攀枝花八年级上期数学半期考题及答案
四川省攀枝花市八年级上学期数学期中考试试卷

四川省攀枝花市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共12分)1. (1分) (2017八上·常州期末) 下列运算正确的是()A . =2B . =﹣2C . =±2D . =±22. (1分)在,0.54,,,,0.1212121…,0,中,无理数有()A . 4个B . 3个C . 2个D . 1个3. (1分)值等于()A . ±4B . 4C . ±2D . 24. (1分) (2019七下·路北期中) 如图,小手盖住的点的坐标可能为()A . (-1,1)B . (-1,-1)C . (1,1)D . (1,-1)5. (1分) (2019九上·港口期中) 平面直角坐标系内一点关于原点对称点的坐标是()A .B .C .D .6. (1分)在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,-n),如f(2,1)=(2,-1);(2)g(m,n)=(-m,-n),如g (2,1)=(-2,-1)按照以上变换有:f[g(3,4)]=f(-3,-4)=(-3,4),那么g[f(-3,2)]=()A . (3,2)B . (3,-2)C . (-3,2)D . (-3,-2)7. (1分)(2019·白银) 下列整数中,与最接近的整数是().A . 3B . 4C . 5D . 68. (1分) (2017八下·宾县期末) 如图,以原点O为圆心,OB为半径画弧与数轴交于点A,且点A表示的数为x,则x2﹣10的立方根为()A .B . ﹣C . 2D . ﹣29. (1分)下列各组数的三个数,可作为三边长构成直角三角形的是()A . 1,2,3B . 32 , 42 , 52C . ,,D . 0.3,0.4,0.510. (1分) (2017八下·陆川期末) 如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A . ﹣1B . +1C . ﹣1D . +111. (1分)下列语句:①-1是1的平方根。
攀枝花市八年级上学期期中数学试卷

攀枝花市八年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2015八上·武汉期中) 下列图形中,不是轴对称图形的是()A .B .C .D .2. (2分) (2018八上·重庆期中) 如图,把一块含有30°角的直角三角板ABC的直角顶点放在矩形桌面CDEF 的一个顶点C处,桌面的另一个顶点F与三角板斜边相交于点F,如果∠1=50°,那么∠AFE的度数为()A . 10°B . 20°C . 30°D . 40°3. (2分)等腰三角形的一边长为3cm,周长为19cm,则该三角形的腰长为()A . 3cmB . 8cmC . 3cm或8cmD . 以上答案均不对4. (2分) (2019八上·江岸期中) 点P(-3,2)关于轴对称的点的坐标是()A . (3,2)B . (-3,-2)C . (3,-2)D . (2,-3).5. (2分) (2017七下·泰兴期末) 在四边形ABCD中,如果∠A+∠B+∠C=260°,那么∠D的度数为()A . 120°B . 110°C . 100°D . 90°6. (2分)(2013·资阳) 一个正多边形的每个外角都等于36°,那么它是()A . 正六边形B . 正八边形C . 正十边形D . 正十二边形7. (2分)(2017·朝阳模拟) 如图,在△ABC中,DE垂直平分AB,交边AC于点D,交边AB于点E,连接BD.若AC=6,△BCD的周长为10,则BC的长为()A . 2B . 4C . 6D . 88. (2分) (2015八上·平邑期末) 如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是()A . AB=2BFB . ∠ACE= ∠ACBC . AE=BED . CD⊥BE9. (2分) (2018八上·如皋期中) 如图,△ABC和△DEF中,AB=DE,∠B=∠DEF,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A . AC=DFB . AC∥DFC . ∠A=∠DD . ∠ACB=∠F10. (2分)已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC的周长为()A . 10B . 14C . 10或14D . 8或10二、填空题 (共8题;共10分)11. (1分)已知在△ABC中,∠C=90°,AB=12,点G为△ABC的重心,那么CG=________.12. (1分)(2014·宿迁) 如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若AD=4,CD=2,则AB的长是________.13. (1分) (2017八上·蒙阴期末) 一个多边形的内角和是外角和的2倍,则这个多边形的边数为________.14. (2分)如图,AB∥CD,∠A=45゜,∠C=35゜,则∠D=________,∠1=________.15. (2分) (2019八上·朝阳期中) 如图,已知AB⊥BD,AB∥ED,AB=ED,要说明△ABC≌△EDC,若以“SAS”为依据,还要添加的条件为________;若添加条件AC=EC,则可以用________公理(或定理)判定全等.16. (1分) (2017八上·夏津期中) 如图,等边△ABC的周长是9,D是AC边上的中点,E在BC的延长线上.若DE=DB,则CE的长为________.17. (1分)如图,量角器边缘上有P、Q两点,它们表示的读数分别为60°,30°,已知直径AB=,连接PB交OQ于M,则QM的长为________ .18. (1分) (2019八上·杭州期中) 下列命题中,逆命题是真命题的是 ________(只填写序号)。
2021-2022学年四川省攀枝花市西区八年级(上)期中数学试卷(解析版)

2021-2022学年四川省攀枝花市西区八年级第一学期期中数学试卷一、选择题(本大题共12小题,每小题5分,共60分)1.下列说法正确的是()A.的平方根是±3B.C.1的立方根是±1D.0没有平方根2.在3.14,,,,,,,中,无理数有()A.1个B.2个C.3个D.4个3.估计+3的值()A.在5和6之间B.在6和7之间C.在7和8之间D.在8和9之间4.下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(a3)2=a5D.a6÷a2=a35.下列多项式相乘,结果为a2+6a﹣16的是()A.(a﹣2)(a﹣8)B.(a+2)(a﹣8)C.(a﹣2)(a+8)D.(a+2)(a+8)6.若x2+(a﹣1)x+25是一个完全平方式,则a值为()A.﹣9B.﹣9或11C.9或﹣11D.117.下列式子从左到右的变形中,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2﹣2x+1=x(x﹣2)+1C.a2﹣b2=(a+b)(a﹣b)D.mx+my+nx+ny=m(x+y)+n(x+y)8.下列命题正确的是()A.相等的角是对顶角B.两条直线被第三条直线所截,同位角相等C.同旁内角互补D.在同一平面内,垂直于同一条直线的两条直线平行9.已知a+b=2,则a2﹣b2+4b的值是()A.2B.3C.4D.610.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD11.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个12.观察下列一组图形中点的个数,其中第一个图形中共有4个点,第2个图形中共有10个点,第3个图形中共有19个点,…按此规律第6个图形中共有点的个数是()A.38B.46C.61D.64二、填空题(本大题共4小题,每题5分,共20分)13.若=3,则x=.14.若(x+1)(2x﹣3)=2x2+mx+n,则m+n=.15.已知a﹣b=3,ab=2,则a2+b2的值为.16.如图,已知△ABC中,AB=AC=24厘米,∠ABC=∠ACB,BC=16厘米,点D为AB 的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为厘米/秒时,能够在某一时刻使△BPD与△CQP全等.三、解答题(本大题共8小题,其中17、18、19、20、21、22小题每题8分,23小题10分,24小题12分,共70分)17.计算:(1);(2).18.计算:(1)(16x3﹣8x2+4x)÷(﹣2x);(2)(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2.19.因式分解:(1)a4x2﹣4a2x2y+4x2y2;(2)(x﹣1)(x﹣3)﹣8.20.已知a、c满足2|a﹣2012|=2c﹣c2﹣1.求c a的值.21.如图,两个正方形边长分别为a、b,如果a+b=17,ab=60,求阴影部分的面积.22.四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F.(1)求证:△CBE≌△CDF;(2)若AB=3,DF=2,求AF的长.23.若x满足(9﹣x)(x﹣4)=4,求(4﹣x)2+(x﹣9)2的值.解:设9﹣x=a,x﹣4=b,则(9﹣x)(x﹣4)=ab=4,a+b=(9﹣x)+(x﹣4)=5,∴(9﹣x)2+(x﹣4)2=a2+b2=(a+b)2﹣2ab=52﹣2×4=17请仿照上面的方法求解下面问题:(1)若x满足(5﹣x)(x﹣2)=2,求(5﹣x)2+(x﹣2)2的值(2)已知正方形ABCD的边长为x,E,F分别是AD、DC上的点,且AE=1,CF=3,长方形EMFD的面积是48,分别以MF、DF作正方形,求阴影部分的面积.24.小孟同学将等腰直角三角板ABC(AC=BC)的直角顶点C放在一直线m上,将三角板绕C点旋转,分别过A,B两点向这条直线作垂线AD,BE,垂足为D,E.(1)如图1,当点A,B都在直线m上方时,猜想AD,BE,DE的数量关系是;(2)将三角板ABC绕C点按逆时针方向旋转至图2的位置时,点A在直线m上方,点B在直线m下方.(1)中的结论成立吗?请你写出AD,BE,DE的数量关系,并证明你的结论.(3)将三角板ABC继续绕C点顺时针旋转,当点A在直线m的下方,点B在直线m的上方时,请你画出示意图,按题意标好字母,直接写出AD,BE,DE的数量关系结论.参考答案一、选择题(本大题共12小题,每小题5分,共60分)1.下列说法正确的是()A.的平方根是±3B.C.1的立方根是±1D.0没有平方根【分析】利用算术平方根、平方根,以及立方根定义判断即可.解:A、=9,9的平方根是±3,符合题意;B、=2,不符合题意;C、1的立方根是1,不符合题意;D、0的平方根是0,不符合题意.故选:A.2.在3.14,,,,,,,中,无理数有()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数,依据定义即可判断.解:﹣=﹣6,=,无理数有,,,共有3个.故选:C.3.估计+3的值()A.在5和6之间B.在6和7之间C.在7和8之间D.在8和9之间【分析】先估计的整数部分,然后即可判断+3的近似值.解:∵42=16,52=25,所以,所以+3在7到8之间.故选:C.4.下列计算正确的是()A.a3+a2=a5B.a3•a2=a5C.(a3)2=a5D.a6÷a2=a3【分析】由合并同类项、同底数幂的乘法法则、幂的乘方法则、同底数幂的除法法则即可得出结论.解:A、a3+a2=a5.不正确;B、a3•a2=a5正确;C、(a3)2=a6≠a5,不正确;D、a6÷a2=a4≠a3,不正确;故选:B.5.下列多项式相乘,结果为a2+6a﹣16的是()A.(a﹣2)(a﹣8)B.(a+2)(a﹣8)C.(a﹣2)(a+8)D.(a+2)(a+8)【分析】根据多项式乘以多项式的运算法分别求解即可求得答案,注意排除法在解选择题中的应用.解:A、(a﹣2)(a﹣8)=a2﹣10a+16,故本选项错误;B、(a+2)(a﹣8)=a2﹣6a﹣16,故本选项错误;C、(a﹣2)(a+8)=a2+6a﹣16,故本选项正确;D、(a+2)(a+8)=a2+10a+16,故本选项错误.故选:C.6.若x2+(a﹣1)x+25是一个完全平方式,则a值为()A.﹣9B.﹣9或11C.9或﹣11D.11【分析】根据完全平方公式的结构a2±2ab+b2,即可求解.解:x2+(a﹣1)x+25=x2+(a﹣1)x+52是完全平方式,则(a﹣1)x=±2•x•5,解得:a=﹣9或11.故选:B.7.下列式子从左到右的变形中,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2﹣2x+1=x(x﹣2)+1C.a2﹣b2=(a+b)(a﹣b)D.mx+my+nx+ny=m(x+y)+n(x+y)【分析】根据因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解分别进行判断,即可得出答案.解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、符合因式分解的定义,故本选项正确;D、右边不是整式积的形式,不是因式分解,故本选项错误;故选:C.8.下列命题正确的是()A.相等的角是对顶角B.两条直线被第三条直线所截,同位角相等C.同旁内角互补D.在同一平面内,垂直于同一条直线的两条直线平行【分析】根据对顶角、平行线的性质和判定判断即可.解:A、相等的角不一定是对顶角,不符合题意;B、两条平行线被第三条直线所截,同位角相等,不符合题意;C、两直线平行,同旁内角互补,不符合题意;D、在同一平面内,垂直于同一条直线的两条直线平行,正确,符合题意;故选:D.9.已知a+b=2,则a2﹣b2+4b的值是()A.2B.3C.4D.6【分析】把a2﹣b2+4b变形为(a﹣b)(a+b)+4b,代入a+b=2后,再变形为2(a+b)即可求得最后结果.解:∵a+b=2,∴a2﹣b2+4b=(a﹣b)(a+b)+4b,=2(a﹣b)+4b,=2a﹣2b+4b,=2(a+b),=2×2,=4.故选:C.10.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.11.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有()A.1个B.2个C.3个D.4个【分析】根据全等三角形的判定得出点P的位置即可.解:要使△ABP与△ABC全等,点P到AB的距离应该等于点C到AB的距离,即3个单位长度,故点P的位置可以是P1,P3,P4三个,故选:C.12.观察下列一组图形中点的个数,其中第一个图形中共有4个点,第2个图形中共有10个点,第3个图形中共有19个点,…按此规律第6个图形中共有点的个数是()A.38B.46C.61D.64【分析】根据第1个图中点的个数是4=1+×1×2,第2个图中点的个数是10=1+×2×3,第3个图中点的个数是19=1+×3×4,…,可得第n个图中点的个数是1+n (n+1),据此求出第6个图中点的个数是多少即可.解:∵1个图中点的个数是4=1+×1×2,第2个图中点的个数是10=1+×2×3,第3个图中点的个数是19=1+×3×4,…,∴第n个图中点的个数是1+n(n+1),∴第6个图中点的个数是:1+×6×7=1+9×7=1+63=64,故选:D.二、填空题(本大题共4小题,每题5分,共20分)13.若=3,则x=27.【分析】根据立方的性质得出()3=33,进而求出x的值即可.解:∵()3=33,则x=33,∴x=27;故答案为:27.14.若(x+1)(2x﹣3)=2x2+mx+n,则m+n=﹣4.【分析】先根据多项式乘多项式的法则展开,再根据对应项的系数相等求得m,n,再代入计算即可求解.解:∵(x+1)(2x﹣3)=2x2﹣3x+2x﹣3=2x2﹣x﹣3,又∵(x+1)(2x﹣3)=2x2+mx+n,∴m=﹣1,n=﹣3,∴m+n=﹣1﹣3=﹣4.故答案为:﹣4.15.已知a﹣b=3,ab=2,则a2+b2的值为13.【分析】先根据完全平方公式变形:a2+b2=(a﹣b)2+2ab,再整体代入求出即可.解:∵a﹣b=3,ab=2,∴a2+b2=(a﹣b)2+2ab=32+2×2=13,故答案为:13.16.如图,已知△ABC中,AB=AC=24厘米,∠ABC=∠ACB,BC=16厘米,点D为AB 的中点.如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为4或6厘米/秒时,能够在某一时刻使△BPD与△CQP全等.【分析】求出BD的长,要使△BPD与△CQP全等,必须BD=CP或BP=CP,得出方程12=16﹣4x或4x=16﹣4x,求出方程的解即可.解:设经过x秒后,使△BPD与△CQP全等,∵AB=AC=24厘米,点D为AB的中点,∴BD=12厘米,∵∠ABC=∠ACB,∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,即12=16﹣4x或4x=16﹣4x,解得:x=1或x=2,x=1时,BP=CQ=4,4÷1=4;x=2时,BD=CQ=12,12÷2=6;即点Q的运动速度是4或6,故答案为:4或6三、解答题(本大题共8小题,其中17、18、19、20、21、22小题每题8分,23小题10分,24小题12分,共70分)17.计算:(1);(2).【分析】(1)先化简各式,然后再进行计算即可解答;(2)先算乘方,再按照从左到右的顺序进行计算即可解答.解:(1)=5+(﹣2)+(π﹣3)=5﹣2+π﹣3=π;(2)=﹣a6x5y4÷(﹣3a2xy2)•a2x2=a4x4y2•a2x2=a6x6y2.18.计算:(1)(16x3﹣8x2+4x)÷(﹣2x);(2)(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2.【分析】(1)利用多项式除以单项式的法则进行运算即可;(2)利用平方差公式,单项式乘多项式的法则,完全平方公式进行运算,再合并同类项即可.解:(1)(16x3﹣8x2+4x)÷(﹣2x)=16x3÷(﹣2x)﹣8x2÷(﹣2x)+4x÷(﹣2x)=﹣8x2+4x﹣2;(2)(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2=(9x2﹣4)﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5.19.因式分解:(1)a4x2﹣4a2x2y+4x2y2;(2)(x﹣1)(x﹣3)﹣8.【分析】(1)直接提取公因式x2,进而利用完全平方公式分解因式,进而得出答案;(2)直接利用多项式乘多项式化简,再运用十字相乘法分解因式得出答案.解:(1)a4x2﹣4a2x2y+4x2y2=x2(a4﹣4a2y+4y2)=x2(a2﹣2y)2;(2)(x﹣1)(x﹣3)﹣8=x2﹣4x+3﹣8=x2﹣4x﹣5=(x﹣5)(x+1).20.已知a、c满足2|a﹣2012|=2c﹣c2﹣1.求c a的值.【分析】将已知等式的右边提取﹣1,利用完全平方公式变形,移到等式左边,得到两非负数之和为0,进而得到两非负数分别为0,求出a与c的值,代入所求式子中计算,即可求出值.解:由已知得:2|a﹣2012|=﹣(c﹣1)2,即2|a﹣2012|+(c﹣1)2=0,则a﹣2012=0且c﹣1=0,解得:a=2012,c=1,故c a=12012=1.21.如图,两个正方形边长分别为a、b,如果a+b=17,ab=60,求阴影部分的面积.【分析】阴影部分的面积=正方形ABCD的面积+正方形EFGC的面积﹣三角形ABD的面积﹣三角形BGF的面积,列出关系式,整理后,将a+b及ab的值代入,即可求出阴影部分的面积.解:∵a+b=17,ab=60,∴S阴影=S正方形ABCD+S正方形EFGC﹣S△ABD﹣S△BGF=a2+b2﹣a2﹣(a+b)•b=a2+b2﹣a2﹣ab﹣b2=a2+b2﹣ab=(a2+b2﹣ab)=[(a+b)2﹣3ab]=×(172﹣3×60)=.22.四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F.(1)求证:△CBE≌△CDF;(2)若AB=3,DF=2,求AF的长.【分析】(1)根据角平分线的性质可得到CE=CF,根据余角的性质可得到∠EBC=∠D,已知CE⊥AB,CF⊥AD,从而利用AAS即可判定△CBE≌△CDF.(2)已知EC=CF,AC=AC,则根据HL判定△ACE≌△ACF得AE=AF,最后证得AB+DF =AF即可.【解答】(1)证明:∵AC平分∠BAD,CE⊥AB,CF⊥AD∴CE=CF∵∠ABC+∠D=180°,∠ABC+∠EBC=180°∴∠EBC=∠D.在△CBE与△CDF中,,∴△CBE≌△CDF(AAS);(2)在Rt△ACE与Rt△ACF中,,∴Rt△ACE≌Rt△ACF(HL),∴AE=AF,∴AB+DF=AB+BE=AE=AF,∵AB=3,DF=2,∴AF=3+2=5.23.若x满足(9﹣x)(x﹣4)=4,求(4﹣x)2+(x﹣9)2的值.解:设9﹣x=a,x﹣4=b,则(9﹣x)(x﹣4)=ab=4,a+b=(9﹣x)+(x﹣4)=5,∴(9﹣x)2+(x﹣4)2=a2+b2=(a+b)2﹣2ab=52﹣2×4=17请仿照上面的方法求解下面问题:(1)若x满足(5﹣x)(x﹣2)=2,求(5﹣x)2+(x﹣2)2的值(2)已知正方形ABCD的边长为x,E,F分别是AD、DC上的点,且AE=1,CF=3,长方形EMFD的面积是48,分别以MF、DF作正方形,求阴影部分的面积.【分析】(1)设(5﹣x)=a,(x﹣2)=b,根据已知等式确定出所求即可;(2)设正方形ABCD边长为x,进而表示出MF与DF,求出阴影部分面积即可.解:(1)设(5﹣x)=a,(x﹣2)=b,则(5﹣x)(x﹣2)=ab=2,a+b=(5﹣x)+(x﹣2)=3,∴(5﹣x)2+(x﹣2)2=(a+b)2﹣2ab=32﹣2×2=5;(2)∵正方形ABCD的边长为x,AE=1,CF=3,∴MF=DE=x﹣1,DF=x﹣3,∴(x﹣1)•(x﹣3)=48,∴(x﹣1)﹣(x﹣3)=2,∴阴影部分的面积=FM2﹣DF2=(x﹣1)2﹣(x﹣3)2.设(x﹣1)=a,(x﹣3)=b,则(x﹣1)(x﹣3)=ab=48,a﹣b=(x﹣1)﹣(x﹣3)=2,∴(a+b)2=(a﹣b)2+4ab=4+4×48=196.∴a+b=14.∴a=8,b=6,a+b=14,∴(x﹣1)2﹣(x﹣3)2=a2﹣b2=(a+b)(a﹣b)=14×2=28.即阴影部分的面积是28.24.小孟同学将等腰直角三角板ABC(AC=BC)的直角顶点C放在一直线m上,将三角板绕C点旋转,分别过A,B两点向这条直线作垂线AD,BE,垂足为D,E.(1)如图1,当点A,B都在直线m上方时,猜想AD,BE,DE的数量关系是DE=AD+BE;(2)将三角板ABC绕C点按逆时针方向旋转至图2的位置时,点A在直线m上方,点B在直线m下方.(1)中的结论成立吗?请你写出AD,BE,DE的数量关系,并证明你的结论.(3)将三角板ABC继续绕C点顺时针旋转,当点A在直线m的下方,点B在直线m的上方时,请你画出示意图,按题意标好字母,直接写出AD,BE,DE的数量关系结论DE =|BE﹣AD|.【分析】(1)先判断出∠CAD=∠BCE,进而得出△ACD≌△CBE,即可得出AD=CE,CD=BE,最后利用线段的和即可得出结论;(2)先判断出∠CAD=∠BCE,进而得出△ACD≌△CBE,即可得出AD=CE,CD=BE,最后利用线段的差即可得出结论;(3)先判断出∠CAD=∠BCE,进而得出△ACD≌△CBE,即可得出AD=CE,CD=BE,最后利用线段的和差即可得出结论.解:(1)∵△ABC是等腰直角三角形,∴AC=BC,∠ACD+∠BCE=90°,∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠CAD=90°,∴∠CAD=∠BCE,∴△ACD≌△CBE,∴CD=BE,AD=CE,∴DE=CD+CE=BE+AD;故答案为:DE=BE+AD;(2))∵△ABC是等腰直角三角形,∴AC=BC,∠ACD+∠BCE=90°,∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠CAD=90°,∴∠CAD=∠BCE,∴△ACD≌△CBE,∴CD=BE,AD=CE,∴DE=CE﹣CD=AD﹣BE:(3)Ⅰ、当点A,B在直线m异侧时,如图4,同(2)的方法得,△ACD≌△BCE,∴CD=BE,AD=CE,∴DE=CE﹣CD=AD﹣BE.Ⅱ、如图5,同Ⅰ的方法得,DE=BE﹣AD,故答案为:DE=|AD﹣BE|.。
四川省攀枝花市八年级上学期数学期中考试试卷

四川省攀枝花市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2017七下·枝江期中) 在实数﹣,,,﹣0.518,,| |,中,无理数的个数为()A . 1B . 2C . 3D . 42. (2分)(2020·溧阳模拟) 已知为整数,且<<,则等于()A . 1B . 2C . 3D . 43. (2分) (2019九下·温州竞赛) 在下列图形中既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分) (2016九上·乐至期末) 如图,在平行四边形ABCD中,点E在CD上,若DE:CE=1:2,则△CEF 与△ABF的周长比为()A . 1:2B . 1:3C . 2:3D . 4:95. (2分)下列条件中,不能判定四边形ABCD为平行四边形的条件是()A . AB∥CD,AB=CDB . ∠A=∠C,∠B=∠DC . AB=AD,BC=CDD . AB=CD,AD=BC6. (2分)下列说法中,错误的是()A . 平行四边形的对角线互相平分B . 对角线互相平分的四边形是平行四边形C . 菱形的对角线互相垂直D . 对角线互相垂直的四边形是菱形二、填空题 (共10题;共14分)7. (1分)(2020·绥化) 在中,,若,则的长是________.8. (1分)若﹣2有意义,则a的取值范围是________.9. (1分) (2019七上·江北期末) 计算 ________.10. (1分) (2016九上·市中区期末) 比较大小: ________ .(填“>”、“=”、“<”).11. (1分)如图,m=________,n=________.12. (1分) (2020八下·福州期中) 在平面直角坐标系中,已知点,,请确定点C 的坐标,使得以A , B , C , O为顶点的四边形是平行四边形,则满足条件的所有点C的坐标是________.13. (5分)(2017·营口) 在矩形纸片ABCD中,AD=8,AB=6,E是边BC上的点,将纸片沿AE折叠,使点B 落在点F处,连接FC,当△EFC为直角三角形时,BE的长为________.14. (1分) (2018九上·重庆月考) 如图,在边长为2的菱形ABCD中,∠DAB=60°,对角线AC、BD交于点O,以点A为圆心,以AO为半径画弧,交边AD于点E,交边AB于点F.则图中阴影部分的面积是________(结果保留根号和 ).15. (1分) (2019九上·珠海开学考) 如图,正方形ABCD ,以CD为边向正方形内作等边△DEC ,则∠EAB =________º.16. (1分)(2017·新泰模拟) 如图所示,在等腰梯形ABCD中,AD∥BC,AD=4,AB=5,BC=7,且AB∥DE,则三角形DEC的周长是________.三、解答题 (共8题;共56分)17. (10分) (2019九上·石狮月考) 计算:(1)(2)18. (5分) (2020七下·无锡月考) 在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.(1)①请画出平移后的△DEF;②请利用格点画出△ABC的高BM;(2)△DEF的面积为________;(3)若连接AD、CF,则这两条线段之间的关系是________.19. (5分)画出数轴,并在数轴上描出表示代表点.20. (5分)已知:如图,在四边形ABCD中,∠B=90°,AB=BC=2,CD=3,AD=1,求∠DAB的度数.21. (5分)已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,求证:PQ= BP.22. (6分)(2012·河池) 如图,在10×10的正方形网格中,△ABC的顶点和线段EF的端点都在边长为1的小正方形的顶点上.(1)填空:tanA=1 , AC=2(结果保留根号);(2)请你在图中找出一点D(仅一个点即可),连接DE、DF,使以D、E、F为顶点的三角形与△ABC全等,并加以证明.23. (10分)(2019·平阳模拟) 如图,在菱形ABCD中,点F在边CD上,点E在边CB上,且CE=CF.(1)求证:AE=AF;(2)若∠D=120°,∠BAE=15°,求∠E AF的度数.24. (10分) (2018九上·临渭期末) 如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=________cm时,四边形CEDF是矩形;②当AE=________cm时,四边形CEDF是菱形;(直接写出答案,不需要说明理由)参考答案一、单选题 (共6题;共12分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:二、填空题 (共10题;共14分)答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共8题;共56分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、答案:18-3、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:。
攀枝花八年级上期数学半期考题及答案

攀枝花八年级上期数学半期考题及答案题市二中2021级2021――2021学年上期半期考试考试题7.如果x2?kx?AB=(x-a)(x+b),那么K应该是()a、a+bb、a-bc、b-ad、-a-by2x?Yx8。
如果3?5,3? 4,那么3等于()数学(命题人:陈平,李康)本卷分为两部分:第一卷(选择题)和第二卷(非选择题)。
共120分,测试时间为120分钟。
答得号考不内名姓线级班订校装学第ⅰ卷(选择题,共30分)温馨提示:1。
在回答第一卷之前,考生必须用2B铅笔在机器可读卡片上写下自己的姓名、考试编号和考试科目。
2.考试结束后,将试卷拿走并妥善保管,归还机读卡和答卷。
一、选择题:(每小题3分,共30分;将答案填图在机读卡上。
)1.-27的立方根是()a、9b、-9c、3d、-32、下列说法正确的是()A.38是无理数;b、3.14是无理数;22c和7是无理数;d、 15是一个无理数。
3、下列各组数中,能构成直角三角形的是()a:4,5,6b:1,1,2c:6,8,11d:512234。
数字轴上n个点表示的数字可以是()a.10b.5北卡罗来纳州。
3d。
2-1012345. 以下公式中正确的一个是()a、(a+4)(a-4)=a2?4b、(5x-1)(1-5x)=25x2?1c、(?3x?2)2=4?12倍?9x2d、(x-3)(x-9)=x2?276.计算3a2b3?4的结果是()a、81a8b12b、12a6b7c、?12a6b7d、?81a8b12A.254b.6c.21d.209.以下公式的正确分解因子数为()①a2?16?(a?4)2②3m2?8m?m3?m(3m?8?m2)③a3?2a2?a?a(a2?2a?1)④a2?8a?16?(a?4)(a?4)a:1B:2C:3D:410。
已知在图中的矩形ABCD中,ab=3cm,aedad=9cm。
折叠矩形,使点B与点D重合,折痕为EF,然后为△ Abe是()BA,3cm2b、4cm2fcc、6cm2d、12cm2二、填空题:(每小题4分,共24分;将答案写在ⅱ卷答题卡上。
四川省攀枝花市八年级上学期数学期中考试试卷

四川省攀枝花市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如图,所给图形中是中心对称图形但不是轴对称图形的是()A .B .C .D .2. (2分) (2016八上·乐昌期中) 已知三角形的两边长分别是5、7,则第三边长a的取值范围是()A . 2<a<12B . 2≤a≤12C . a>2D . a<123. (2分)有下列五个命题:①对顶角相等;②内错角相等;③垂线段最短;④带根号的数都是无理数;⑤一个非负实数的绝对值是它本身.其中真命题的个数为()A . 1B . 2C . 3D . 44. (2分) (2017八下·西城期末) 如图,在Rt△ABC中,∠ACB =90°,∠ABC=30°,将△ABC绕点C顺时针旋转角(0°< <180°)至△A′B′C ,使得点A′恰好落在AB边上,则等于().A . 150°B . 90°C . 60°D . 30°5. (2分) (2020八下·龙江月考) 如图,在矩形ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,若∠DAE∶∠BAE=3∶1,则∠EAC的度数是()A . 18°B . 36°C . 45°D . 72°6. (2分)根据下列条件,能确定三角形形状的是()①最小内角是20°;②最大内角是100°;③最大内角是89°;④三个内角都是60°;⑤有两个内角都是80°.A . ①②③④B . ①③④⑤C . ②③④⑤D . ①②④⑤7. (2分)(2020·江北模拟) 如图,以Rt△ABC各边为边分别向外作等边三角形,编号为①、②、③,将②、①如图所示依次叠在③上,已知四边形EMNC与四边形MPQN的面积分别为9 与7 ,则斜边BC的长为()A . 5B . 9C . 10D . 168. (2分) (2020八上·咸阳开学考) 如图,已知∠AOB=10°,且OC=CD=DE=EF=FG=GH,则∠BGH=()A . 50°B . 60°C . 70°D . 80°9. (2分) (2020八上·鄞州期中) 如图,△ABC中,AC=BC=1,∠ACB=90°,以AC、BC、AB为边作如图所示的等边△ABD,等边△ACE,等边△BCF,连结DE,DF,则四边形DFCE的面积为()A .B .C .D . 110. (2分)(2018·娄底模拟) 如图,在等腰直角△ACB中,∠ACB=90°,O是斜边AB的中点,点D,E分别在直角边AC,BC上,且∠DOE=90°,DE交OC于点P.则下列结论:( 1 )图形中全等的三角形只有两对;(2)△ABC的面积等于四边形CDOE的面积的2倍;( 3 )CD+CE= OA;(4)AD2+BE2=2OP•OC.其中正确的结论有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共7题;共7分)11. (1分) (2019九上·沭阳月考) 如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则的度数为________.12. (1分)(2020·如皋模拟) 如图,直线l1∥l2∥l3 ,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为________.13. (1分) (2016八上·萧山期中) 有下列命题:①等边三角形有一个角等于60°②角的内部,到角两边距离相等的点,在这个角的平分线③如果那么a=b ④对顶角相等,这些命题是逆命题是真命题的有________ 。
攀枝花市八年级上学期数学期中考试试卷

攀枝花市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分)(2019·广东模拟) 下面的图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分) (2017七下·揭西期末) 下列每组数是三条线段的长度,用它们能摆成三角形的是()A . 3㎝,8㎝,12㎝B . 3㎝,4㎝,5㎝C . 6㎝,9㎝,15㎝D . 100㎝,200㎝,300㎝3. (2分)不是利用三角形稳定性的是()A . 照相机的三角架B . 三角形房架C . 自行车的三角形车架D . 矩形门框的斜拉条4. (2分)(2020·柯桥模拟) 如图所示,∠α的度数是()A . 10°B . 20°C . 30°D . 40°5. (2分)下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A . ①②③B . ①②C . ②③D . ①③6. (2分)(2019·蒙自模拟) 一个正n边形的每一个外角都是60°,则这个正n边形是()A . 正四边形B . 正五边形C . 正六边形D . 正七边形7. (2分) (2019八上·扬州月考) △ABC≌△DEF,AB与DE是对应边,∠A=20°,∠B=70°,则∠C=()A . 70°B . 90°C . 20°D . 110°8. (2分)(2020·防城港模拟) 下列叙述正确的是()A . 方差越大,说明数据就越稳定B . 在不等式两边同乘或同除以一个不为0的数时,不等号的方向不变C . 不在同一直线上的三点确定一个圆D . 两边及其一边的对角对应相等的两个三角形全等9. (2分) (2018七下·松北期末) 下列说法中:①三角形中至少有2个角是锐角;②各边都相等的多边形是正多边形;③钝角三角形的三条高交于一点;④两个等边三角形全等;⑤三角形两个内角的平分线的交点到三角形三边的距离相等,正确的个数是()A . 1B . 2C . 3D . 410. (2分)(2011·义乌) 如图,已知AB∥CD,∠A=60°,∠C=25°,则∠E等于()A . 60°B . 25°C . 35°D . 45°11. (2分) (2019八上·普兰店期末) 线段AB的垂直平分线上一点P到A点的距离PA=5,则点P到B点的距离PB等于()A . PB=5B . PB>5C . PB<5D . 无法确定12. (2分) (2019八下·忻城期中) 已知在△ABC中,∠ACB=90° ,∠A=60°,则∠B的度数是()A . 30°B . 35°C . 40°D . 50°13. (2分)(2020·海曙模拟) 如图,矩形ABCD中,E为边AD上一点(不为端点),EF⊥AD交AC于点F,要求△FBC的面积,只需知道下列哪个三角形的面积即可()A . △EBCB . △EBFC . △ECDD . △EFC14. (2分)(2017·港南模拟) 如图,将一个等腰Rt△ABC对折,使∠A与∠B重合,展开后得折痕CD,再将∠A折叠,使C落在AB上的点F处,展开后,折痕AE交CD于点P,连接PF、EF,下列结论:①tan∠CAE= ﹣1;②图中共有4对全等三角形;③若将△PEF沿PF翻折,则点E一定落在AB上;④PC=EC;⑤S四边形DFEP=S△APF .正确的个数是()A . 1个B . 2个C . 3个D . 4个15. (2分) (2019九上·南海月考) 如图,菱形ABCD中的边长为1,∠BAD=60°,将菱形ABCD绕点A逆时针方向旋转30°得到菱形AB′CD′,B′C′交CD于点E,连接AE,CC′,则下列结论:①ΔAB′E≌ΔADE;②EC=ED;③AE⊥CC′;④四边形AB′ED的周长为 +2.其中符合题意结论的个数是()A . 1B . 2C . 3D . 416. (2分) (2018八下·北海期末) 如图,在正方形ABCD中,点E,F分别在CD,BC上,且AF=BE,BE与AF相交于点G,则下列结论中错误的是()A . BF=CEB . ∠DAF=∠BECC . AF⊥BED . ∠AFB+∠BEC=90°二、填空题 (共4题;共4分)17. (1分) (2019九上·黄石期中) 若点,关于轴对称,则 ________..18. (1分)(2020·海淀模拟) 如图,正方形的边长为,正方形的边长为.如果正方形绕点旋转,那么、两点之间的最小距离是________ .19. (1分) (2019八上·博白期中) 如图,在中,,则的度数是________.20. (1分)(2020·门头沟模拟) 如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,那么的度数为________°.三、解答题 (共6题;共36分)21. (2分) (2019九下·桐梓月考) 如图,它是一个8×10的网格,每个小正方形的边长均为1,每个小正方形的顶点叫格点,△ABC的顶点均在格点上.①画出△ABC关于直线OM对称的△A1B1C1.②画出△ABC关于点O的中心对称图形△A2B2C2.③△A1B1C1与△A2B2C2组成的图形是轴对称图形吗?如果是,请画出对称轴.△A1B1C1与△A2B2C2组成的图形(填“是”或“不是”)轴对称图形.22. (10分) (2019八上·韶关期中) 如图(1)求图形中的x的值;(2)求:∠A、∠B、∠C、∠D的度数。
八年级上册攀枝花数学全册全套试卷测试与练习(word解析版)

八年级上册攀枝花数学全册全套试卷测试与练习(word解析版)一、八年级数学三角形填空题(难)1.直角三角形中,两锐角的角平分线所夹的锐角是_____度.【答案】45【解析】【分析】根据题意画出符合条件的图形,然后根据直角三角形的两锐角互余和角平分线的性质,以及三角形的外角的性质求解即可.【详解】如图所示△ACB为Rt△,AD,BE,分别是∠CAB和∠ABC的角平分线,AD,BE相交于一点F.∵∠ACB=90°,∴∠CAB+∠ABC=90°∵AD,BE,分别是∠CAB和∠ABC的角平分线,∴∠FAB+∠FBA=12∠CAB+12∠ABC=45°.故答案为45.【点睛】此题主要考查了直角三角形的两锐角互余和三角形的外角的性质,关键是根据题意画出相应的图形,利用三角形的相关性质求解.2.如图,有一块直角三角板XYZ放置在△ABC上,三角板XYZ的两条直角边XY、XZ改变位置,但始终满足经过B、C两点.如果△ABC中,∠A=52°,则∠ABX+∠ACX=_________________.【答案】38°【解析】∠A=52°,∴∠ABC+∠ACB=128°,∠XBC+∠XCB=90°,∴∠ABX+∠ACX=128°-90°=38°.3.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°【答案】B【解析】正五边形的内角是∠ABC=()521805-⨯=108°,∵AB=BC,∴∠CAB=36°,正六边形的内角是∠ABE=∠E=()621806-⨯=120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B.4.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.【答案】12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.5.已知a、b、c为△ABC的三边,化简:|a+b﹣c|-|a﹣b﹣c|+|a﹣b+c|=______.--【答案】3a b c【解析】【分析】根据三角形的三边关系判断绝对值内式子的正负,然后利用绝对值的性质去掉绝对值,再去括号合并同类项即可.【详解】解:∵a、b、c为△ABC的三边,∴a+b>c,a-b<c,a+c>b,∴a+b-c>0,a-b-c<0,a-b+c>0,∴|a+b-c|-|a-b-c|+|a-b+c|=(a+b-c)+(a-b- c)+(a-b+c)=a+b-c+a-b- c+a-b+c=3a-b-c.故答案为:3a-b-c.【点睛】本题主要考查了三角形的三边关系定理和利用绝对值的性质进行化简,利用三角形的三边关系得出绝对值内式子的正负是解决此题的关键.6.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.【答案】40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.二、八年级数学三角形选择题(难)7.一个三角形的两边长分别为5和7,设第三边上的中线长为x,则x的取值范围是()A.x>5 B.x<7 C.2<x<12 D.1<x<6【答案】D【解析】如图所示:AB=5,AC=7,设BC=2a,AD=x,延长AD至E,使AD=DE,在△BDE与△CDA中,∵AD=DE,BD=CD,∠ADC=∠BDE,∴△BDE≌△CDA,∴AE=2x,BE=AC=7,在△ABE中,BE-AB<AE<AB+BE,即7-5<2x<7+5,∴1<x<6.故选D.8.如图,△ABC中,角平分线AD、BE、CF相交于点H,过H点作HG⊥AC,垂足为G,那么∠AHE和∠CHG的大小关系为()A.∠AHE>∠CHG B.∠AHE<∠CHG C.∠AHE=∠CHG D.不一定【答案】C【解析】【分析】先根据AD、BE、CF为△ABC的角平分线可设∠BAD=∠CAD=x,∠ABE=∠CBE=y,∠BCF=∠ACF=z,由三角形内角和定理可知,2x+2y+2z=180°即x+y+z=90°在△AHB中由三角形外角的性质可知∠AHE=x+y=90°﹣z,在△CHG中,∠CHG=90°﹣z,故可得出结论.【详解】∵AD、BE、CF为△ABC的角平分线∴可设∠BAD=∠CAD=x,∠ABE=∠CBE=y,∠BCF=∠ACF=z,∴2x+2y+2z=180°即x+y+z=90°,∵在△AHB中,∠AHE=x+y=90°﹣z,在△CHG中,∠CHG=90°﹣z,∴∠AHE=∠CHG,故选C.【点睛】本题考查了三角形的内角和定理及三角形外角的性质,熟知三角形的内角和180°,三角形的外角等于和它不相邻的两个内角的和是解答此题的关键.9.一个多边形的每个内角都相等,并且它的一个外角与一个内角的比为1:3,则这个多边形为()A.三角形B.四边形C.六边形D.八边形【答案】D【解析】【分析】一个外角与一个内角的比为1 : 3,则内角和是外角和的3倍,根据多边形的外角和是360°,即可求得多边形的内角的度数,依据多边形的内角和公式即可求解.【详解】解:多边形的内角和是:360°×3=1080°.设多边形的边数是n,则(n-2)•180=1080,解得:n=8.即这个多边形是正八边形.故选D.【点睛】本题考查了多边形的内角和定理以及多边形的外角和定理,注意多边形的外角和不随边数的变化而变化.10.已知正多边形的一个外角等于40,那么这个正多边形的边数为()A.6 B.7 C.8 D.9【答案】D【解析】【分析】根据正多边形的外角和以及一个外角的度数,即可求得边数.【详解】正多边形的一个外角等于40,且外角和为360,÷=,则这个正多边形的边数是:360409故选D.【点睛】本题主要考查了多边形的外角和定理,熟练掌握多边形的外角和等于360度是解题的关键.11.一个多边形的内角和是900°,则这个多边形的边数为()A.6 B.7 C.8 D.9【答案】B【解析】【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【详解】解:设这个多边形的边数为n,则有(n-2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选B.【点睛】本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.12.已知三角形的两边分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.10【答案】C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长.【详解】设第三边为x,根据三角形的三边关系,得:4-1<x<4+1,即3<x<5,∵x为整数,∴x的值为4.三角形的周长为1+4+4=9.故选C.【点睛】此题考查了三角形的三边关系.关键是正确确定第三边的取值范围.三、八年级数学全等三角形填空题(难)13.如图,ABE△,BCD均为等边三角形,点A,B,C在同一条直线上,连接AD,EC,AD与EB相交于点M,BD与EC相交于点N,连接OB,下列结论正确的有_________.①AD EC=;②BM BN=;③MN AC;④EM MB=;⑤OB平分AOC∠【答案】①②③⑤.【解析】【分析】由题意根据全等三角形的判定和性质以及等边三角形的性质和角平分线的性质,对题干结论依次进行分析即可.【详解】解:∵△ABE,△BCD均为等边三角形,∴AB=BE,BC=BD,∠ABE=∠CBD=60°,∴∠ABD=∠EBC,在△ABD和△EBC中,AB BEABD EBCBD BC⎧⎪∠∠⎨⎪⎩===∴△ABD≌△EBC(SAS),∴AD=EC ,故①正确;∴∠DAB=∠BEC ,又由上可知∠ABE=∠CBD=60°,∴∠EBD=60°,在△ABM 和△EBN 中,MAB NEB AB BEABE EBN ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△ABM ≌△EBN (ASA ),∴BM=BN ,故②正确;∴△BMN 为等边三角形,∴∠NMB=∠ABM=60°,∴MN ∥AC ,故③正确;若EM=MB ,则AM 平分∠EAB ,则∠DAB=30°,而由条件无法得出这一条件,故④不正确;如图作,,BG AD BH EC ⊥⊥∵由上可知△ABD ≌△EBC ,∴两个三角形对应边的高相等即BG BH =,∴OB 是AOC ∠的角平分线,即有OB 平分AOC ∠,故⑤正确.综上可知:①②③⑤正确.故答案为:①②③⑤.【点睛】本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定和性质以及等边三角形的性质和角平分线的性质与平行线的判定是解题的关键.14.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为48和36,求△EDF的面积________.【答案】6【解析】【分析】作DM=DE交AC于M,作DN⊥AC,利用角平分线的性质得到DN=DF,将三角形EDF的面积转化为三角形DNM的面积来求.【详解】作DM=DE交AC于M,作DN⊥AC,∵AD是△ABC的角平分线,DF⊥AB,∴DF=DN,∵DE=DG,∴DG=DM,∴Rt△DEF≌Rt△DMN(HL),∵DG=DM, DN⊥AC,∴MN=NG,∴△DMN≌△DNG,∵△ADG和△AED的面积分别为48和36,∴S△MDG=S△ADG-S△ADM=48-36=12,∴S△DEF=12S△MDG=1212=6,故答案为:6【点睛】本题考查了角平分线的性质及全等三角形的判定及性质,正确地作出辅助线,将所求的三角形的面积转化为另外的三角形的面积来求是解题关键.15.如图,∠ACB=90°,AC=BC,点C(1,2)、A(-2,0),则点B的坐标是__________.【答案】(3,-1)【解析】分析:过C 和B 分别作CD ⊥OD 于D ,BE ⊥CD 于E ,利用已知条件可证明△ADC ≌△CEB ,再由全等三角形的性质和已知数据即可求出B 点的坐标.详解:过C 和B 分别作CD ⊥OD 于D ,BE ⊥CD 于E ,∵∠ACB=90°,∴∠ACD+∠CAD=90°,∠ACD+∠BCE=90°,∴∠CAD=∠BCE ,在△ADC 和△CEB 中,∠ADC=∠CEB=90°;∠CAD=∠BCE ,AC=BC ,∴△ADC ≌△CEB(AAS),∴DC=BE ,AD=CE ,∵点C 的坐标为(1,2),点A 的坐标为(−2,0),∴AD=CE=3,OD=1,BE=CD=2,∴则B 点的坐标是(3,−1).故答案为(3,−1).点睛:本题主要考查了全等三角形的判定与性质,解题关键在于结合坐标、图形性质和已经条件.16.如图,52A ∠=︒,O 是ABC ∠、ACB ∠的角平分线交点,P 是ABC ∠、ACB ∠外角平分线交点,则BOC ∠=______︒,BPC ∠=_____︒,联结AP ,则PAB ∠=______︒,点O ____(选填“在”、“不在”或“不一定在”)直线AP 上.【答案】116 64 26 在【解析】【分析】∠ABC+∠ACB=180°-∠A,∠OBC+∠OCB= 12(∠ABC+∠ACB), ∠BOC=180°-(∠OBC+∠OCB),据此可求∠BOC的度数;∠BCP= 12∠BCE=12(∠A+∠ABC),∠PBC=12∠CBF=12(∠A+∠ACB),由三角形内角和定理得:∠BPC=180°-∠BCP-∠PBC,据此可求∠BPC的度数;作PG⊥AB于G,PH⊥AC于H,PK⊥BC于K,利用角平分线的性质定理可证明PG=PH,于是可证得AP平分∠BAC,据此可求∠PAB的度数;同理可证OA平分∠BAC,故点O在直线AP上.【详解】解:∵O点是∠ABC和∠ACB的角平分线的交点,∴∠OBC+∠OCB= 12(∠ABC+∠ACB)= 12(180°-∠A)=90°- 12∠A,∴∠BOC=180°-(∠OBC+∠OCB)=180°-90°+ 12∠A=90°+ 12∠A=90°+26°=116°;如图,∵BP、CP为△ABC两外角的平分线,∴∠BCP= 12∠BCE=12(∠A+∠ABC),∠PBC= 12∠CBF=12(∠A+∠ACB),由三角形内角和定理得:∠BPC=180°-∠BCP-∠PBC=180°- 12[∠A+(∠A+∠ABC+∠ACB)]=180°- 12(∠A+180°)=90°- 12∠A=90°-26°=64°.如图,作PG⊥AB于G,PH⊥AC于H,PK⊥BC于K,连接AP,∵BP、CP为△ABC两外角的平分线,PG⊥AB,PH⊥AC,PK⊥BC,∴PG=PK,PK=PH,∴PG=PH,∴AP平分∠BAC,∴PAB∠=26°同理可证OA平分∠BAC,点O在直线AP上.故答案是:(1) 116 ;(2) 64;(3) 26;(4) 在.【点睛】此题主要考查了角平分线的性质定理和判定定理及三角形内角和定理,熟知定理并正确作出辅助线是解题关键.17.已知在△ABC 中,两边AB、AC的中垂线,分别交BC于E、G.若BC=12,EG=2,则△AEG的周长是________.【答案】16或12.【解析】【分析】根据线段垂直平分线性质得出AE=BE,CG=AG,分两种情况讨论:①DE和FG的交点在△ABC内,②DE和FG的交点在△ABC外.【详解】∵DE,FG分别是△ABC的AB,AC边的垂直平分线,∴AE=BE,CG=AG.分两种情况讨论:①当DE和FG的交点在△ABC内时,如图1.∵BC=12,GE=2,∴AE+AG=BE+CG=12+2=14,△AGE的周长是AG+AE+EG=14+2=16.②当DE和FG的交点在△ABC外时,如图2,△AGE的周长是AG+AE+EG= BE+CG+EG=BC=12.故答案为:16或12.【点睛】本题考查了线段垂直平分线性质,注意:线段垂直平分线上的点到线段两个端点的距离相等.18.如图,Rt△ABC中,AB=AC,∠BAC=90°,BE⊥CE,垂足是E,BE交AC于点D,F是BE 上一点,AF⊥AE,且C是线段AF的垂直平分线上的点,AF=22,则DF=________.【答案】3.【解析】由题意可证的△ABF ≌△ACE,可得△AEF 为等腰直角三角形,取AF 的中点O ,连接CO 交BE 与点G ,连接AG ,可得△AGF, △AGE,△CEG 均为等腰直角三角形,可得AG 平行等于CE ,可得四边形AGCE 为平行四边形,可得FD 的长.【详解】解:如图Rt △ABC 中,AB=AC ,∠BAC=90°,∴∠ABC=∠ACB=45°,又∠BAC=90°,BE ⊥CE ,∠DAE 为∠BAC 与EAF 的公共角∴∠BAF=∠CAE,∠ABC=∠ACB=45°, BE ⊥CE ∴∠ABF+∠CBE=45°,∠CBE+∠ACB+∠ACE=90°,即: ∠CBE+∠ACE=45°,∴∠ABF=∠ACE ,在△ABF 与△ACE 中,有AB AC BAF CAE ABF ACE =⎧⎪∠=∠⎨⎪∠=∠⎩,∴△ABF ≌△ACE , ∴AE=AF, △AEF 为等腰直角三角形, 取AF 的中点O ,连接CO 交BE 与点G ,连接AG, C 是线段AF 的垂直平分线上的点,易得△AGF, △AGE,△CEG 均为等腰直角三角形, AF=22 ∴AG=GE=CE=FG=2,又AG ⊥BE,CE ⊥BE,可得AG ∥CE,∴四边形AGCE 为平行四边形,∴GD=DE=1,∴DF=FG+GD=2+1=3.【点睛】本题主要考查三角形全等及性质,综合性强,需综合运用所学知识求解.四、八年级数学全等三角形选择题(难)19.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC ⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是( )A .AD +BC =ABB .与∠CBO 互余的角有两个C .∠AOB =90°D .点O 是CD 的中点【解析】【分析】根据角平分线上的点到角的两边距离相等可得AD=AE,BC=BE,利用角平分线的定义和平角的性质可得到∠AOB的度数,再利用“HL”证明Rt△AOD和Rt△AOE全等,根据全等三角形对应边相等可得OD=OE,同理可得OC=OE,然后求出∠AOB=90°,然后对各选项分析判断即可得解.【详解】∵点A,B分别是∠NOP,∠MOP平分线上的点,∴AD=AE,BC=BE.∵AB=AE+BE,∴AB=AD+BC,故A选项结论正确;与∠CBO互余的角有∠COB,∠EOB,∠OAD,∠OAE共4个,故B选项结论错误;∵点A、B分别是∠NOP、∠MOP平分线上的点,∴∠AOE=12∠EOD,∠BOC=12∠MOE,∴∠AOB=12(∠EOD+∠MOE)=12×180°=90°,故C选项结论正确;在Rt△AOD和Rt△AOE中,AO AOAD AE=⎧⎨=⎩,∴Rt△AOD≌Rt△AOE(HL),∴OD=OE,同理可得OC=OE,∴OC=OD=OE,∴点O是CD的中点,故D选项结论正确.故选B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,余角的定义,熟记各性质并准确识图是解题的关键.20.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【答案】C【解析】【分析】分两种情况进行讨论,根据题意得出BP=2t=2和AP=16-2t=2即可求得.【详解】解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,由题意得:BP=2t=2,所以t=1,因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,由题意得:AP=16-2t=2,解得t=7.所以,当t的值为1或7秒时.△ABP和△DCE全等.故选C.【点睛】本题考查全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.21.如图,把ΔABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN 上,直线MN∥AB.在ΔABC中,若∠AOB=125°,则∠ACB的度数为()A.70°B.65°C.60°D.85°【答案】A【解析】【分析】利用平行线间的距离处处相等,可知点O到BC、AC、AB的距离相等,得出O为三条角平分线的交点,根据三角形内角和定理和角平分线的定义即可得出结论.【详解】如图1,过点O作OD⊥BC于D,OE⊥AC于E,OF⊥AB于F.∵MN∥AB,∴OD=OE=OF(平行线间的距离处处相等).如图2:过点O作OD'⊥BC于D',作OE'⊥AC于E',作OF'⊥AB于F'.由题意可知:OD=OD',OE=OE',OF=OF',∴OD'=OE'=OF',∴图2中的点O是三角形三个内角的平分线的交点.∵∠AOB=125°,∴∠OAB+∠OBA=180°-125°=55°,∴∠CAB+∠CBA=2×55°=110°,∴∠ACB=180°-110°=70°.故选A.【点睛】本题考查了三角形的内心,平行线间的距离处处相等,角平分线定义,解答本题的关键是判断出OD =OE =OF .22.如图,在▱ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中①∠DCF =123,1x x ==-∠BCD ;②EF =CF ;③S △BEC =2S △CEF ;④∠DFE =3∠AEF .一定成立的是( )A .①②B .①③④C .①②③D .①②④【答案】D【解析】①∵F 是AD 的中点,∴AF=FD ,∵在?ABCD 中,AD=2AB ,∴AF=FD=CD ,∴∠DFC=∠DCF ,∵AD ∥BC ,∴∠DFC=∠FCB ,∴∠DCF=∠BCF ,∴∠DCF=12∠BCD ,故此选项正确;延长EF ,交CD 延长线于M ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A=∠MDF ,∵F 为AD 中点,∴AF=FD ,在△AEF 和△DFM 中,∠A =∠FDMAF =DF ∠AFE =∠DFM ,∴△AEF ≌△DMF (ASA ),∴FE=MF ,∠AEF=∠M ,∵CE ⊥AB ,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此选项正确.故正确的有:①②④.故选D.=,D、E是斜边BC上两点,且∠DAE=45°,将23.如图,在Rt△ABC中,AB AC△ADC绕点A顺时针旋转90︒后,得到△AFB,连接EF.列结论:+=①△ADC≌△AFB;②△ABE≌△ACD;③△AED≌△AEF;④BE DC DE 其中正确的是( )A.②④B.①④C.②③D.①③【答案】D【解析】解:∵将△ADC绕点A顺时针旋转90︒后,得到△AFB,∴△ADC≌△AFB,故①正确;②无法证明,故②错误;③∵△ADC≌△AFB,∴AF=AD,∠FAB=∠DAC.∵∠DAE=45°,∴∠BAE+∠DAC=45°,∠FA E=∠DAE=45°.在△FAE和△DAE中,∵AF=AD,∠FAE=∠DAE,AE=AE,∴△FAE≌△DAE,故③正确;④∵△ADC≌△AFB,∴DC=BF,∵△FAE≌△DAE,∴EF=ED,∵BF+BE>EF,∴DC+BE>ED .故④错误.故选D.24.下列条件中,不能判定两个直角三角形全等的是( )A .两条直角边对应相等B .有两条边对应相等C .斜边和一锐角对应相等D .一条直角边和斜边对应相等【答案】B【解析】 根据全等三角形的判定SAS ,可知两条直角边对应相等的两个直角三角形全等,故A 不正确;根据一条直角边和斜边对应相等的两个直角三角形,符合全等三角形的判定定理HL ,能判定全等;若两条直角边对应相等的两个直角三角形,符合全等三角形的判定定理SAS ,也能判全等,但是有两边对应相等,没说明是什么边对应,故不能判定,故B 正确.根据全等三角形的判定AAS ,可知斜边和一锐角对应相等的两直角三角形全等,故C 不正确;根据直角三角形的判定HL ,可知一条直角边和斜边对应相等两直角三角形全等,故D 不正确.故选B.点睛:此题主要考查了直角三角形全等的判定,解题时利用三角形全等的判定SSS ,SAS ,ASA ,AAS ,HL ,直接判断即可.五、八年级数学轴对称三角形填空题(难)25.如图,ABC ∆中,90BAC ∠=︒,AD BC ⊥,ABC ∠的平分线BE 交AD 于点F ,AG 平分DAC ∠.给出下列结论:①BAD C ∠=∠;②EBC C ∠=∠;③AE AF =;④//FG AC ;⑤EF FG =.其中正确的结论是______.【答案】①③④【解析】【分析】①根据等角的余角相等即可得到结果,故①正确;②如果∠EBC=∠C ,则∠C=12∠ABC ,由于∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;③由BE 、AG 分别是∠ABC 、∠DAC 的平分线,得到∠ABF=∠EBD .由于∠AFE=∠BAD+∠FBA ,∠AEB=∠C+∠EBD ,得到∠AFE=∠AEB ,可得③正确;④连接EG ,先证明△ABN ≌△GBN ,得到AN=GN ,证出△ANE ≌△GNF ,得∠NAE=∠NGF ,进而得到GF ∥AE ,故④正确;⑤由AE=AF ,AE=FG ,而△AEF 不一定是等边三角形,得到EF 不一定等于AE ,于是EF 不一定等于FG ,故⑤错误.【详解】∵∠BAC=90°,AD ⊥BC ,∴∠C+∠ABC=90°,∠C+∠DAC=90°,∠ABC+∠BAD=90°,∴∠ABC=∠DAC ,∠BAD=∠C ,故①正确;若∠EBC=∠C ,则∠C=12∠ABC , ∵∠BAC=90°,那么∠C=30°,但∠C 不一定等于30°,故②错误;∵BE 、AG 分别是∠ABC 、∠DAC 的平分线,∴∠ABF=∠EBD ,∵∠AFE=∠BAD+∠ABF ,∠AEB=∠C+∠EBD ,又∵∠BAD=∠C ,∴∠AFE=∠AEF ,∴AF=AE ,故③正确;∵AG 是∠DAC 的平分线,AF=AE ,∴AN ⊥BE ,FN=EN ,在△ABN 与△GBN 中, ∵90ABN GBN BN BN ANB GNB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴△ABN ≌△GBN (ASA ),∴AN=GN ,又∵FN=EN ,∠ANE=∠GNF ,∴△ANE ≌△GNF (SAS ),∴∠NAE=∠NGF ,∴GF ∥AE ,即GF ∥AC ,故④正确;∵AE=AF ,AE=FG ,而△AEF 不一定是等边三角形,∴EF 不一定等于AE ,∴EF 不一定等于FG ,故⑤错误.故答案为:①③④.【点睛】本题主要考查等腰三角形的判定和性质定理,全等三角形的判定和性质定理,直角三角形的性质定理,掌握掌握上述定理,是解题的关键.26.如图,点P 是AOB ∠内任意一点,OP =5 cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,PN PM MN ++的最小值是5 cm ,则AOB ∠的度数是__________.【答案】30°【解析】 试题解析:分别作点P 关于OA 、OB 的对称点C 、D ,连接CD ,分别交OA 、OB 于点M 、N ,连接OC 、OD 、PM 、PN 、MN ,如图所示:∵点P 关于OA 的对称点为D ,关于OB 的对称点为C , ∴PM=DM ,OP=OD ,∠DOA=∠POA ;∵点P 关于OB 的对称点为C ,∴PN=CN ,OP=OC ,∠COB=∠POB ,∴OC=OP=OD ,∠AOB=12∠COD , ∵PN+PM+MN 的最小值是5cm ,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5=OP ,∴OC=OD=CD , 即△OCD 是等边三角形,∴∠COD=60°,∴∠AOB=30°.27.如图,在等腰直角三角形ABC 中,90ACB ∠=︒,4AC BC ==,D 为BC 中点,E 为AC 边上一动点,连接DE ,以DE 为边并在DE 的右侧作等边DEF ∆,连接BF ,则BF 的最小值为______.【答案】3【解析】【分析】由60°联想旋转全等,转换动长为定点到定线的长,构建等边三角形BDG,利用△BDF≌△GDE,转换BF=GE,然后即可求得其最小值.【详解】以BD为边作等边三角形BDG,连接GE,如图所示:∵等边三角形BDG,等边三角形DEF∴∠BDG=∠EDF=60°,BD=GD=BG,DE=DF=EF∴∠BDG+∠GFD=∠EDF+∠GFD,即∠BDF=∠GDE∴△BDF≌△GDE(SAS)∴BF=GE当GE⊥AC时,GE有最小值,如图所示GE′,作DH⊥GE′∴BF=GE=CD+12DG=2+1=3故答案为:3.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是由60°联想旋转全等,转换动长为定点到定线的长.28.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 -
市二中2014 级2012——2013学年上期 半期考试考试题
数 学 (命题人:陈平,李康)
本卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
共 120 分,考试时间 120分钟。
第Ⅰ卷(选择题,共30分)
温馨提示:1、答第Ⅰ卷前,考生务必把自己的姓名、考号、考试科目用2B 铅笔涂写在机读卡上。
2、考试结束后,将本试题卷带走妥善保管,机读卡和答题卷交回。
一、选择题:(每小题3分,共30分;将答案填图在机读卡上。
)
1、-27的立方根是( )
A 、9
B 、-9
C 、3
D 、-3 2、下列说法正确的是( )
A 、
3
8
是无理数; B 、3.14是无理数;
C 、722
是无理数; D 、15是无理数。
3、下列各组数中,能构成直角三角形的是( )
A :4,5,6
B :1,1
:6,8,11 D :5,12,23 4、在数轴上N 点表示的数可能是( )
A.10
B.5
C.3
D.2 5、下列各式中正确的是( )
A 、(a +4)(a -4)=42-a
B 、(5x -1)(1-5x )=1252-x
C 、2)23(+-x =29124x x +-
D 、(x -3)(x -9)=272-x 6、计算()
4
3
2
b
3a --的结果是( )
A、12
881b
a B 、7
6
12b a C 、7
6
12b a - D 、12
881b a -
7、如果ab kx x --2=(x -a )(x +b ),则k 应为( )
A 、a +b
B 、a -b
C 、b -a
D 、-a -b
8、若53=x
,43=y ,则y x -23等于( )
A.;
4
25 B.6 C.21 D.20
9、下列各式分解因式正确的个数有( )
①22)4(16-=-a a ②)83(832
32m m m m m m ++=++ ③)12(2223++=++a a a a a a ④)4)(4(1682
+-=+-a a a a
A :1个
B :2个
C :3个
D :4个 10、已知,如图长方形ABCD 中,AB=3cm , AD=9cm ,将此长方形折叠,使点B 与点D 重合, 折痕为EF ,则△AB
E 的面积为( ) A 、32
cm
B 、42cm
C 、62cm
D 、122cm
二、填空题:(每小题4分,共24分;将答案写在Ⅱ卷答题卡上。
)
11、169的平方根是 ;16的算术平方根是 。
12、2)2(+a +|b -1|+c -3=0,则a +b +c = 。
13、如果252++kx x 是一个完全平方式,那么k=______ __。
14、若a+b=3,ab=2,则2a +2b =________ ___。
15、一只蚂蚁从长为4cm 、宽为3 cm ,高是5 cm 的
长方体纸箱的A 点沿纸箱爬到B 点,那么
它所行的最短路线的长是____________cm 。
16、将一根长为15㎝的筷子置于底面直径为5㎝,高为12㎝的圆柱形
水杯中,设筷子露在杯子外面的长为h ㎝,则h 的取值范围是________________。
装
订
线
内
不
得答
题
A
第15题
- 2 -
小小提醒:请把第Ⅰ卷答案正确涂到机读卡上,第Ⅱ卷做到答题卷上!可要仔细!
市二中2014 级2012——2013学年上期 半期考试考试题
数 学 (命题人:陈平,李康)
第Ⅱ卷(非选择题,共 66分)
温馨提示:1、答卷前请将密封线内的项目填写清楚。
2、请用蓝(黑)墨水的钢笔或蓝(黑)笔芯的圆珠笔或中性笔将答案工整、清晰地写在试卷上。
3、考试结束后,将本答题卷交回。
二、填空题答题卡:
11. ; 12. 13.
14. 15. 16.
三、解答题(要有必要的解答过程和相应的文字说明)。
17、将下列各式分解因式。
(每小题2分,共12分)
(1)
ba a 423
- (2) )()(a b y b a x -+-
(3)22
42025m mn n ++ (4) ab b a 8)2(2
+-
(5) mn mn +-3
(6) 122
2
-+-b b a
18、(4分)计算:0
3
3
)14.3(64)1(8-+-
-+--π
19、(共8分)化解 (1):)4
1()2(2
2
22
abc c b a
-
∙- (2)
: )3)(4(2)1(2
+---x x x
20、(6分)先化解,再求值:
2
24)2()2)(2(m mn n m n m ÷-+-,其中3
2,1=
-=n m 。
21、(6分)已知:7
)(2=+b a
,9)(2
=-b a 求2
2
b
a +及a
b 的值。
班级: 姓名: 考号:□□□□□□□□□
×××××××××××××××××××××××× 密封线内不能答题 ××××××××××××××××××××××××××
- 3 -
22、(7分)如图,四边形ABCD 中,AB =3cm ,BC =4cm ,CD =12cm ,DA =13cm ,且
∠ABC =900,求四边形ABCD 的面积。
23、(7分)如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB , BC=6,AC=8, 求AB 、CD
的长。
24、(7分)如图所示,某住宅社区在相邻两楼之间修建一个上方是一个半圆,下方
是长方形的仿古通道,现有一辆卡车装满家具后,高4米,宽2.8米,请问这辆送家具的卡车能否通过这个通道。
25、(9分)如图,某沿海开放城市A 接到台风警报,在该市正南方向100km 的B 处
有一台风中心,沿BC 方向以20km/h 的速度向D 移动,已知城市A 到BC 的距离AD=60km ;
(1)那么台风中心经过多长时间从B 点移到D 点?(4分)
(2)如果在距台风中心80km 的圆形区域内都将有受到台风破坏的影响,那么城市A 将会在几小时后受到台风影响?(3分)(65.27≈) (3)由(2)计算台风将会影响城市A 几小时?(2分)
26、(3分)找回损失。
(注:加上此题的分数总分不能超过120分)
已知500206448442
2
2
-++=++c b a c b a ;
(1) 求a 、b 、c 的值;(2分)(2)判断以a 、b 、c 为边长的三角形是什么形状并说
明理由。
(1分)
A B C
D
D C
B
A
×××××××××××××××××××××××× 密封线内不能答题 ××××××××××××××××××××××××××
- 4 -
市二中2014 级2012—2013学年上期 半期考试考试题答案 一、选择题:DDBAC DBAAC 二、填空题:
11、13±;2 12、2 13、10± 14、5 15、
74
16、32≤≤h
三、解答题 17、(1))2(22b a a - (2)(x-y )(a-b ) (3)2
)
52(n m +
(4)2)2(b a + (5))1()1(n n mn -+ (6))1()1(+--+b a b a
18、-6
19、(1)455c b a - (2)252+-x 20、3
8
21、8;2
1-
22、236cm
23、AB=10;CD=4.8 24、能通过 25、(1)4小时; (2)1.35小时; (3)5.3小时; 26、(1)a=6;b=8;c=10
(2)直角三角形;利用逆勾股定理证明。