三角函数的综合应用

合集下载

三角函数平面解析几何与空间几何的综合应用

三角函数平面解析几何与空间几何的综合应用

三角函数平面解析几何与空间几何的综合应用在数学中,三角函数是一组基本的数学函数,它们在平面解析几何和空间几何中有着广泛的应用。

本文将通过一些具体的例子,探讨三角函数在这两个领域中的综合应用。

一、平面解析几何中的三角函数应用1. 直角三角形在平面解析几何中,直角三角形是研究三角函数最常见的情况之一。

三角函数中的正弦函数、余弦函数和正切函数,都可以用于求解直角三角形中的各种问题。

以一个直角三角形ABC为例,其中∠C为90度。

根据三角函数的定义,我们可以得到以下关系:正弦函数sin(A) = 边BC/斜边AC余弦函数cos(A) = 边AB/斜边AC正切函数tan(A) = 边BC/边AB这些关系可以用于求解各种直角三角形中的未知量,例如已知两个角和一个边,可以求解出其他两个边的长度。

2. 三角函数的周期性三角函数具有周期性,这个性质在平面解析几何中也有一些应用。

例如,在计算圆的周长和面积时,我们可以用到正弦函数和余弦函数的周期性。

对于一个半径为r的圆,其周长C等于2πr,而面积S等于πr^2。

我们可以通过应用三角函数的周期性,用正弦函数或余弦函数的性质,将圆的周长和面积表示为三角函数的形式。

二、空间几何中的三角函数应用1. 三维坐标系中的角度计算在空间几何中,我们常常需要计算三维坐标系中的角度。

三角函数可以帮助我们计算空间中两条直线或两个平面之间的夹角。

例如,对于两条直线l1和l2,我们可以将它们的方向向量表示为三维坐标系中的向量,然后通过计算这两个向量的点积和模的乘积,得到它们夹角的余弦值。

进一步,可以利用反余弦函数来求解夹角的度数。

2. 空间中的向量运算在空间几何中,三角函数可以用于向量的运算。

例如,两个向量的夹角可以通过计算它们的点积和模的乘积得到。

另外,可以利用正弦函数和余弦函数来表示向量的投影和分解。

对于给定的两个向量a和b,它们的夹角θ可以通过以下公式表示:cos(θ) = (a·b) / (|a|·|b|)其中,a·b表示两个向量的点积,|a|和|b|分别表示向量的模。

三角函数的综合应用

三角函数的综合应用

解答题规范练三角函数的综合应用(推荐时间:70分钟)1. 设函数f (x )=a ·b ,其中向量a =(2cos x,1),b =(cos x ,3sin 2x ),x ∈R .(1)若函数f (x )=1-3,且x ∈⎣⎡⎦⎤-π3,π3,求x 的值; (2)求函数y =f (x )的单调增区间,并在给出的坐标系中画出y =f (x )在区间[0,π]上的图象.解 (1)依题设得f (x )=2cos 2x +3sin 2x =1+cos 2x +3sin 2x =2sin ⎝⎛⎭⎫2x +π6+1. 由2sin ⎝⎛⎭⎫2x +π6+1=1-3,得sin ⎝⎛⎭⎫2x +π6=-32. ∵-π3≤x ≤π3,∴-π2≤2x +π6≤5π6,∴2x +π6=-π3,即x =-π4.(2)当-π2+2k π≤2x +π6≤π2+2k π(k ∈Z ),即-π3+k π≤x ≤π6+k π(k ∈Z )时,函数y =f (x )单调递增,即函数y =f (x )的单调增区间为⎣⎡⎦⎤-π3+k π,π6+k π(k ∈Z ),x 0 π6 π3 π2 2π3 5π6 π y232-122. 已知向量a =(cos x +3sin x ,3sin x ),b =(cos x -3sin x ,2cos x ),函数f (x )=a ·b -cos 2x .(1)求函数f (x )的值域;(2)若f (θ)=15,θ∈⎣⎡⎦⎤π6,π3,求sin 2θ的值. 解 (1)f (x )=a ·b -cos 2x=(cos x +3sin x )(cos x -3sin x )+3sin x ·2cos x -cos 2x =cos 2x -3sin 2x +23sin x cos x -cos 2x =cos 2x -sin 2x -2sin 2x +23sin x cos x -cos 2x =cos 2x +3sin 2x -1 =2sin ⎝⎛⎭⎫2x +π6-1, f (x )的值域为[-3,1].(2)由(1)知f (θ)=2sin ⎝⎛⎭⎫2θ+π6-1, 由题设2sin ⎝⎛⎭⎫2θ+π6-1=15,即sin ⎝⎛⎭⎫2θ+π6=35, ∵θ∈⎣⎡⎦⎤π6,π3,∴2θ+π6∈⎣⎡⎦⎤π2,5π6, ∴cos ⎝⎛⎭⎫2θ+π6=-45, ∴sin 2θ=sin ⎣⎡⎦⎤⎝⎛⎭⎫2θ+π6-π6=sin ⎝⎛⎭⎫2θ+π6cos π6-cos ⎝⎛⎭⎫2θ+π6sin π6 =35×32-⎝⎛⎭⎫-45×12=33+410.3. 已知向量m =⎝⎛⎭⎫sin A ,12与n =(3,sin A +3cos A )共线,其中A 是△ABC 的内角. (1)求角A 的大小;(2)若BC =2,求△ABC 面积S 的最大值.解 (1)∵m ∥n ,∴sin A ·(sin A +3cos A )-32=0.∴1-cos 2A 2+32sin 2A -32=0,即32sin 2A -12cos 2A =1, 即sin ⎝⎛⎭⎫2A -π6=1. ∵A ∈(0,π),∴2A -π6∈⎝⎛⎭⎫-π6,11π6. 故2A -π6=π2,A =π3.(2)∵BC =2,由余弦定理得b 2+c 2-bc =4,又b 2+c 2≥2bc ,∴bc ≤4(当且仅当b =c 时等号成立), 从而S △ABC =12bc sin A =34bc ≤34×4= 3.即△ABC 面积S 的最大值为 3.4. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -3cos C cos B =3c -ab.(1)求sin Csin A的值; (2)若B 为钝角,b =10,求a 的取值范围. 解 (1)由正弦定理,设a sin A =b sin B =c sin C=k , 则3c -a b =3k sin C -k sin A k sin B =3sin C -sin A sin B ,所以cos A -3cos C cos B =3sin C -sin A sin B,即(cos A -3cos C )sin B =(3sin C -sin A )cos B , 化简可得sin(A +B )=3sin(B +C ). 又A +B +C =π,所以sin C =3sin A , 因此sin Csin A =3.(2)由sin Csin A=3得c =3a .由题意知⎩⎪⎨⎪⎧a +c >ba 2+c 2<b 2,又b =10,所以52<a <10.5. 已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫其中x ∈R ,A >0,ω>0,-π2<φ<π2的部分图象如图所示.(1)求函数f (x )的解析式;(2)已知函数f (x )的图象上的三点M ,N ,P 的横坐标分别为-1,1,5,求sin ∠MNP 的值. 解 (1)由图可知,A =1,最小正周期T =4×2=8. 由T =2πω=8,得ω=π4.又f (1)=sin ⎝⎛⎭⎫π4+φ=1,且-π2<φ<π2, 所以π4+φ=π2,解得φ=π4.所以f (x )=sin ⎝⎛⎭⎫π4x +π4. (2)因为f (-1)=0,f (1)=1, f (5)=sin ⎝⎛⎭⎫5π4+π4=-1,所以M (-1,0),N (1,1),P (5,-1). 所以|MN |=5,|PN |=20,|MP |=37. 由余弦定理得cos ∠MNP =5+20-3725×20=-35.因为∠MNP ∈(0,π), 所以sin ∠MNP =45.6. 已知向量a =(cos α,sin α),b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),其中0<α<x <π.(1)若α=π4,求函数f (x )=b ·c 的最小值及相应x 的值;(2)若a 与b 的夹角为π3,且a ⊥c ,求tan 2α的值.解 (1)∵b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),α=π4,∴f (x )=b ·c =cos x sin x +2cos x sin α+sin x cos x +2sin x cos α=2sin x cos x +2(sin x +cos x ).令t =sin x +cos x ⎝⎛⎭⎫π4<x <π,则2sin x cos x =t 2-1,且-1<t < 2. 则y =t 2+2t -1=⎝⎛⎭⎫t +222-32,-1<t <2, ∴t =-22时,y min =-32,此时sin x +cos x =-22, 即2sin ⎝⎛⎭⎫x +π4=-22, ∵π4<x <π,∴π2<x +π4<54π, ∴x +π4=76π,∴x =11π12.∴函数f (x )的最小值为-32,相应x 的值为11π12.(2)∵a 与b 的夹角为π3,∴cos π3=a ·b |a |·|b |=cos αcos x +sin αsin x =cos(x -α).∵0<α<x <π,∴0<x -α<π,∴x -α=π3.∵a ⊥c ,∴cos α(sin x +2sin α)+sin α(cos x +2cos α)=0, ∴sin(x +α)+2sin 2α=0,即sin ⎝⎛⎭⎫2α+π3+2sin 2α=0. ∴52sin 2α+32cos 2α=0, ∴tan 2α=-35.。

三角函数的综合应用+课件-2025届高三数学一轮复习

三角函数的综合应用+课件-2025届高三数学一轮复习

(2)由题意,得 f(A)=2sin 2A-π3- 3=0,即 sin 2A-π3= 23,
∵A∈0,π2, 则 2A-π3∈-π3,23π, ∴2A-π3=π3,∴A=π3.
在△ABC 中, 由 a2=b2+c2-2bc cos A=42+32-2×4×3×12=13, 可得 a= 13, 又∵12bc sin A=12AD×a,即12×4×3× 23=21AD× 13, ∴AD=61339,故 BC 边上的高 AD 的长为61339.
(2)根据正弦定理得sina A=sinc C=sinb
B=
4 =8 3
3
3,
2
所以
a=8
3
3 sin
A,c=8
3
3 sin
C.
所以
a+c=8
3
3 (sin
A+sin
C).
因为 A+B+C=π,B=π3,所以 A+C=23π,
所以 a+c=8
3
3 sin
A+sin
23π-A=8
3
33 2sin
A+
23cos
A
=8sin A+π6.
因为 0<A<23π,
所以 A+π6∈π6,56π,所以 sin A+π6∈12,1,则 a+c∈(4,8].
所以 a+c 的取值范围是(4,8].
【反思感悟】已知三角形一边及其对角,求取值范围的问题 的解法
(1)(不妨设已知 a 与 sin A 的值)根据 2R=sina A求出三角形外接
∴a2+c2 b2=sin2Asi+n2Csin2B=cos22sCin+2Ccos2C =(1-2sin2Cs)in2+2C(1-sin2C)=2+4sins4iCn2-C 5sin2C

三角函数的实际应用

三角函数的实际应用

三角函数的实际应用三角函数是数学中重要的概念之一,它们不仅仅是理论上的概念,在日常生活中也有着广泛的实际应用。

三角函数的实际应用涉及到多个领域,包括物理、工程、天文学以及计算机图形等。

本文将介绍三角函数在这些领域中的一些实际应用案例,并探讨其重要性和影响。

一、物理应用1. 弹簧振动弹簧振动是物理学中常见的现象,它是由于弹性体受到外力作用而发生的周期性振动。

三角函数可以用来描述弹簧振动的运动规律。

根据胡克定律,弹簧振动的恢复力与其伸长长度成正比。

这个关系可以用正弦函数表示,即 F = k*sin(ωt),其中 F 表示恢复力,k 表示弹性系数,ω 表示角频率,t 表示时间。

通过三角函数的表达,我们可以计算出弹簧振动的周期、频率等重要参数,进而研究和分析弹簧振动的性质,为相关实验和工程设计提供依据。

2. 交流电路在电学中,交流电路是一种重要的电路类型。

三角函数可以用来描述交流电路中电压和电流的变化情况。

正弦函数被广泛应用于交流电路的分析和计算中。

例如,正弦波电压在时间上的变化可以用 V(t) = Vm * sin(ωt) 表示,其中 V(t) 表示时间 t 时的电压值,Vm 表示电压的最大值,ω 表示角频率。

通过使用三角函数,我们可以计算交流电路中的功率、相位差等重要参数,从而更好地理解和设计电路。

二、工程应用1. 建筑设计在建筑设计中,三角函数被广泛地应用于计算和测量。

例如,三角函数可以用来计算建筑物的高度、倾斜度以及角度等信息。

在进行建筑物定位和测量时,使用三角函数可以通过测量某个点与两个已知点之间的距离和角度,推导出该点的准确位置和方向。

这对建筑师和工程师来说是非常重要的,它们可以基于这些计算结果进行建筑物的合理布局和设计。

2. 机械运动机械运动是工程学中的一个重要领域,三角函数在机械运动中具有广泛的应用。

例如,在机械设计中,三角函数可以描述旋转运动的速度和加速度,帮助工程师分析和计算各种机械零件的运动特性。

三角函数的万能公式应用大全

三角函数的万能公式应用大全

三角函数的万能公式应用大全1.求解三角函数的值:sin30° = sin(90° - 60°) = sin90°cos60° - cos90°sin60° = cos60° = 0.5同样地,可以使用万能公式求解其他角度的三角函数值。

2.简化复杂的三角函数表达式:有时候,我们需要简化一些复杂的三角函数表达式,以便更方便地进行运算。

万能公式常常被用于化简这些表达式。

例如,对于表达式 sinx + cosx,可以使用万能公式将其化简为:sinx + cosx = sqrt(2) * sin(x + 45°)这样的化简可以使得表达式更加简洁,并且易于计算。

3.证明三角恒等式:三角恒等式是指在三角函数中成立的等式。

我们可以使用万能公式来证明这些恒等式。

例如,我们要证明 tanx + cotx = secx * cscx。

可以使用万能公式将式子的左边化简为:tanx + cotx = (sinx/cosx) + (cosx/sinx) = (sin^2x +cos^2x)/(sinxcosx) = 1/(sinxcosx) = cscxsecx通过使用万能公式,我们得到了三角恒等式的证明。

4.解三角方程:在解三角方程的过程中,有时候需要将方程中的三角函数转化为其他形式。

万能公式提供了这样的转化的方法。

例如,对于方程 sinx = cosx,可以使用万能公式将其转化为:sinx = cosxsinx = sin(90° - x)根据单位圆上的正弦函数的性质,可以得到x=45°以上是三角函数万能公式的一些常见应用。

通过灵活运用这些公式,我们可以更加便捷地解决三角函数的相关问题,并深入理解其性质和关系。

三角函数在生活中的应用

三角函数在生活中的应用

三角函数在生活中的应用
三角函数在生活中的应用非常广泛,以下是一些具体的例子:
1. 导航和测量:在地理学和导航系统中,三角函数被广泛用于确定位置和导航路线。

例如,使用正弦函数可以计算出一个船只或飞机相对于地平线的高度,而使用余弦函数可以帮助计算两地之间的距离和方位角。

2. 音乐学:在音乐学中,三角函数也有重要的应用。

例如,正弦函数可以用来描述声音的波动,音乐中的音调和和弦也可以用三角函数来表示。

3. 光学:在光学中,三角函数被广泛应用于描述和计算光线的传播、折射和反射。

我们可以利用三角函数来计算出反射镜或折射体中光线的角度和路径。

4. 建筑和工程:在建筑和工程中,三角函数常用于测量高度、距离和角度。

例如,工程师可以使用三角函数来计算建筑物的高度、角度和结构的稳定性。

5. 航海和航空:航海员和飞行员使用三角函数来计算船舶或飞机的位置、航向和速度。

三角函数也用于制定航线和导航系统。

6. 电磁学:电磁学中常用交流电,而交流电可以用三角函数(特别是正弦函数和余弦函数)来描述。

此外,复数函数常用正弦函数和余弦函数的复变函数表示。

7. 日常生活:在现实生活中存在大量具有周期性变化的现象,比如农业中筒车中盛水筒距离水面的相对高度与时间的关系、物理中
的简谐运动等。

这些都可以借助三角函数来描述。

总的来说,三角函数在生活中的应用非常广泛,几乎无处不在。

三角函数的应用

三角函数的应用

三角函数的应用
三角函数是数学中的一种基本函数,广泛应用于各种数学问题中。

本文将介绍三角函数在几何、物理、工程等领域中的应用。

几何应用
1. 求角度:可以利用正弦、余弦和正切函数来求解三角形的角度。

例如,已知三角形两条边的长度,可以通过正切函数求得其夹角。

2. 求边长:三角函数可以用于计算三角形中未知边长的长度。

例如,已知一个角度和与之相邻的一边的长度,则可以通过正弦或余弦函数计算出另外两条边的长度。

3. 解决三角形的面积问题:三角函数可以帮助计算不规则三角形的面积。

例如,可以通过正弦公式求出三角形面积。

物理应用
1. 物体运动的计算:正弦和余弦函数可以用来描述物体在水平
方向和垂直方向的运动。

2. 振动和波动:三角函数也被广泛运用于描述振动和波动现象。

例如,正弦函数可以描述声波的传播,余弦函数可以描述气体分子
在空气中的振动。

工程应用
1. 静力学:三角函数可以用来解决物体在平衡状态下的问题。

例如,可以通过正弦和余弦函数计算某个角度对应的平衡点位置。

2. 电学:三角函数可以用来描述交流电路的行为。

例如,可以
利用正弦函数描述电流和电压的周期变化。

综上所述,三角函数在几何、物理、工程等领域都有广泛的应用,是数学中的一种基本工具。

掌握三角函数的应用可以帮助我们
更好地理解和解决各种实际问题。

三角函数的应用

三角函数的应用

三角函数的应用1.几何应用三角函数在几何学中有广泛的应用。

例如,通过正弦定理和余弦定理,我们可以计算任意三角形的边长或角度。

此外,三角函数也经常用于解决三角形的面积、高度和面积比较等几何问题。

2.物理应用三角函数在物理学中也起着重要的作用。

例如,我们可以利用正弦函数来描述物体的周期性振动,如钟摆的摆动、弹簧的拉伸等。

此外,通过余弦函数,我们还可以描述物体的匀速圆周运动,如行星绕太阳的运动等。

3.工程应用在工程学中,三角函数的应用十分广泛。

例如,在计算机图形学中,正弦和余弦函数可用于描述三维空间中的旋转和平移变换。

另外,在建筑和土木工程领域,三角函数可用于计算房屋的高度、角度和斜面的坡度等。

4.统计应用三角函数在统计学中也有一些应用。

例如,在时间序列分析中,我们可以利用三角函数来拟合和预测周期性数据,如季节性销售数据、股市走势等。

此外,三角函数还可以用于频谱分析和信号处理等领域。

5.日常生活中的应用除了学术和科学领域,三角函数还在我们的日常生活中有许多应用。

例如,我们可以利用三角函数来计算日出日落时间、倾斜角度和倾斜距离等。

此外,三角函数还可以用于导航、测量和建模等实际问题的解决。

综上所述,三角函数在几何学、物理学、工程学、统计学和日常生活中都有广泛的应用。

通过运用三角函数,我们可以解决各种与角度、周期和振动有关的问题,为实际应用提供有效的数学工具和方法。

参考文献:___。

(2010)。

数学三角函数的应用研究。

数学的实践与认识。

40(6)。

58-59.___。

(2015)。

三角函数及其应用研究。

数学教育。

(19)。

32-34.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的综合应用
1. 设函数f (x )=a ·b ,其中向量a =(2cos x,1),b =(cos x ,3sin 2x ),x ∈R .
(1)若函数f (x )=1-3,且x ∈⎣⎡⎦
⎤-π3,π
3,求x 的值; (2)求函数y =f (x )的单调增区间,并在给出的坐标系中画出y =f (x )在区间[0,π]上的图象.
解 (1)依题设得f (x )=2cos 2x +3sin 2x =1+cos 2x +3sin 2x =2sin ⎝⎛⎭⎫2x +π
6+1. 由2sin ⎝⎛⎭⎫2x +π6+1=1-3,得sin ⎝⎛⎭⎫2x +π6=-3
2. ∵-π3≤x ≤π3,∴-π2≤2x +π6≤5π
6,
∴2x +π6=-π3,即x =-π4
.
(2)当-π2+2k π≤2x +π6≤π
2
+2k π(k ∈Z ),
即-π3+k π≤x ≤π
6
+k π(k ∈Z )时,函数y =f (x )单调递增,即函数y =f (x )的单调增区间为
⎣⎡⎦
⎤-π3+k π,π6+k π(k ∈Z ),
2. 已知向量a =(cos x +3sin x ,3sin x ),b =(cos x -3sin x ,2cos x ),函数f (x )=a ·b -
cos 2x .
(1)求函数f (x )的值域;
(2)若f (θ)=1
5,θ∈⎣⎡⎦⎤π6,π3,求sin 2θ的值. 解 (1)f (x )=a ·b -cos 2x
=(cos x +3sin x )(cos x -3sin x )+3sin x ·2cos x -cos 2x =cos 2x -3sin 2x +23sin x cos x -cos 2x =cos 2x -sin 2x -2sin 2x +23sin x cos x -cos 2x =cos 2x +3sin 2x -1 =2sin ⎝⎛⎭⎫2x +π
6-1, f (x )的值域为[-3,1].
(2)由(1)知f (θ)=2sin ⎝
⎛⎭⎫2θ+π
6-1, 由题设2sin ⎝⎛⎭⎫2θ+π6-1=1
5,即sin ⎝⎛⎭⎫2θ+π6=35, ∵θ∈⎣⎡⎦⎤π6,π3,∴2θ+π6∈⎣⎡⎦⎤π2,5π6, ∴cos ⎝⎛⎭⎫2θ+π6=-45
, ∴sin 2θ=sin ⎣⎡⎦⎤⎝⎛⎭⎫2θ+π6-π6=sin ⎝⎛⎭⎫2θ+π6cos π6-cos ⎝⎛⎭⎫2θ+π6sin π
6 =35×3
2-⎝⎛⎭⎫-45×12=33+410
.
3. 已知向量m =⎝
⎛⎭⎫sin A ,1
2与n =(3,sin A +3cos A )共线,其中A 是△ABC 的内角. (1)求角A 的大小;
(2)若BC =2,求△ABC 面积S 的最大值. 解 (1)∵m ∥n ,∴sin A ·(sin A +3cos A )-3
2=0.

1-cos 2A 2+32sin 2A -32=0,即32sin 2A -1
2
cos 2A =1,即sin ⎝⎛⎭⎫2A -π6=1. ∵A ∈(0,π),∴2A -π
6∈⎝⎛⎭⎫-π6,11π6. 故2A -π6=π2,A =π
3
.
(2)∵BC =2,由余弦定理得b 2+c 2-bc =4,
又b 2+c 2≥2bc ,∴bc ≤4(当且仅当b =c 时等号成立),
从而S △ABC =12bc sin A =34bc ≤3
4×4= 3.
即△ABC 面积S 的最大值为 3.
4. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -3cos C cos B =3c -a
b
.
(1)求
sin C
sin A
的值; (2)若B 为钝角,b =10,求a 的取值范围. 解 (1)由正弦定理,设a sin A =b sin B =c sin C
=k , 则
3c -a b =3k sin C -k sin A k sin B =3sin C -sin A
sin B
, 所以cos A -3cos C cos B =3sin C -sin A sin B

即(cos A -3cos C )sin B =(3sin C -sin A )cos B , 化简可得sin(A +B )=3sin(B +C ).
又A +B +C =π,所以sin C =3sin A ,因此sin C
sin A =3.
(2)由
sin C
sin A
=3得c =3a . 由题意知⎩
⎪⎨⎪⎧
a +c >
b a 2+
c 2<b 2,又b =10,所以5
2<a <10.
5. 已知函数f (x )=A sin(ωx +φ)⎝
⎛⎭⎫其中x ∈R ,A >0,ω>0,-π2<φ<π
2的部分图象如图所示.
(1)求函数f (x )的解析式;
(2)已知函数f (x )的图象上的三点M ,N ,P 的横坐标分别为-1,1,5,求sin ∠MNP 的值. 解 (1)由图可知,A =1,最小正周期T =4×2=8. 由T =2πω=8,得ω=π
4
.
又f (1)=sin ⎝⎛⎭⎫π4+φ=1,且-π2<φ<π
2, 所以π4+φ=π2,解得φ=π
4.
所以f (x )=sin ⎝⎛⎭⎫π4x +π4.
(2)因为f (-1)=0,f (1)=1, f (5)=sin ⎝⎛⎭⎫
5π4+π4=-1,
所以M (-1,0),N (1,1),P (5,-1). 所以|MN |=5,|PN |=20,|MP |=37. 由余弦定理得 cos ∠MNP =
5+20-3725×20
=-3
5.
因为∠MNP ∈(0,π),所以sin ∠MNP =4
5
.
6. 已知向量a =(cos α,sin α),b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),其中
0<α<x <π.
(1)若α=π
4,求函数f (x )=b ·c 的最小值及相应x 的值;
(2)若a 与b 的夹角为π
3
,且a ⊥c ,求tan 2α的值.
解 (1)∵b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),α=π
4

∴f (x )=b ·c =cos x sin x +2cos x sin α+sin x cos x +2sin x cos α=2sin x cos x +2(sin x +cos x ).
令t =sin x +cos x ⎝⎛⎭⎫π
4<x <π,则2sin x cos x =t 2-1,且-1<t < 2. 则y =t 2+2t -1=⎝
⎛⎭⎫t +
222-3
2
,-1<t <2, ∴t =-
22时,y min =-32,此时sin x +cos x =-22,即2sin ⎝⎛⎭⎫x +π4=-22
, ∵π4<x <π,∴π2<x +π4<54π,∴x +π4=76π,∴x =11π
12. ∴函数f (x )的最小值为-32,相应x 的值为11π12.
(2)∵a 与b 的夹角为π
3

∴cos π3=a ·b |a |·|b |=cos αcos x +sin αsin x =cos(x -α).
∵0<α<x <π,∴0<x -α<π,∴x -α=π3
.
∵a ⊥c ,∴cos α(sin x +2sin α)+sin α(cos x +2cos α)=0, ∴sin(x +α)+2sin 2α=0,即sin ⎝⎛⎭⎫2α+π
3+2sin 2α=0. ∴52sin 2α+3
2cos 2α=0,∴tan 2α=-35
.。

相关文档
最新文档