,哪个台阶更陡?二.【问题探究】问题2:如图2,哪个台阶最陡?你是如何判断的?问题3:如图3,在图2中的①、③两个台阶,你认为哪个台阶更陡?你有什么发现?问题4:如图4,一般地,如果锐角A 的大小确定,我们可以作出Rt △AB 1C 1、 Rt △AB 2C 2、Rt △AB 3C 3……那么,你有什么发现呢?总结提升如图5,在Rt △ABC 中,∠C =90°,a 、b 分别是∠A 的对边和邻边.我们将∠A 的对边a 与邻边b 的比叫做∠A 的正切(tangent ),记作tanA ,即tanA =的邻边的对边A A ∠∠=ACBC =b a.图1C 3B 3C 2B 2C 1B 1A 图4 对边aB你能用同样的方法写出∠B 的正切吗?例1 如图7,在Rt △ABC 中,∠C =90°,AC =4,AB =5,求tanA 、tanB . 拓展: 通过计算tanA 、tanB 的值,你有什么新的发现吗?三.【拓展提升】例2 如图8,在等边三角形ABC 中,CD ⊥AB ,垂足为D .求tanA .拓展:通过计算tanA 的值,你对60º的正切值有什么认识?30º呢?你还能得到其他的吗?四.【课堂小结】五.【反馈练习】1.如图9,求下列图中各直角三角形中锐角的正切值. 2.如图10,在Rt △ABC 中,∠C =90°, AB =10,tanA 43, 求AC 、BC 和tanB .图7 A 4 C B 5A10B C图82DCB A中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A .B .C .D .【答案】D【解析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D.【详解】解:观察图形可知图案D通过平移后可以得到.故选D.【点睛】本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.2.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==【答案】A【解析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤3a b2 =.你认为其中正确信息的个数有A.2个B.3个C.4个D.5个【答案】D【解析】试题分析:①如图,∵抛物线开口方向向下,∴a<1.∵对称轴xb12a3=-=-,∴2b a3=-<1.∴ab>1.故①正确.②如图,当x=1时,y<1,即a+b+c<1.故②正确.③如图,当x=﹣1时,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正确.④如图,当x=﹣1时,y>1,即a﹣b+c>1,∵抛物线与y轴交于正半轴,∴c>1.∵b<1,∴c﹣b>1.∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正确.⑤如图,对称轴b12a3=-=-,则3a b2=.故⑤正确.综上所述,正确的结论是①②③④⑤,共5个.故选D.4.如图,在正方形ABCD 中,E 为AB 的中点,G ,F 分别为AD 、BC 边上的点,若AG=1,BF=2,∠GEF=90°,则GF 的长为( )A .2B .3C .4D .5【答案】B【解析】∵四边形ABCD 是正方形, ∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°, ∵∠GEF=90°, ∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB ,∠AEG=∠EFB , ∴△AEG ∽△BFE , ∴AE AGBF BE=, 又∵AE=BE , ∴AE 2=AG•BF=2, ∴2,∴GF 2=GE 2+EF 2=AG 2+AE 2+BE 2+BF 2=1+2+2+4=9, ∴GF 的长为3, 故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG ∽△BFE .5.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-【答案】D 【解析】分析: 详解:如图,∵AB ⊥CD,CE ⊥AD, ∴∠1=∠2, 又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3, 即∠A=∠C. ∵BF ⊥AD,∴∠CED=∠BFD=90°, ∵AB=CD, ∴△ABF ≌△CDE, ∴AF=CE=a,ED=BF=b, 又∵EF=c, ∴AD=a+b-c. 故选:D.点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.6.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31【答案】C【解析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n(n+1)和12(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.【详解】∵A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.故选:C.【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.7.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD=1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()A.13B.5C.22D.4 【答案】A【解析】试题分析:由题意易知:∠CAB=41°,∠ACD=30°.若旋转角度为11°,则∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,则AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=13.故选A.考点: 1.旋转;2.勾股定理.8.如图,在△ABC中,分别以点A和点C为圆心,大于12AC长为半径画弧,两弧相交于点M,N,作直线MN分别交BC,AC于点D,E,若AE=3cm,△ABD的周长为13cm,则△ABC的周长为()A.16cm B.19cm C.22cm D.25cm【答案】B【解析】根据作法可知MN是AC的垂直平分线,利用垂直平分线的性质进行求解即可得答案.【详解】解:根据作法可知MN是AC的垂直平分线,∴DE垂直平分线段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周长=AB+BD+BC+AC=13+6=19cm,故选B.【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.9.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是() A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.10.人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为()A.0.86×104B.8.6×102C.8.6×103D.86×102【答案】C【解析】科学记数法就是将一个数字表示成a×10的n次幂的形式,其中1≤|a|<10,n表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.【详解】数据8 600用科学记数法表示为8.6×103故选C.【点睛】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).二、填空题(本题包括8个小题)11.在△ABC中,点D在边BC上,BD=2CD,AB a=,AC b=,那么AD= .【答案】12 33 a b+【解析】首先利用平行四边形法则,求得BC的值,再由BD=2CD,求得BD的值,即可求得AD的值.【详解】∵AB a=,AC b=,∴BC=AC-AB=b-a,∵BD=2CD,∴BD=23BC=2()3b a-,∴AD=AB+BD=2()3a b a+-=1233a b+.故答案为1233a b+.12.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是_____.【答案】8﹣π【解析】分析:如下图,过点D作DH⊥AE于点H,由此可得∠DHE=∠AOB=90°,由旋转的性质易得DE=EF=AB,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,结合∠ABO+∠BAO=90°可得∠BAO=∠DEH,从而可证得△DEH≌△BAO,即可得到DH=BO=2,再由勾股定理求得AB的长,即可由S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF即可求得阴影部分的面积.详解:如下图,过点D作DH⊥AE于点H,∴∠DHE=∠AOB=90°,∵OA=3,OB=2,∴223213+=由旋转的性质结合已知条件易得:13,OE=BO=2,OF=AO=3,∠DEF=∠FEO+∠DEH=90°,∠ABO=∠FEO,又∵∠ABO+∠BAO=90°,∴∠BAO=∠DEH,∴△DEH≌△BAO,∴DH=BO=2,∴S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF=22 9031190(13)325236022360ππ⨯⨯+⨯⨯+⨯⨯-=8π-.故答案为:8π-.点睛:作出如图所示的辅助线,利用旋转的性质证得△DEH≌△BAO,由此得到DH=BO=2,从而将阴影部分的面积转化为:S阴影=S扇形AOF+S△OEF+S△ADE-S扇形DEF来计算是解答本题的关键.13.观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D 处的俯角是30°,已知楼房高AB约是45 m,根据以上观测数据可求观光塔的高CD是______m.【答案】135【解析】试题分析:根据题意可得:∠BDA=30°,∠DAC =60°,在Rt△ABD中,因为AB=45m,所以AD=453,所以在Rt△ACD中,3453×3.考点:解直角三角形的应用.14.若点A(1,m)在反比例函数y=3x的图象上,则m的值为________.【答案】3【解析】试题解析:把A(1,m)代入y=3x得:m=3.所以m的值为3.15.若关于x的方程x2﹣8x+m=0有两个相等的实数根,则m=_____.【答案】1【解析】根据判别式的意义得到△=(﹣8)2﹣4m=0,然后解关于m的方程即可.【详解】△=(﹣8)2﹣4m=0,解得m=1,故答案为:1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.16263=________.【答案】3【解析】根据二次根式的运算法则先算乘法,再将13分母有理化,然后相加即可.【详解】解:原式=233 33=3【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.⊙O的半径为10cm,AB,CD是⊙O的两条弦,且AB∥CD,AB=16cm,CD=12cm.则AB与CD之间的距离是cm.【答案】2或14【解析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF−OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm ,CD=12cm , ∴AF=8cm ,CE=6cm , ∵OA=OC=10cm , ∴OF=6cm ,OE=8cm , ∴EF=OF+OE=14cm.∴AB 与CD 之间的距离为14cm 或2cm. 故答案为:2或14.18.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得10AD cm =,点D 在量角器上的读数为60,则该直尺的宽度为____________cm .533【解析】连接OC,OD,OC 与AD 交于点E ,根据圆周角定理有130,2BAD BOD ∠=∠=︒根据垂径定理有:15,2AE AD == 解直角OAE △即可. 【详解】连接OC,OD,OC 与AD 交于点E ,130,2BAD BOD ∠=∠=︒ 103.cos303AE OA ==︒5tan 303,3OE AE =⋅︒=直尺的宽度:105533 3.333CE OC OE =-=-= 故答案为533【点睛】考查垂径定理,熟记垂径定理是解题的关键. 三、解答题(本题包括8个小题)19.当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A 1,A 2,A 3,A 4,现对A 1,A 2,A 3,A 4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A 1所在扇形的圆心角的度数;现从A 1,A 2中各选出一人进行座谈,若A 1中有一名女生,A 2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.【答案】(1)15人;(2)补图见解析.(3)12.【解析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A1所在圆心角度数为:215×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=31 62 .【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.20.某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的2倍少1,而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的35.问该兴趣小组男生、女生各有多少人?【答案】男生有12人,女生有21人.【解析】设该兴趣小组男生有x人,女生有y人,然后再根据:(男生的人数-1)×2-1=女生的人数,(女生的人数-1) ×35=男生的人数,列出方程组,再进行求解即可.【详解】设该兴趣小组男生有x人,女生有y人,依题意得:2(1)13(1)5y xx y=--⎧⎪⎨=-⎪⎩,解得:1221 xy=⎧⎨=⎩.答:该兴趣小组男生有12人,女生有21人.【点睛】本题主要考查了二元一次方程组的应用,解题的关键是明确题中各个量之间的关系,并找出等量关系列出方程组.21.某校为了创建书香校远,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.文学书和科普书的单价分别是多少元?该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科普书?【答案】(1)文学书的单价为40元/本,科普书的单价为1元/本;(2)购进1本文学书后最多还能购进2本科普书.【解析】(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,根据数量=总价÷单价结合用800元购进的文学书本数与用1200元购进的科普书本数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进m本科普书,根据总价=文学书的单价×购进本数+科普书的单价×购进本数结合总价不超过5000元,即可得出关于m的一元一次不等式,解之取其中的最大整数值即可得出结论.【详解】解:(1)设文学书的单价为x元/本,则科普书的单价为(x+20)元/本,依题意,得:,解得:x=40,经检验,x=40是原分式方程的解,且符合题意,∴x+20=1.答:文学书的单价为40元/本,科普书的单价为1元/本.(2)设购进m本科普书,依题意,得:40×1+1m≤5000,解得:m≤.∵m为整数,∴m的最大值为2.答:购进1本文学书后最多还能购进2本科普书.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.22.我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)初中部 a 85 b s初中2高中部85 c 100 160(1)根据图示计算出a、b、c的值;结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.【答案】(1)85,85,80; (2)初中部决赛成绩较好;(3)初中代表队选手成绩比较稳定. 【解析】分析:(1)根据成绩表,结合平均数、众数、中位数的计算方法进行解答; (2)比较初中部、高中部的平均数和中位数,结合比较结果得出结论;(3)利用方差的计算公式,求出初中部的方差,结合方差的意义判断哪个代表队选手的成绩较为稳定.【详解】详解: (1)初中5名选手的平均分75808585100a 855++++==,众数b=85,高中5名选手的成绩是:70,75,80,100,100,故中位数c=80; (2)由表格可知初中部与高中部的平均分相同,初中部的中位数高, 故初中部决赛成绩较好;(3)222222++++=5S 初中(75-85)(80-85)(85-85)(85-85)(100-85)=70, ∵22SS 初中高中<,∴初中代表队选手成绩比较稳定. 【点睛】本题是一道有关条形统计图、平均数、众数、中位数、方差的统计类题目,掌握平均数、众数、中位数、方差的概念及计算方法是解题的关键.23.如图有A 、B 两个大小均匀的转盘,其中A 转盘被分成3等份,B 转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A 转盘指针指向的数字记作一次函数表达式中的k ,将B转盘指针指向的数字记作一次函数表达式中的b.请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b的图象经过一、二、四象限的概率.【答案】(1)答案见解析;(2)13.【解析】(1)k可能的取值为-1、-2、-3,b可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.(2)判断出一次函数y=kx+b经过一、二、四象限时k、b的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b经过一、二、四象限的概率.【详解】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b的图象经过一、二、四象限时,k<0,b>0,情况有4种,则P=412=13.24.手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷•某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.一月份该公司投入市场的自行车至少有多少辆?二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为14a%,三月底可使用的自行车达到7752辆,求a的值.【答案】(1)7000辆;(2)a的值是1.【解析】(1)设一月份该公司投入市场的自行车x辆,根据损坏率不低于10%,可得不等量关系:一月初投入的自行车-一月底可用的自行车≥一月损坏的自行车列不等式求解;(2)根据三月底可使用的自行车达到7752辆,可得等量关系为:(二月份剩余的可用自行车+三月初投入的自行车)×三月份的损耗率=7752辆列方程求解.【详解】解:(1)设一月份该公司投入市场的自行车x辆,x﹣(7500﹣110)≥10%x,解得x≥7000,答:一月份该公司投入市场的自行车至少有7000辆;(2)由题意可得,[7500×(1﹣1%)+110(1+4a%)](1﹣14a%)=7752,化简,得a2﹣250a+4600=0,解得:a1=230,a2=1,∵1%20%4a ,解得a<80,∴a=1,答:a的值是1.【点睛】本题考查了一元一次不等式和一元二次方程的实际应用,根据一月底的损坏率不低于10%找出不等量关系式解答(1)的关键;根据三月底可使用的自行车达到7752辆找出等量关系是解答(2)的关键.25.某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级(2)班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级(2)班参加球类活动人数情况统计表项目篮球足球乒乓球排球羽毛球人数 a 6 5 7 6八年级(2)班学生参加球类活动人数情况扇形统计图根据图中提供的信息,解答下列问题:a=,b=.该校八年级学生共有600人,则该年级参加足球活动的人数约人;该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.【答案】(1)a=16,b=17.5(2)90(3)3 5【解析】试题分析:(1)首先求得总人数,然后根据百分比的定义求解;(2)利用总数乘以对应的百分比即可求解;(3)利用列举法,根据概率公式即可求解.试题解析:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案为90;(3)如图,∵共有20种等可能的结果,两名主持人恰为一男一女的有12种情况,∴则P(恰好选到一男一女)=1220=35.考点:列表法与树状图法;用样本估计总体;扇形统计图.26.如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?【答案】20千米【解析】由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜边相等两次利用勾股定理得到AD2+AE2=BE2+BC2,设AE为x,则BE=10﹣x,将DA=8,CB=2代入关系式即可求得.【详解】解:设基地E应建在离A站x千米的地方.则BE=(50﹣x)千米在Rt△ADE中,根据勾股定理得:AD2+AE2=DE2∴302+x2=DE2在Rt△CBE中,根据勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D两村到E点的距离相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E应建在离A站20千米的地方.考点:勾股定理的应用.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列调查中,调查方式选择合理的是( )A .为了解襄阳市初中每天锻炼所用时间,选择全面调查B .为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C .为了解神舟飞船设备零件的质量情况,选择抽样调查D .为了解一批节能灯的使用寿命,选择抽样调查【答案】D【解析】A .为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A 不符合题意; B .为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B 不符合题意; C .为了解神舟飞船设备零件的质量情况,选普查,故C 不符合题意;D .为了解一批节能灯的使用寿命,选择抽样调查,故D 符合题意;故选D .2.估算9153+÷的运算结果应在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间【答案】D【解析】解:9153+÷=35+ ,∵2<5<3,∴35+在5到6之间. 故选D .【点睛】此题主要考查了估算无理数的大小,正确进行计算是解题关键.3.如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC =26°,则∠OBC 的度数为( )A .54°B .64°C .74°D .26°【答案】B 【解析】根据菱形的性质以及AM =CN ,利用ASA 可得△AMO ≌△CNO ,可得AO =CO ,然后可得BO ⊥AC ,继而可求得∠OBC 的度数.【详解】∵四边形ABCD 为菱形,∴AB ∥CD ,AB =BC ,∴∠MAO =∠NCO ,∠AMO =∠CNO ,在△AMO 和△CNO 中,MAO NCO AM CNAMO CNO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AMO ≌△CNO(ASA),∴AO =CO ,∵AB =BC ,∴BO ⊥AC ,∴∠BOC =90°,∵∠DAC =26°,∴∠BCA =∠DAC =26°,∴∠OBC =90°﹣26°=64°.故选B .【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.4.如图,从一块圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A 、B 、C 在圆周上, 将剪下的扇形作为一个圆锥侧面,如果圆锥的高为,则这块圆形纸片的直径为( )A.12cm B.20cm C.24cm D.28cm【答案】C【解析】设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,利用等腰直径三角形的性质得到2,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到90π2R⋅⋅,解得2,然后利用勾股定理得到(2)2=(30)2+2)2,再解方程求出R即可得到这块圆形纸片的直径.【详解】设这块圆形纸片的半径为R,圆锥的底面圆的半径为r,则2,根据题意得:90π2R⋅⋅22)2=(30)2+2)2,解得:R=12,所以这块圆形纸片的直径为24cm.故选C.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.5.按如下方法,将△ABC的三边缩小的原来的12,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是()①△ABC与△DEF是位似图形②△ABC与△DEF是相似图形③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.A .1B .2C .3D .4【答案】C 【解析】根据位似图形的性质,得出①△ABC 与△DEF 是位似图形进而根据位似图形一定是相似图形得出 ②△ABC 与△DEF 是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.【详解】解:根据位似性质得出①△ABC 与△DEF 是位似图形,②△ABC 与△DEF 是相似图形,∵将△ABC 的三边缩小的原来的12, ∴△ABC 与△DEF 的周长比为2:1,故③选项错误,根据面积比等于相似比的平方,∴④△ABC 与△DEF 的面积比为4:1.故选C .【点睛】此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键. 6.若二次函数22y x x m =-+的图像与x 轴有两个交点,则实数m 的取值范围是( ) A .m 1≥B .1mC .1mD .1m < 【答案】D【解析】由抛物线与x 轴有两个交点可得出△=b 2-4ac >0,进而可得出关于m 的一元一次不等式,解之即可得出m 的取值范围.【详解】∵抛物线y=x 2-2x+m 与x 轴有两个交点,∴△=b 2-4ac=(-2)2-4×1×m >0,即4-4m >0,。
苏科版九年级数学下册7.1正切教案

发表意见,表达观点,相互补充.
图 8,在等边三角形 ABC 中,AB
.
C
A
D
B
2
图8
算 tanA 的值,你对 60º的正切值有 0º呢?你还能得到其他的吗?
参考答案:
解:过点 C 作 CD⊥AB,垂足为 D,则 AD = 1 AB 1 . 在 Rt △ ACD 中 , CD =
2 22 12 3 ,tanA= CD 3 .
tan45º=1.
第3页 共5页
2019-7-2
凤凰初中数学配套教学软件_教学设计
运用本节课所学数学知识解决问题.
9,求下列图中各直角三角形中锐
参考答案:
.
A B
②
① 5 17
C A
15
C
B
图9
1.解:①在 Rt△ABC 中,
7 B
tan A= BC 5 ,tanB= AC 12 .
AC 12
观察、思考,并归纳、小结:
我们可以作出 Rt△AB1C1、 Rt△AB3C3……
你有什么发现呢?
B2 B3 B1
可以得到 Rt△AB1C1∽Rt△AB2C2∽ Rt△AB3C3……
根据相似三角形的性质,得
B1C1 B2C2 B3C3 …… AC1 AC2 AC3 也就是说,如果直角三角形的一个锐角的 大小确定,那么这个锐角的对边与邻边的比值
那么,tanB=
B的对边 B的邻边
=
AC BC
b a
.
第2页 共5页
2019-7-2
凤凰初中数学配套教学软件_教学设计
图 7,在 Rt△ABC 中,∠C=90°, 发表意见,表达观点,相互补充.
数学九年级下册教案-7.1 正切14-苏科版

《正切(一)》教学设计
课题正切(一)年级九年级知识点来源苏教版初中数学九年级下册第96~97页“正切”.
教学目标1. 理解并掌握正切的含义,会在直角三角形中求出某个锐角的正切值.
2. 了解计算一个锐角的正切值的方法.
教学重难点计算一个锐角的正切值的方法.
教学过程:
一、创设情境,引入新知
出示情境图:登山时,我们经常遇到不同坡度的台阶.请大家仔细观察,图里哪个台阶更陡?你是如何判断的?
二、逐一思考,探究新知
1. 如图,哪个台阶更陡?你是如何判断的?
2. 比较下图的两个台阶,你有什么发现?
3.如图,一般地,如果锐角A的大小确定,我们可以作出Rt△AB1C1、
Rt△AB2C2、Rt△AB3C3……,那么,你有什么发现呢?
A C
1C2C
3
B1B2
B3
6 4
12
8①②③
66 4
10
8
8
4. 归纳正切的定义:
如图,在Rt △ABC 中,∠C =90°,a 、b 分别是∠A 的对边和邻边.我们将 ∠A 的对边a 与邻边b 的比叫做∠A 的正切(tangent ),记作tan A ,
即tan A =的邻边的对边A A ∠∠=AC BC =b
a .
三、例题拓展,小结提升
1. 例题 如图,在Rt △ABC 中,∠C =90°,AC =4,AB =5,求tan A 、tan B .
拓展:通过计算tan A 、tan B 的值,你有什么新的发现吗?
2. 小结
通过今天的学习,你学会了什么?你会正确运用吗?
A 4
C B
5
A 邻边b
C 对边a
B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的高,AC=3,AB=5,求∠ACD、∠BCD的正切值
解析:等角的正切值相等
课后练习:
1.在直角△ABC中,∠C=90°,a、b分别是∠A的对边与邻边,把____________________叫做∠A的正切,记做______,即_________.
成立吗?为什么?
结论:如果一个直角三角形的一个锐角的大小确定,那么这个锐角的对边与这个角的邻边的比值也确定。
3.正切的定义:
在直角三角形中,我们将∠A的对边与它的邻边的比称为∠A的正切,记作tanA
对边a
二、例题点拨:
1.根据下列图中所给条件Biblioteka 别求出下列图中∠A、∠B的正切值。
通过上述计算,你有什么发现?
2.当锐角 越来越大时, 的正切值越来___________.
3.如图,在Rt△ABC中,∠C=90°,∠A=30°,E为AB上一点且AE:EB=4:1,EF⊥AC于F,连结FB,则tan∠CFB的值等于( )
教后笔记
2.思考与探索一
除了用∠A的大小来描述倾斜程度,还可以用什么方法?
(1)可通过测量BC与AC的长度,再算出它们的比,来说明台阶的倾斜程度.
(2)可通过测量B1C1与A1C1的长度,再算出它们的比,来说明台阶的倾斜程度.
发现:一般地,如果锐角A的大小确定,我们可以作出无数个
以A为一个顶点的直角三形(如图),那么图中:
灌云县伊芦中学教学案
年级
九年级
学科
数学
执笔
王华忠
审核
张彩留
使用周次
课题
7.1正切
课型
新授
章节
7.1
四
上课时间
班级
姓名
学习小组
学习
目标
了解锐角的正切概念,借助于计算器求正切值。
掌握正切值随角度增大而增大的变化规律
重点
难点
求正切值及在图形中的应用
正确理解并表示出角的正切值
教学过程
二次备课
一、自学:
1.下列图中的两个台阶哪个更陡?你是怎么判断的?