12,三角函数的综合应用
浅谈生活中三角函数的应用

浅谈生活中三角函数的应用
三角函数是数学中的重要概念,也是一种非常常见和基础的数学工具。
它在生活中有
着广泛的应用,下面我将从几个方面来谈谈生活中三角函数的应用。
三角函数在建筑和工程领域中应用广泛。
在建筑中,我们需要根据地形和建筑物的高
度来确定施工的角度和高度。
三角函数可以帮助我们计算出这些信息,从而确保建筑物的
安全和可靠。
在工程中,三角函数可以用来计算力的分解和合成,帮助我们理解物体的运
动和力学性质。
三角函数在物理学中也有着重要的应用。
在力学中,我们经常需要以角度的形式来描
述力的方向和大小,而三角函数可以帮助我们计算出这些角度。
在电磁学中,三角函数可
以用来描述电流、电压和电阻之间的关系,从而研究和解决电路中的问题。
在地理学和导航中,三角函数也有着重要的应用。
地图上的位置可以用经纬度来表示,而经纬度又可以转化为角度的形式。
通过使用三角函数,我们可以计算出两个位置之间的
距离和方向,从而帮助我们进行导航和定位。
三角函数还在天文学中有着广泛的应用。
根据天体的位置和角度,我们可以使用三角
函数计算出天体的运动轨迹和周期。
三角函数还可以用来描述天体的亮度、温度等性质,
帮助我们研究和理解宇宙的奥秘。
三角函数在计算机图形学中也发挥着重要的作用。
计算机图形学是计算机科学和数学
的交叉学科,它研究如何使用计算机来生成和处理图像。
在计算机图形学中,三角函数被
广泛应用于处理和变换图像的角度和位置信息,使得我们可以根据需要修改和处理图像。
初中数学三角函数的定义与应用

初中数学三角函数的定义与应用三角函数是初中数学中的一个重要概念,它是数学中用于研究三角形和周期性现象的函数。
三角函数有正弦、余弦和正切三种常见形式,它们在数学和实际生活中都有广泛的应用。
本文将介绍三角函数的定义和其在初中数学中的应用。
一、正弦函数的定义与应用正弦函数是三角函数中最基本的一种,通常用sin表示。
它的定义是:在直角三角形中,对于任意一个锐角α,正弦函数的值等于对边与斜边的比值,即sinα = 对边/斜边。
正弦函数在初中数学中的应用非常广泛,例如在解决直角三角形的问题中,我们可以利用正弦函数来求解未知边长或角度。
二、余弦函数的定义与应用余弦函数是另一种常见的三角函数,通常用cos表示。
它的定义是:在直角三角形中,对于任意一个锐角α,余弦函数的值等于邻边与斜边的比值,即cosα = 邻边/斜边。
与正弦函数类似,余弦函数也在解决直角三角形的问题中起到了重要作用。
三、正切函数的定义与应用正切函数是三角函数中的第三种形式,通常用tan表示。
它的定义是:在直角三角形中,对于任意一个锐角α,正切函数的值等于对边与邻边的比值,即tanα = 对边/邻边。
正切函数的应用也非常广泛,特别是在解决梯度问题、角度关系问题等方面具有重要意义。
四、三角函数的周期性三角函数具有周期性的特点,即在一定范围内呈现出重复的规律性。
正弦函数、余弦函数和正切函数的周期均为2π(弧度制下)或360°(角度制下)。
因此,我们可以利用周期性特点来简化计算,并在解决周期性问题时加以应用。
五、三角函数的图像与性质正弦函数、余弦函数和正切函数都具有特定的图像形态和性质。
例如,正弦函数的图像呈现出上下波动的曲线,余弦函数的图像则是波浪形的曲线,而正切函数的图像则是以原点为对称中心的S形曲线。
对于初中生来说,理解这些图像形态及其性质对于学习和应用三角函数非常有帮助。
六、三角函数的应用举例在实际生活中,三角函数有许多应用。
例如,利用三角函数可以解决测量高楼大厦的高度问题,通过测量垂直角和距离,可以利用三角函数计算出高楼大厦的实际高度。
应用三角函数解决实际问题

应用三角函数解决实际问题三角函数是数学中重要的概念之一,它与三角形的边长和角度之间的关系密切相关。
在实际生活中,我们可以利用三角函数解决各种实际问题,例如测量高楼的高度、计算船只与灯塔之间的距离等。
本文将通过几个具体的例子,详细介绍如何应用三角函数解决实际问题。
一、测量高楼的高度假设我们想要测量一座高楼的高度,但是无法直接测量。
此时,我们可以利用三角函数中的正切函数来解决这个问题。
我们可以站在离这座高楼较远的地方,仰望其顶部,并找到一个合适的角度。
然后,通过测量自己所站位置与地面的距离,以及仰望高楼时的角度,利用正切函数可以计算出高楼的高度。
例如,假设我们站在离高楼的位置为100米的地方,仰望高楼的角度为30度。
我们可以利用三角函数中的正切函数,根据公式tan(角度) = 高楼高度 / 100,计算出高楼的高度为100 * tan(30度) = 57.74米。
因此,高楼的高度约为57.74米。
二、计算船只与灯塔之间的距离假设我们在海上驾驶一艘船,远处有一座灯塔,我们想要知道船只与灯塔的距离。
此时,我们可以利用三角函数中的正弦函数来解决这个问题。
我们可以站在船只上,观察灯塔并记录下观察的角度。
然后,通过测量船只与海平面的高度,以及观察灯塔时的角度,利用正弦函数可以计算出船只与灯塔的距离。
例如,假设船只与海平面的高度为10米,我们观察灯塔的角度为45度。
我们可以利用三角函数中的正弦函数,根据公式sin(角度) = 灯塔的高度 / 距离,计算出船只与灯塔的距离为10 / sin(45度) = 14.14米。
因此,船只与灯塔的距离约为14.14米。
三、求解三角形的边长在一些实际问题中,给定三角形的某些角度和边长,我们需要求解其他未知边长。
这时,可以利用三角函数中的正弦、余弦、正切等函数来解决。
例如,已知一个直角三角形的直角边长分别为3和4,我们需要求解斜边的长度。
根据勾股定理,我们知道斜边的长度可以通过勾股定理计算得出:斜边的平方等于两个直角边平方和。
三角函数解三角形题型归类

三⾓函数解三⾓形题型归类三⾓函数解三⾓形题型归类⼀知识归纳:(⼀)任意⾓、弧度制及任意⾓的三⾓函数 1.⾓的概念(1)任意⾓:①定义:⾓可以看成平⾯内绕着端点从⼀个位置旋转到另⼀个位置所成的;②分类:⾓按旋转⽅向分为、和.(2)所有与⾓α终边相同的⾓,连同⾓α在内,构成的⾓的集合是S =.(3)象限⾓:使⾓的顶点与重合,⾓的始边与,那么,⾓的终边在第⼏象限,就说这个⾓是第⼏象限⾓;如果⾓的终边在坐标轴上,就认为这个⾓不属于任何⼀个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆⼼⾓叫做1弧度的⾓,⽤符号rad 表⽰,读作弧度.正⾓的弧度数是⼀个,负⾓的弧度数是⼀个负数,零⾓的弧度数是 .(2)⾓度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =? ????180π°.(3)扇形的弧长公式:l =|α|·r ,扇形的⾯积公式:S =12lr =12|α|·r 2. 3.任意⾓的三⾓函数(1)定义:设α是⼀个任意⾓,它的终边与单位圆交于点P (x ,y ),那么sin α=,cos α=,tan α=.(2)任意⾓α的终边与单位圆交于点P (x ,y )时,sin α=y ,cos α=x ,tan α=yx (x ≠0) 4.三⾓函数值在各象限的符号规律:⼀全正、⼆正弦、三正切、四余弦.(⼆)公式概念1.三⾓函数诱导公式? ??k 2π+α(k ∈Z)的本质奇变偶不变(对k ⽽⾔,指k 取奇数或偶数),符号看象限(看原函数,同时把α看成是锐⾓).2.两⾓和与差的三⾓函数公式(1)sin(α±β)=sin αcos β±cos αsin β; (2)cos(α±β)=cos αcos β?sin αsin β;(3)tan(α±β)=tan α±tan β1?tan αtan β.3.⼆倍⾓公式(1)sin 2α=2sin αcos α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,cos 2α=1+cos 2α2, sin 2α=1-cos α2;(3)tan 2α=2tan α1-tan 2α.(三)正、余弦定理及其变形: 1.正弦定理及其变形在△ABC 中,a sin A==c sin C=2R (其中R 是外接圆的半径);a =2R sin A ,b =2R sin B ,c =2R sin C ; sin A =a 2R ,sin B =b 2R ,sin C =c 2R. 2.余弦定理及其变形a 2=b 2+c 2-2bc cos A ; cos A =b 2+c 2-a 22bc.b 2=; cos B =;c 2= . cos C = .3.三⾓形⾯积公式:S △ABC =12ah =12ab sin C =12ac sin B =_________________=abc 4R =12(a +b +c )·r (R是三⾓形外接圆半径,r 是三⾓形内切圆的半径),并可由此计算R ,r .2.整体法:求y =A sin(ωx +φ)(ω>0)的单调区间、周期、值域、对称轴(中⼼)时,将ωx +φ看作⼀个整体,利⽤正弦曲线的性质解决.3.换元法:在求三⾓函数的值域时,有时将sin x (或cos x )看作⼀个整体,换元后转化为⼆次函数来解决.4.公式法:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最⼩正周期为2π|ω|,y =A tan(ωx +φ)的最⼩正周期为π|ω|.(2016年全国卷1)4.△ABC 的内⾓A ,B ,C 的对边分别为a ,b ,c .已知5a =,2c =,2cos 3,则b =(A )2 (B )3 (C )2 (D )3 6.将函数2sin(2)6y x π=+的图象向右平移14个周期后,所得图象对应的函数为(A )2sin(2)4y x π=+ (B )2sin(2)3y x π=+(C )2sin(2)4y x π=-(D )2sin(2)3y x π=-14.已知θ是第四象限⾓,且3sin()45πθ+=,则tan()4πθ-=————————————. (2015年全国卷1)8. 函数()cos()f x x ω?=+的部分图像如图所⽰,则()f x 的单调递减区间为()(A )13 (,),44k k k Z ππ-+∈(B )13(2,2),44k k k Z ππ-+∈(C )13(,),44k k k Z -+∈(D )13(2,2),44k k k Z -+∈17. (本⼩题满分12分)已知,,a b c 分别是ABC ?内⾓,,A B C 的对边,2sin 2sin sin B A C =.(I )若a b =,求cos ;B (II )若90B =,且2,a = 求ABC ?的⾯积.(2014年全国卷1) 2.若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α 7.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最⼩正周期为π的所有函数为 A .①②③ B. ①③④ C . ②④D. ①③16.如图,为测量⼭⾼MN ,选择A 和另⼀座⼭的⼭顶C 为测量观测点.从A 点测得 M 点的仰⾓60MAN ∠=?,C 点的仰⾓45CAB ∠=?以及75MAC ∠=?;从C 点测学科⽹得60MCA ∠=?.已知⼭⾼100BC m =,则⼭⾼MN =________m .(2013年全国卷1)9.函数()(1cos )sin f x x x =-在[,]ππ-的图像⼤致为()10.已知锐⾓ABC ?的内⾓,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b = (A )10 (B )9(C )8(D )516.设当x θ=时,函数()sin 2cos f x x x =-取得最⼤值,则cos θ=______.(2012年全国卷1)9.已知ω>0,0?π<<,直线x =4π和x =54π是函数()sin()f x x ω?=+图像的两条相邻的对称轴,则?=(A )π4 (B )π3 (C )π2 (D )3π417.(本⼩题满分12分)已知a ,b ,c 分别为ABC ?三个内⾓A ,B ,C 的对边,3sin sin c a C c A =-.(Ⅰ)求A ;(Ⅱ)若a =2,ABC ?3b ,c .三、题型归纳题型⼀、三⾓函数定义的应⽤1.若点P 在-10π3⾓的终边上,且P 的坐标为(-1,y ),则y 等于( )A.-33C.- 3变式1.已知⾓α的终边经过点(3,-1),则⾓α的最⼩正值是( )题型⼆、三⾓函数值的符号2.已知⾓α的终边经过点(3,-1),则⾓α的最⼩正值是( )变式2.设α是第⼆象限⾓,P (x,4)为其终边上的⼀点,且cos α=15x ,则tan α=( )C .-34D .-43题型三、同⾓三⾓函数关系式的应⽤3.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ等于( )A .-43 C .-344.已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为( )A .-32 C .-34变式3.已知sin α-cos α=2,α∈(0,π),则tan α等于( ) A .-1 B .-22D .1 题型四诱导公式的应⽤5.(1)已知sin π3-α=12,则cosπ6+α=________. (2)sin(-1 200°)cos 1 290°+cos(-1 020°)sin(-1 050°)=______变式4.已知⾓α终边上⼀点p(-4,3),则cos()sin()2119cos()sin()22παπαππαα+---+的值为题型五、三⾓函数的图形变换6.(1)要得到函数y =sin 4x -π3的图象,只需将函数y =sin 4x 的图象( ) A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位(2)某同学⽤“五点法”画函数f (x )=A sin(ωx +φ)ω>0,|φ|<π2在某⼀个周期内的图象时,列表并填⼊部分数据,如下表:(1)f (x )的解析式; (2)将y =f (x )图象上所有点向左平移π6个单位长度,得到y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中⼼.变式5.已知函数y =2sin 2x +π3. (1)求它的振幅、周期、初相;(2)说明y =2sin 2x +π3的图象可由y =sin x 的图象经过怎样的变换⽽得到.题型六、三⾓函数的性质问题7.(1)函数y =2sinπ3-2x 的单调增区间为________. (2)已知函数f (x )=cos ωx +φ-π2ω>0,|φ|<π2的部分图象如图所⽰,则y =f x +π6取得最⼩值时x 的集合为( )(3)函数f (x )=sin(ωx +φ)ω>0,|φ|<π2的最⼩正周期为π,且其图象向右平移π12个单位后得到的函数为奇函数,则函数f (x )的图象( ) A.关于点π2,0对称B.关于直线x =5π12对称C.关于点5π12,0对称 D.关于直线x =π12对称(4)当x =π4时,函数f (x )=A sin(x +φ)(A >0)取得最⼩值,则函数y =f 3π4-x 是( ) A.奇函数且图象关于点π2,0对称 B.偶函数且图象关于点(π,0)对称 C.奇函数且图象关于直线x =π2对称 D.偶函数且图象关于点π2,0对称变式6.已知函数f (x )=2cos x (sin x +cos x ). (1)求f 5π4的值;(2)求函数f (x )的最⼩正周期及单调递增区间.题型七、最值与值域问题8.已知函数2()(sinx cosx)cos 2f x x =++。
初中数学总复习专题12 三角函数

专题12 三角函数阅读与思考三角函数揭示了直角三角形中边与锐角之间的关系,是数形结合的重要体现,解三角函数相关问题时应注意以下两点:1.理解同角三角函数间的关系. (1)平方关系:1cos sin 22=+αα; (2)商数关系:αααcos sin tan =,αααsin cos cot =; (3)倒数关系:1cot tan =⋅αα.2.善于解直角三角形.从直角三角形中的已知元素推求其未知的一些元素的过程叫作解直角三角形.解直角三角形, 关键是合理选用边角关系,它包括勾股定理、直角三角形的两个锐角互余及锐角三角函数的概念.许多几何计算问题都可归结为解直角三角形,常见的基本图形有:例题与求解【例1】在△ABC 中,BC =1992,AC =1993,AB =19931992+,则=C A cos sin .(河北省竞赛试题)解题思路:通过计算,寻找BC 2,AC 2,AB 2之间的关系,判断三角形形状,看能否直接用三角函数的定义解题.【例2】某片绿地形状如图所示,其中∠A =600,AB ⊥BC ,AD ⊥CD ,AB =200m ,CD =100m . 求AD ,BC 的长.(精确到1m ,732.13≈)图2图1F EAE AABDDBDB解题思路:本题的解题关键是构造直角三角形,构造的原则是不能破坏∠A ,所以连结AC 不行.延长AD 和BC 交于一点E (如图1),这样既构造出了直角三角形,又保全了特殊角∠A ;或过点D 作矩形ABEF (如图2)来求解.【例3】如图,已知正方形ABCD 中,E 为BC 上一点.将正方形折叠起来,使点A 和点E 重合,折痕为MN .若31tan =∠AEN ,DC +CE =10. (1)求△ANE 的面积; (2)求ENB ∠sin 的值.解题思路:将31tan =∠AEN 与DC +CE =10结合起来,可求出相关线段的长,为解题铺平道路.【例4】如图,客轮沿折线A —B —C 从A 出发经B 再到C 匀速航行,货轮从AC 的中点D 出发沿某一方向匀速直线航行,将一批物品送达客轮.两船同时起航,并同时到达折线A —B —C 上的某点E 处.已知AB =BC =200海里,∠ABC =900,客轮速度是货轮速度的2倍.(1)选择:两船相遇之处E 点( )A .在线段AB 上 B .在线段BC 上C .可以在线段AB 上,也可以在线段BC 上(2)求货轮从出发到两船相遇共航行了多少海里?(结果保留根号)(南京市中考试题)解题思路:对于(2),过D 作DF ⊥CB 于F ,设DE =x ,建立关于x 的方程.【例5】若直角三角形的两个锐角A ,B 的正弦是方程02=++q px x 的两个根. (1)那么,实数p ,q 应满足哪些条件?(2)如果p ,q 满足这些条件,方程02=++q px x 的两个根是否等于直角三角形的两个锐角A ,B 的正弦?(江苏省竞赛试题)解题思路:解本例的关键是建立严密约束条件下的含不等式、等式的混合组,需综合运用一元二次方程,三角函数的知识与方法.C【例6】设a ,b ,c 是直角三角形的三边,c 为斜边,整数n≥3.求证:nnnc b a <+.(福建省竞赛试题)解题思路:由直角三角形的边可以转化为三角函数正余弦来解.其不等关系可以利用正弦、余弦的有界性来证明.能力训练A 级1.如图,D 是△ABC 的边AC 上一点,CD =2AD ,AE ⊥BC 于E .若BD =8,43sin =∠CBD ,则AE = . 2.已知00900≤≤α,则ααsin sin 45+-=y 的最大值是 ,最小值是 .(上海市理科实验班招生考试试题)3.如图,在△ABC 中,∠C =900,∠BAC =300,BC =1,D 为BC 边上的一点,ADC ∠tan 是方程2)1(5)1(322=+-+xx x x 的一个较大的根,则CD = .东第5题图第1题图第3题图E BAO4.已知△ABC 的两边长a =3,c =5,且第三边长b 为关于x 的一元二次方程042=+-m x x 的两个正整数根之一,则A sin 的值为 . (哈尔滨中考试题) 5.如图,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在她家北偏东600距离500m 处,那么水塔所在的位置到公路的距离AB 是( ) A .250mB .3250mC .33500mD .2250m6.如图,在△ABC 中,∠C =900,∠ABC =300,D 是AC 的中点,则DBC ∠cot 的值是( ) A .3B .32C .23D .43 (大连市中考试题)7.一渔船上的渔民在A 处看见灯塔M 在北偏东600方向,这艘渔船以28海里/时的速度向正东航行.半小时后到B 处,在B 处看见灯塔M 在北偏东150方向,此时灯塔M 与渔船的距离是( ) (黄冈市中考试题) A .27海里B .214海里C .7海里D .14海里8.如图,四边形ABCD 中,∠A =600,∠B =∠D =900,AD =8,AB =7,则BC +CD 等于( ) A .36B .35C .34D .33第7题图第6题图第8题图东北BA OA9.如图是某品牌太阳能热水器的实物图和横断面示意图.已知真空集热管AB 与支架CD 所在直线相交于水箱横断面⊙O 的圆心,支架CD 与水平面AE 垂直,AB =150厘米,∠BAC =300,另一根辅助支架DE =76厘米,∠CED =600.(1)求垂直支架CD的长度(结果保留根号);(2)求水箱半径OD的长度(结果保留三位有效数字,参考数据:73.13,41.12≈≈).(扬州市中考试题)图2图1BA EOD10.若α为锐角,求证:4cossin1cos1sin1>⋅++αααα.(宁波市竞赛试题)11.如图,已知AB=CD=1,∠ABC=900, ∠CBD=300,求AC的长.(加拿大数学奥林匹克竞赛试题)12.如图,在△ABC中,∠ACB=900,CD⊥AB于点D,CD=1.若AD,BD的长是关于x的方程02=++qpxx的两根,且2tantan=-BA,求p,q的值并解此二次方程.ABCB 级1.若0300<<θ,且31sin +=km θ(k 为常数,k <0),则m 的取值范围是 . 2.设00450<<α,1673cos sin =⋅αα,则=αsin . (武汉市选拔赛试题) 3.已知在△ABC 中,∠A ,∠B 是锐角,且2tan ,135sin ==B A ,AB =29cm ,则△ABC 的面积等于 . (“祖冲之杯”邀请赛试题)4.如图,在正方形ABCD 中,N 是DC 的中点,M 是AD 上异于D 的点,且MBC NMB ∠=∠,则有=∠ABM tan . (全国初中数学联赛试题) 5.如图,在Rt △ABC 中,∠C =900, ∠CAB =300,AD 平分∠CAB ,则CDACCD AB -的值为( ) A .3B .33C .33-D .326-(湖北省选拔赛试题)第4题图第5题图NBAB AMD6.如图,在梯形ABCD 中,AD//BC ,AD ⊥CD ,BC =CD =2AD ,E 是CD 上一点,∠ABE =450,则AEB∠tan的值等于( ) (天津市竞赛试题) A .23 B .2 C .25D .3 7.如图,在等腰Rt △ABC 中,∠C =900, ∠CBD =300,则DCAD=( ) A .33 B .22C .12-D .13-(山东省竞赛试题)第7题图第6题图BA BDE8.如图是一座人行天桥的引桥部分的示意图,上桥通道是由两段互相平行并且与地面成370角的楼梯AD ,BE 和一段水平天台DE 构成.已知天桥高度BC =4.8米,引桥水平跨度AC =8米. (1)求水平天台DE 的长度;(2)若与地面垂直的平台立柱MN 的高度为3米,求两段楼梯AD 与BE 的长度之比.(参考数据:取75.037tan ,80.037cos ,60.037sin 0===) (长沙市中考试题)NA9.在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,且c =35.若关于x 的方程0)35(2)35(2=-+++b ax x b 有两个相等的实根,又方程0sin 5)sin 10(22=+-A x A x的两实数根的平方和为6,求△ABC 的面积.(武汉市中考试题)10.如图,EFGH 是正方形ABCD 的内接四边形,两条对角线EG 和FH 所夹的锐角为θ,且BEG ∠与CFH ∠都是锐角.已知,,l FH k EG ==四边形EFGH 的面积为S .(1)求证:klS2sin =θ; (2)试用S l k ,,来表示正方形ABCD 的面积.(全国初中数学联赛试题)GF11.如图,在直角梯形ABCD 中,AD//BC ,∠A =900,BC =CD =10,54sin =C . (1) 求梯形ABCD 的面积;(2)点E ,F 分别是BC ,CD 上的动点,点E 从点B 出发向点C 运动,点F 从点C 出发向点D 运动.若两点均以每秒1个单位的速度同时出发,连接EF ,求△EFC 面积的最大值,并说明此时E ,F 的位置.(济宁市中考试题)A DFB C 12.如图,甲楼楼高16米,乙楼坐落在甲楼的正北面.已知当冬至中午12时太阳光线与水平面的夹角为300,此时,求:(1)如果两楼相距20米,那么甲楼的影子落在乙楼上有多高?(2)如果甲楼的影子刚好落在乙楼上,那么两楼的距离应当是多少?(山东省竞赛试题)。
三角函数的综合应用+课件-2025届高三数学一轮复习

(2)由题意,得 f(A)=2sin 2A-π3- 3=0,即 sin 2A-π3= 23,
∵A∈0,π2, 则 2A-π3∈-π3,23π, ∴2A-π3=π3,∴A=π3.
在△ABC 中, 由 a2=b2+c2-2bc cos A=42+32-2×4×3×12=13, 可得 a= 13, 又∵12bc sin A=12AD×a,即12×4×3× 23=21AD× 13, ∴AD=61339,故 BC 边上的高 AD 的长为61339.
(2)根据正弦定理得sina A=sinc C=sinb
B=
4 =8 3
3
3,
2
所以
a=8
3
3 sin
A,c=8
3
3 sin
C.
所以
a+c=8
3
3 (sin
A+sin
C).
因为 A+B+C=π,B=π3,所以 A+C=23π,
所以 a+c=8
3
3 sin
A+sin
23π-A=8
3
33 2sin
A+
23cos
A
=8sin A+π6.
因为 0<A<23π,
所以 A+π6∈π6,56π,所以 sin A+π6∈12,1,则 a+c∈(4,8].
所以 a+c 的取值范围是(4,8].
【反思感悟】已知三角形一边及其对角,求取值范围的问题 的解法
(1)(不妨设已知 a 与 sin A 的值)根据 2R=sina A求出三角形外接
∴a2+c2 b2=sin2Asi+n2Csin2B=cos22sCin+2Ccos2C =(1-2sin2Cs)in2+2C(1-sin2C)=2+4sins4iCn2-C 5sin2C
三角函数的性质与应用

三角函数的性质与应用三角函数是数学中重要的概念之一,广泛应用于各个领域,包括几何、物理、工程等。
本文将介绍三角函数的一些基本性质,并探讨它们在实际问题中的应用。
一、正弦函数的性质与应用正弦函数是三角函数中最基本的函数之一,它的定义域是实数集合,值域在[-1,1]之间。
正弦函数的一个重要性质是周期性,即sin(x+2π)=sin(x),其中π是圆周率。
这个周期性质使得正弦函数在周期性变化的问题中得到广泛应用。
在几何学中,正弦函数常用于计算三角形的边长和角度。
例如,已知一个直角三角形的角度为θ,边长分别为a和b,根据正弦函数的定义可以得到:sin(θ) = a/ c,其中c为斜边的长度。
通过已知的角度和任意两个边长,我们可以使用正弦函数求解未知边长。
此外,在物理学中,正弦函数也被广泛应用于描述周期性运动。
例如,一个挂在弹簧上的质点的运动可以用正弦函数表示。
振幅、频率和初相位都可以通过正弦函数的性质进行分析和计算。
二、余弦函数的性质与应用余弦函数是三角函数中的另一个重要函数,和正弦函数类似,它的定义域是实数集合,值域也在[-1,1]之间。
余弦函数也具有周期性,即cos(x+2π)=cos(x)。
在几何学中,余弦函数常用于计算三角形的边长和角度。
例如,已知一个锐角三角形的角度为θ,边长分别为a和c,根据余弦函数的定义可以得到:cos(θ) = a/ c,其中c为斜边的长度。
通过已知的角度和两个边长,我们可以使用余弦函数求解未知边长。
在物理学中,余弦函数也被广泛应用于描述振动和波动。
例如,一个单摆的运动可以用余弦函数表示。
摆动的振幅、频率和初相位可以通过余弦函数的性质进行计算和分析。
三、正切函数的性质与应用正切函数是三角函数中的另一个重要函数,它的定义域是实数集合,但值域不再是有界的。
正切函数的周期性是π,即tan(x+π)=tan(x)。
在几何学中,正切函数常用于计算三角形的边长和角度。
例如,已知一个锐角三角形的角度为θ,边长分别为a和b,根据正切函数的定义可以得到:tan(θ) = a/ b。
三角函数:生活中的指南针

三角函数:生活中的指南针
三角函数在现实生活中有许多应用,以下是一些实例:
1.时钟:时钟的指针的运动轨迹可以通过三角函数来描述。
例如,秒针一圈的长度是60秒,分针一圈的长度是60分钟,时针一圈的长度是12小时。
当我们在时钟上表示时间时,实际上是在使用三角函数来描述各指针之间的大小关系。
2.地球运动:地球的运动如果用三角函数来描述,就可以得出地球每天的运行轨迹,以及每天的日出日落时间。
这其中就涉及到了正弦、余弦和正切等三角函数。
3.建筑:在建筑设计中,三角函数也被用来计算建筑物的抗压能力、承重能力等。
例如,通过使用三角函数,可以计算出梁的跨度和高度,以使其在满足承重要求的同时,保持足够的稳定性。
4.机械:在机械设计中,三角函数同样有广泛的应用。
例如,可以用来计算出机械的转动角度,以及机械的运动轨迹等。
5.测量:在测量建筑物或山的高度时,如果知道建筑物的位置与仰角之间的距离,则可以利用三角函数轻松地计算得到建筑物的高度。
6.游戏:在一些游戏中,如赛车游戏,当控制赛车运动的角度时,需要利用三角函数时刻计算赛车当前的位置以及运动的距离。
7.航空飞行:飞行工程师在考虑飞行路径时,需要精确地计算飞行轨道、着陆角度等,这就涉及到了大量的三角函数应用。
通过以上例子,我们可以看出三角函数在生活中的应用十分广泛,几乎在各个领域都有其用武之地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档 §4.8三角函数的综合应用 【复习目标】 1. 理解三角函数中自变量的两面性——角与实数,将三角函数问题与几何、代数联系起来; 2. 三角恒等变型与三角函数的图象与性质是综合应用的两个方面。
【课前预习】
1. ⊿ABC 的内角满足tan sin 0A A -<,cos sin 0A A +>,则A 的范围是 。
2. 若111cos sin θθ-=,则sin 2θ= 。
3. 由函数52sin 3()66y x x ππ=≤≤与函数2y =的图象围成一个封闭图形,这个封闭图形
的面积是 。
4. 已知()f x 是定义在(0,3)上的函数,图象如图所示,那
么不等式()cos 0f x x <的解集是
( )
A .()()0,12,3⋃
B .(1,)(,3)22ππ
⋃ C .
()0,1,32π⎛⎫⋃ ⎪⎝⎭ D .()()0,11,3⋃ 5. 函数|sin |,[,]y x x x ππ=+∈-的大致图象是
( )
【典型例题】
实用文档
例1 已知函数2()sin sin f x x x a =-++.
(1) 当()0f x =有实数解时,求a 的取值范围;
(2) 若x R ∈,有
171()4f x ≤≤,求a 的取值范围。
例2 (2003上海卷·22)已知集合M 是满足下列性质的函数()f x 的全体:存在非零常
数T ,对任意x ∈R ,有()f x T +=T ·()f x 成立.
(1)函数()f x = x 是否属于集合M ?说明理由;
(2)设函数()f x =a x (a >0,且a ≠1)的图象与y=x 的图象有公共点,证明:()f x =a x ∈M ;
(3)若函数()f x =sin kx ∈M ,求实数k 的取值范围.
实用文档
【本课小结】
【课后作业】
1. (2004北京春·16)在∆ABC 中,a ,b ,c 分别是∠∠∠A B C ,,的对边长,已知a ,
b ,
c 成等比数列,且a c ac bc 22-=-,求∠A 的大小及b B
c sin 的值。
2. 求函数
111sin cos sin cos y x x x x =++,(0,)2x π∈的最小值。
3. (2000北京春·19)在△ABC 中,角A 、B 、C 对边分别为a 、b 、c .证明:
a b c A B C 222
-=-sin()sin . 4. (2002全国·17)已知12cos cos 2sin 2sin 2=-+αααα,⎪⎭⎫ ⎝⎛∈2,0πα.求αsin 、αtan 的
值。
5. (2004北京·15)在△ABC 中,sinA+cosA=22
,AC=2,AB=3,求tgA 的值和△ABC
的面积。