三角函数的综合应用

合集下载

12,三角函数的综合应用

12,三角函数的综合应用

实用文档 §4.8三角函数的综合应用 【复习目标】 1. 理解三角函数中自变量的两面性——角与实数,将三角函数问题与几何、代数联系起来; 2. 三角恒等变型与三角函数的图象与性质是综合应用的两个方面。

【课前预习】1. ⊿ABC 的内角满足tan sin 0A A -<,cos sin 0A A +>,则A 的范围是 。

2. 若111cos sin θθ-=,则sin 2θ= 。

3. 由函数52sin 3()66y x x ππ=≤≤与函数2y =的图象围成一个封闭图形,这个封闭图形的面积是 。

4. 已知()f x 是定义在(0,3)上的函数,图象如图所示,那么不等式()cos 0f x x <的解集是( )A .()()0,12,3⋃B .(1,)(,3)22ππ⋃ C .()0,1,32π⎛⎫⋃ ⎪⎝⎭ D .()()0,11,3⋃ 5. 函数|sin |,[,]y x x x ππ=+∈-的大致图象是( )【典型例题】实用文档例1 已知函数2()sin sin f x x x a =-++.(1) 当()0f x =有实数解时,求a 的取值范围;(2) 若x R ∈,有171()4f x ≤≤,求a 的取值范围。

例2 (2003上海卷·22)已知集合M 是满足下列性质的函数()f x 的全体:存在非零常数T ,对任意x ∈R ,有()f x T +=T ·()f x 成立.(1)函数()f x = x 是否属于集合M ?说明理由;(2)设函数()f x =a x (a >0,且a ≠1)的图象与y=x 的图象有公共点,证明:()f x =a x ∈M ;(3)若函数()f x =sin kx ∈M ,求实数k 的取值范围.实用文档【本课小结】【课后作业】1. (2004北京春·16)在∆ABC 中,a ,b ,c 分别是∠∠∠A B C ,,的对边长,已知a ,b ,c 成等比数列,且a c ac bc 22-=-,求∠A 的大小及b Bc sin 的值。

正、余弦定理及三角函数的综合应用

正、余弦定理及三角函数的综合应用
2.解斜三角形的类型
(1)已知两角和任一边,求其他两边和一角;
(2)已知两边和其中一边的对角,求另一边的对角,进而求得其他边、角;
(3)已知三边,求三个角;
(4)已知两边和它们的夹角,求第三边和其他两个角.
在△ABC中,已知a、b和A时,解的情况如下:
考点一:利用正、余弦定理解三角形
8.(2010?宝鸡质检一)如右图,为了计算渭河岸边两景点B与C的距离,由于地形的限制,需要在岸上选取A和D两个测量点,现测得AD⊥CD,AD=100 m,AB=140 m,∠BDA=60°,∠BCD=135°,求两景点B与C之间的距离(假设A,B,C,D在同一平面内,测量结果保留整数;参数数据:2=1.414,3=1.732,5=2.236).
针对性练习:
已知△ABC中,sinC=sinA+sinBcosA+cosB,试判断△ABC的形状.考点三:三角形面积公式的应用
典型例题
已知△ABC中,cosA=63,a,b,c分别是角A、B、C的对边.
(1)求tan2A; (2)若sin(π2+B)=223,c=22,求△ABC的面积.知识概括、方法总结与易错点分析
(1)正弦定理和余弦定理并不是孤立的,解题时要根据具体题目合理运用,有时还需要交替使用.
(2)条件中出现平方关系多考虑余弦定理,出现一次式,一般要考虑正弦定理.
针对性练习:
1、在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cosA2=255,AB→?AC→=3.
(1)求△ABC的面积; (2)若b+c=6,求a的值.
(2)若sinB+sinC=1,试判断△BC中,角A,B,C所对的边分别为a,b,c,已知cos2C=-14.

三角函数的综合应用

三角函数的综合应用

三角函数的综合应用()()[]ϕωϕω+=x A y cos +x Asin =y 1.或的图象和性质要熟记。

正弦型函数 ()振幅,周期12||||A T =πω ()若,则为对称轴。

f x A x x 00=±=()()若,则,为对称点,反之也对。

f x x 0000=)。

,,依次作出点(与,求出,,,,依次为)五点作图:令(y x 223202y x x ππππϕω+ (x ,y )作图象。

()根据图象求解析式。

(求、、值)3A ωϕ如图列出ωϕωϕπ()()x x 1202+=+=⎧⎨⎪⎩⎪;解条件组求、值ωϕ (4)求单调区间:()∆正切型函数,y A x T =+=tan ||ωϕπω 2. 熟练掌握同角三角函数关系和诱导公式了吗?4tancos sin 122παα=+=如:===sin cos π20……称为的代换。

1 “·”化为的三角函数——“奇变,偶不变,符号看象限”,k παα2± “奇”、“偶”指k 取奇、偶数。

3. 熟练掌握两角和、差、倍、降幂公式及其逆向应用了吗?理解公式之间的联系:()sin sin cos cos sin sin sin cos αβαβαβαβααα±=±=−→−−−=令22()cos cos cos sin sin cos cos sin αβαβαβαβααα±==−→−−−=- 令222()tan tan tan tan tan αβαβαβ±=±1 · =-=-⇒211222cos sin αα tan tan tan2212ααα=- cos cos sin cos 22122122αααα=+=-二合一公式:()a b a b b asin cos sin tan αααϕϕ+=++=22, sin cos sin αααπ+=+⎛⎝ ⎫⎭⎪24 sin cos sin αααπ+=+⎛⎝ ⎫⎭⎪323 应用以上公式对三角函数式化简。

导数与三角函数综合应用

导数与三角函数综合应用

导数与三角函数综合应用在数学中,导数是一个重要的概念,它描述了函数在某一点上的变化率。

同时,三角函数也是数学中常见的函数类型之一,如正弦函数、余弦函数等。

本文将探讨导数与三角函数的综合应用,包括函数的极值、曲线的切线以及物理问题的模型等。

一、函数的极值在求函数的极值时,导数起到了重要的作用。

对于连续函数,若在某一点处导数为0或不存在,那么这个点可能是函数的极值点。

在三角函数中,我们将以正弦函数为例。

正弦函数sin(x)是周期函数,在一个周期内,其极大值为1,极小值为-1。

通过对正弦函数求导,我们可以确定其极值点的位置。

二、曲线的切线导数还可以用来确定曲线上某一点处的切线方程。

对于一个函数f(x),在点x=a处的切线方程为y=f'(a)(x-a)+f(a)。

在三角函数中,我们将以余弦函数为例。

余弦函数cos(x)的导数为-sin(x),可以利用该导数计算出余弦函数在某一点处的切线方程。

三、物理问题的模型导数与三角函数还可以应用于解决物理问题。

比如,当一个物体在水平方向上做匀速直线运动时,其位置随时间的变化可以用三角函数来表示,接下来我们以简单的运动学模型为例。

假设一个物体以速度v匀速运动,其位移与时间的关系可以表示为x(t) = v * t。

那么,该物体的速度v(t)就是位移对时间的导数,即v(t) =x'(t) = v。

同理,加速度a(t)就是速度对时间的导数,即a(t) = v'(t) = 0。

从导数的角度来看,这个物体的位移函数是线性变化的,速度函数是常数,加速度函数为零。

这是一个简化的模型,但导数与三角函数的应用在更复杂的物理模型中同样有效。

比如,当物体受到外力时,其运动方程可能变得复杂,而导数与三角函数的运用可以帮助我们更好地理解和描述物体的运动规律。

总结:导数与三角函数的综合应用在数学和物理中都有广泛的应用。

通过导数的求取,我们可以确定函数的极值、曲线的切线方程,同时,基于导数和三角函数的模型可以帮助我们解决物理问题。

高考数学专题讲座 第7讲 三角函数的综合应用

高考数学专题讲座 第7讲 三角函数的综合应用

高考数学专题讲座 第7讲 三角函数的综合应用一、考纲要求1.掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式; 2.能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明; 3.会由已知三角函数值求角,并会用符号arcsin x, arcos x,arctan x 表示角;4.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题.二、基础过关 1.设α、β是一个钝角三角形的两个锐角, 下列四个不等式中不正确的是( ).A .tan αtan β<1B .sin α+sin β<2C .cos α+cos β>1D .21tan(α+β)<tan 2βα+ 2.在△ABC 中,∠A=60°,b =1,△ABC 面积为3,则CB B cb a sin sin sin ++++的值为( ).A .8138 B .3932C .3326D .72 3.)sin()(ϕω+=x A x f (A >0,ω>0)在x =1处取最大值,则( ). A .)1(-x f 一定是奇函数 B .)1(-x f 一定是偶函数C .)1(+x f 一定是奇函数D .)1(+x f 一定是偶函数4.已知方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈(-2,2ππ),则tan 2βα+的值是( ).A .21 B .2- C .34 D .21或2- 5.给出四个命题:(1)若sin2A =sin2B ,则△ABC 为等腰三角形; (2)若sin A =cos B ,则△ABC 为直角三角形;(3)若sin 2A +sin 2B +sin 2C <2,则△ABC 为钝角三角形;(4)若cos(A -B )cos(B -C )cos(C -A )=1,则△ABC 为正三角形. 以上正确命题的个数是( ).A .1B .2C .3D .46.x x x f 32cos 32sin )(+=的图象中相邻的两条对称轴间距离为( ).A .3πB .π34C .π23D .π677.︒+︒+︒+︒10cos 1)370tan 31(100sin 130sin 2= .8.下列命题正确的有 . (1)若-2π<α<β<2π,则βα-范围为(-π,π);(2)若α在第一象限,则2α在第一、三象限; (3)若θsin =53+-m m ,524cos +-=m mθ,则m ∈(3,9);(4)2sin θ=53,2cos θ=54-,则θ在第三、四象限.三、典型例题例1 已知:定义在]4,(-∞上的减函数)(x f ,使得)cos 4721()sin (2x m f x m f +-+≤- 对一切实数x 均成立,求实数m 的范围.例2 化工厂的主控制表盘高1米,表盘底边距地面2米,问值班人员坐在什么位置上表盘看得最清楚?(设值班人员坐在椅子上时,眼睛距地面2.1米)例3 已知向量a →=(2,2),向量b →与向量a →的夹角为43π,且a →·b →=-2.(1)求向量b →;(2)若t →=(1,0),且b →⊥t →,c →=(cosA,22cos 2C ),其中A ,C 是△ABC 的内角,若三角形的三内角A 、B 、C 依次成等差数列,试求|b →+c →|的取值范围.四、 热身演练 1.已知,那么下列命题成立的是( ).A .若α,β是第一象限角,则βαcos cos >B .若α,β是第二象限角,则βαtan tan >C .若α,β是第三象限角,则βαcos cos >D .若α,β是第四象限角,则βαtan tan > 2.函数的部分图象是( ).3.函数的反函数是( ).A .)20)(1arccos(≤≤--=x x yB .)20)(1arccos(≤≤--=x x y πC .)20)(1arccos(≤≤-=x x yD .)20)(1arccos(≤≤-+=x x y π4.任意实数x,不等式 ),,(0cos sin R c b a c x b x a ∈>++都成立的充要条件是( ).A .00>==c b a 且B .c b a =+22C .c b a <+22D .c b a >+225.若1cos sin =+θθ,则对任意的实数n ,θθnncos sin +的取值范围是( ).A .1B .(0,1)C .121-n D .无法确定6.定义在R 上的偶函数f (x )满足f (x+2)=f (x ),且f (x )在[-3,-2]上是减函数,又α,β是锐角三角形的两内角,则( ).A .)(cos )(sin βαf f >B .)(cos )(sin βαf f <C .)(sin )(sin βαf f >D .)(cos )(cos βαf f <7.下列说法正确的是(填上你认为正确的所有命题的代号) . ①函数y=-sin(kπ+x)(k∈Z)是奇函数; ②函数y=2sin(2x+π/3)关于点(π/12,0)对称;③函数y =sin(2x+π/3)+sin(2x -π/3)的最小正周期是π;④ΔABC 中cosA>cosB 的充要条件是A<B ; 8.在△ABC 中,sinA+cosA=137,则AA A A cos 7sin 15cos 4sin 5-+= .9.如右图,在半径为R 的圆桌的正中央上空挂一盏电灯,桌子边缘一点处的照度和灯光射到桌子边缘的光线与桌面的夹角θ的正弦成正比,角和这一点到光源的距离 r 的平方成反比,即I =k ·2sin r θ,其中 k 是一个和灯光强度有关的常数,那么怎样选择电灯悬挂的高度h ,才能使桌子边缘处最亮?10.设关于x 的方程sinx+3cosx+a=0在(0, 2π)内有相异二解α、β. (1)求α的取值范围; (2)求tan(α+β)的值.12.设α、β、γ是锐角,且tan 2α=2tan 3γ,tan β=21tan γ求证:α、β、γ成等差数列.三角函数的综合应用一、考纲要求:1. 掌握两角和与两角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式 2. 能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明. 3. 会由已知三角函数值求角,并会用符号arcsin x, arcos x,arctan x 表示角.4.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题. 二、基础过关: 1.设α、β是一个钝角三角形的两个锐角, 下列四个不等式中不正确的是( A ).A .tan αtan β<1B .sin α+sin β<2C .cos α+cos β>1D .21tan(α+β)<tan 2βα+ 2.在△ABC 中,∠A=60°,b =1,△ABC 面积为3,则CB B cb a sin sin sin ++++的值为( B ).A .8138 B .3932C .3326D .72 3.)sin()(ϕω+=x A x f (A >0,ω>0)在x =1处取最大值,则( D ). A .)1(-x f 一定是奇函数 B .)1(-x f 一定是偶函数C .)1(+x f 一定是奇函数D .)1(+x f 一定是偶函数4.已知方程x 2+4ax +3a +1=0(a >1)的两根均tan α、tan β,且α,β∈(-2,2ππ),则tan2βα+的值是( B ).A .21B .2-C .34D .21或2- 5.给出四个命题:(1)若sin2A =sin2B ,则△ABC 为等腰三角形;(2)若sin A =cos B ,则△ABC 为直角三角形;(3)若sin 2A +sin 2B +sin 2C <2,则△ABC 为钝角三角形;(4)若cos(A -B )cos(B -C )cos(C -A )=1,则△ABC 为正三角形.以上正确命题的个数是( B ).A .1B .2C .3D .46.x x x f 32cos 32sin )(+=的图象中相邻的两条对称轴间距离为( C ).A .3πB .π34C .π23D .π677.︒+︒+︒+︒10cos 1)370tan 31(100sin 130sin 2= .28.下列命题正确的有 .(2)(1)若-2π<α<β<2π,则βα-范围为(-π,π); (2)若α在第一象限,则2α在第一、三象限;(3)若θsin =53+-m m ,524cos +-=m mθ,则m ∈(3,9);βφαDCBA1.2 m2 m 1 m (4)2sinθ=53,2cosθ=54-,则θ在第三、四象限. 三、典型例题例1 已知:定义在]4,(-∞上的减函数)(x f ,使得)cos 4721()sin (2x m f x m f +-+≤- 对一切实数x 均成立,求实数m 的范围.解:由题意可得 ⎪⎩⎪⎨⎧≤-+-+≥-4sin cos 4721sin 2x m xm x m , 即 ⎪⎩⎪⎨⎧+≤-+-≥+-xm x x m m sin 443sin sin 212恒成立对R x ∈,又 21)21(sin 43sin 2sin 2---=-+-x x x ,∴3sin 4≥+x ,∴⎪⎩⎪⎨⎧≤-≥+-32121m m m , ∴⎪⎩⎪⎨⎧≤+≥+32121m m m , ∴21-=m ,或323≤<m例2 化工厂的主控制表盘高1米,表盘底边距地面2米,问值班人员坐在什么位置上表盘看得最清楚?(设值班人员坐在椅子上时,眼睛距地面2.1米)解:如图,8.02.12=-=CD ,设x AD =,则x x AD BD 8.18.01tan =+==α, xAD CD 8.1tan ==β, βαβαβαφtan tan 1tan tan )tan(tan +-=-= ,∴4.2144.12144.118.08.118.08.1tan =⋅≤+=⋅+-=xx x x x x x x φ当xx 44.1=,即2.1=x 时, φtan 达到最大值4.21,φ是锐角,φtan 最大时,φ也最大,所以值班人员看表盘最清楚的位置为2.1=AD 米.例3 已知向量a →=(2,2),向量b →与向量a →的夹角为43π,且a →·b →=-2,(1)求向量b →;(2)若t →=(1,0),且b →⊥t →,c →=(cosA,22cos 2C ),其中A ,C 是△ABC 的内角,若三角形的三内角A 、B 、C 依次成等差数列,试求|b →+c →|的取值范围.解:(1)设b →=(x,y ),则2x+2y=-2,且a →·b →=|b →||c →|cos 43π=22y x +×22×(-22)=-2,解得⎩⎨⎧=-=01y x 或⎩⎨⎧-==1y x , ∴b →=(-1,0) 或b →=(0,-1).(2)∵三角形的三内角A 、B 、C 依次成等差数列,∴b=3π,∵b →⊥t →,∴b →=(0,-1),∴b →+c →=( cosA,22cos 2C -1)=(cosA,cosC),∴|b →+c →|2=C A 22cos cos +=1+21(cos2A+cos2C)=1+cos(A+C)cos(A -C)=1-21cos(A -C),∴-32π<A -C<32π ,∴-21<cos(A -C)≤1,22≤|b →+c →|<25.例4 已知△ABC 的三内角A 、B 、C 满足A +C =2B ,设x =cos2CA -, f (x )=cosB (CA cos 1cos 1+). (1)试求函数f (x )的解析式及其定义域; (2)判断其单调性,并加以证明; (3)求这个函数的值域. 解:(1)∵A +C =2B ,∴B =60°,A +C =120°)cos()cos(2cos2cos2cos cos cos cos 21)(C A C A CA C A C A C A x f -++-+=⋅+⋅= 342122122-=-+-=x xx x , ∵0°≤|2C A -|<60°,∴x =cos 2C A -∈(21,1].又4x 2-3≠0,∴x ≠23,∴定义域为(21,23)∪(23,1). (2)设x 1<x 2,∴f (x 2)-f (x 1)=342342211222---x x x x=)34)(34()34)((222212121--+-x x x x x x ,若x 1,x 2∈(23,21),则4x 12-3<0,4x 22-3<0,4x 1x 2+3>0,x 1-x 2<0,∴f (x 2)-f (x 1)<0,即f (x 2)<f (x 1),若x 1,x 2∈(23,1],则4x 12-3>0. 4x 22-3>0,4x 1x 2+3>0,x 1-x 2<0,∴f (x 2)-f (x 1)<0.即f (x 2)<f (x 1),∴f (x )在(21,23)和(23,1]上都是减函数.(3)由(2)知,f (x )<f (21)=-21或f (x )≥f (1)=2.故f (x )的值域为(-∞,-21)∪[2,+∞). 四、热身演练: 1.已知,那么下列命题成立的是( B ).A .若α,β是第一象限角,则βαcos cos >B .若α,β是第二象限角,则βαtan tan >C .若α,β是第三象限角,则βαcos cos >D .若α,β是第四象限角,则βαtan tan > 2.函数的部分图象是( D ).AB C D3.函数的反函数是( A ).A .)20)(1arccos(≤≤--=x x yB .)20)(1arccos(≤≤--=x x y πC .)20)(1arccos(≤≤-=x x yD .)20)(1arccos(≤≤-+=x x y π4.任意实数x,不等式 ),,(0cos sin R c b a c x b x a ∈>++都成立的充要条件是( C ).A .00>==c b a 且B .c b a =+22C .c b a <+22D .c b a >+225.若1cos sin =+θθ,则对任意的实数n ,θθnncos sin +的取值范围是( D ).A .1B .(0,1)C .121-n D .无法确定6.定义在R 上的偶函数f (x )满足f (x+2)=f (x ),且f (x )在[-3,-2]上是减函数,又α,β是锐角三角形的两内角,则( A ).A .)(cos )(sin βαf f >B .)(cos )(sin βαf f <C .)(sin )(sin βαf f >D .)(cos )(cos βαf f <7.下列说法正确的是(填上你认为正确的所有命题的代号) .①②③④ ①函数y=-sin(k π+x)(k ∈Z)是奇函数; ②函数y=2sin(2x+π/3)关于点 (π/12,0)对称;③函数y=sin(2x+π/3)+sin(2x-π/3)的最小正周期是π; ④ΔABC 中cosA>cosB 的充要条件是A<B ; 8.在△ABC 中,sinA+cosA=137,则AA A A cos 7sin 15cos 4sin 5-+= .4389.如右图,在半径为R 的圆桌的正中央上空挂一盏电灯,桌子边缘一点处的照度和灯光射到桌子边缘的光线与桌面的夹角θ的正弦成正比,角和这一点到光源的距离 r 的平方成反比,即I =k ·2sin r θ,其中 k 是一个和灯光强度有关的常数,那么怎样选择电灯悬挂的高度h ,才能使桌子边缘处最亮?解:R =r cos θ,由此得:20,cos 1π<θ<θ=R r , RR h R k I Rk R k I R k R k r k I 22tan ,33sin ,392)32()()sin 1)(sin 1(sin 2)(2)cos (sin cos sin sin 232222222222222=θ==θ⋅≤⋅≤θ-θ-⋅θ⋅=θ⋅θ⋅=θ⋅θ⋅=θ⋅=此时时成立等号在由此得 10.设关于x 的方程sinx+3cosx+a=0在(0, 2π)内有相异二解α、β. (1)求α的取值范围; (2)求tan(α+β)的值. 解:(1)∵sinx+3cosx=2(21sinx+23cosx)=2 sin(x+3π),∴方程化为sin(x+3π)=-2a .∵方程sinx+3cosx+a=0在(0, 2π)内有相异二解,∴sin(x+3π)≠sin 3π=23. 又sin(x+3π)≠±1 (∵当等于23和±1时仅有一解),∴|-2a |<1,且-2a≠23, 即|a|<2,且a ≠-3.,∴a 的取值范围是(-2, -3)∪(-3, 2).(2) ∵α、 β是方程的相异解,∴sin α+3cos α+a=0 ① sin β+3cos β+a=0 ②①-②得(sin α- sin β)+3( cos α- cos β)=0, ∴ 2sin 2βα-cos2βα+-23sin 2βα+,sin2βα-=0,又sin2βα+≠0,∴tan2βα+=33, ∴tan(α+β)=2tan 22tan22βαβα+-+=3.11.求20sin 6420cos 120sin 3222+-的值.解:原式=20cos 20sin 20sin 20cos 32222-+64sin 220°=40sin 41)20sin 20cos 3)(20sin 20cos 3(2+-+64sin 220°=40sin 41)2030cos()2030cos(42-++64sin 220°=40sin 80sin 40sin 162+64sin 220°=32cos40°+64(240cos 1-)=32.12.设α、β、γ是锐角,且tan 2α=2tan 3γ,tan β=21tan γ求证:α、β、γ成等差数列.解:要证α、β、γ成等差数列,∵α、β、γ是锐角,只要证:tan β=tan 2γα+.∵tan 2γα+=2tan2tan12tan2tanγαγα-+=2tan2tan12tan 2tan 33γγγγ-+=)2tan 1)(2tan 1()2tan 1(2tan222γγγγ+-+=212tan 12tan22γγ-=21tan γ= tan β.∴α、β、γ成等差数列.。

不等式与三角函数综合应用

不等式与三角函数综合应用

不等式与三角函数综合应用在数学中,不等式和三角函数是两个重要的概念。

不等式是数学中用来描述数之间大小关系的表达式,而三角函数则是用来描述角度和边长之间关系的函数。

本文将探讨不等式与三角函数的综合应用,以及它们在实际问题中的应用。

一、不等式的基本性质和解法不等式是数学中常见的一种关系表达式,它可以描述数之间的大小关系。

常见的不等式有大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等符号。

解不等式的方法主要有图像法、代数法和递推法等。

下面我们通过一个例子来说明不等式的解法。

例子:解不等式2x + 3 > 5。

解法:我们首先将不等式转化为等价的形式,得到2x > 2。

然后通过除以2的方式得到x > 1。

因此不等式2x + 3 > 5的解集为{x | x > 1}。

二、三角函数的基本性质和公式三角函数是数学中用来描述角度和边长之间关系的函数。

常见的三角函数有正弦函数(sin)、余弦函数(cos)、正切函数(tan)等。

三角函数的取值范围一般是[-1, 1],并且它们之间存在一些重要的性质和公式。

下面我们通过一个例子来说明三角函数的应用。

例子:已知一个角的正弦值为0.6,求这个角的余弦值和正切值。

解法:根据正弦函数的定义,可以得到sinθ = 0.6。

由此可以得到θ ≈ 36.87°。

然后根据余弦函数和正切函数的定义,可以得到cosθ ≈ 0.8,tanθ ≈ 0.75。

因此这个角的余弦值为0.8,正切值为0.75。

三、不等式与三角函数的综合应用不等式与三角函数在实际问题中常常需要综合应用,通过建立不等式和利用三角函数的性质来解决实际问题。

下面我们通过一个例子来说明不等式与三角函数的综合应用。

例子:已知一座山峰的斜率为k,角度为θ,山顶距离地面的垂直高度为h。

如果山顶处禁止爬升的角度不超过α度,那么k和h之间的关系是怎样的?解法:我们可以首先利用三角函数的性质,得到tanθ = h / k。

三角函数在生活中的应用

三角函数在生活中的应用

三角函数在生活中的应用
三角函数在生活中的应用非常广泛,以下是一些具体的例子:
1. 导航和测量:在地理学和导航系统中,三角函数被广泛用于确定位置和导航路线。

例如,使用正弦函数可以计算出一个船只或飞机相对于地平线的高度,而使用余弦函数可以帮助计算两地之间的距离和方位角。

2. 音乐学:在音乐学中,三角函数也有重要的应用。

例如,正弦函数可以用来描述声音的波动,音乐中的音调和和弦也可以用三角函数来表示。

3. 光学:在光学中,三角函数被广泛应用于描述和计算光线的传播、折射和反射。

我们可以利用三角函数来计算出反射镜或折射体中光线的角度和路径。

4. 建筑和工程:在建筑和工程中,三角函数常用于测量高度、距离和角度。

例如,工程师可以使用三角函数来计算建筑物的高度、角度和结构的稳定性。

5. 航海和航空:航海员和飞行员使用三角函数来计算船舶或飞机的位置、航向和速度。

三角函数也用于制定航线和导航系统。

6. 电磁学:电磁学中常用交流电,而交流电可以用三角函数(特别是正弦函数和余弦函数)来描述。

此外,复数函数常用正弦函数和余弦函数的复变函数表示。

7. 日常生活:在现实生活中存在大量具有周期性变化的现象,比如农业中筒车中盛水筒距离水面的相对高度与时间的关系、物理中
的简谐运动等。

这些都可以借助三角函数来描述。

总的来说,三角函数在生活中的应用非常广泛,几乎无处不在。

立体几何与三角函数综合应用

立体几何与三角函数综合应用

立体几何与三角函数综合应用立体几何与三角函数是数学中重要的两个分支,它们在现实生活中有着广泛的应用。

本文将介绍立体几何与三角函数的基本概念,并结合实际案例,探讨它们在实际问题中的综合应用。

一、立体几何基础知识在立体几何中,有许多重要的概念,比如点、线、面、体积等。

其中,立体的体积计算是立体几何的核心内容之一。

对于不规则形状的立体,可以通过划分为若干个更简单的几何体,再计算其体积。

而三角函数则是描述角度关系的一组函数,包括正弦、余弦、正切等。

在三角函数中,有着许多常用的三角恒等式和性质。

二、综合应用案例一:建筑设计在建筑设计中,立体几何和三角函数的应用十分重要。

比如,设计师需要计算一个建筑物的体积,可以将其拆解为若干个几何体,如长方体、圆柱体等,再分别计算它们的体积,并求和得到总体积。

此外,设计师还需要使用三角函数计算出建筑物的倾斜度、角度等参数,以便在设计过程中进行合理的调整。

三、综合应用案例二:地理测量在地理测量领域,立体几何和三角函数的应用也非常广泛。

例如,测量一座山峰的高度时,可以利用三角函数的正切函数来计算山顶与视线的夹角,进而通过三角函数的性质,得到山峰的高度。

另外,在地理测量中,也经常需要计算一些不规则地形的面积,这时可以利用立体几何的概念将其划分为更简单的几何体,再进行计算。

四、综合应用案例三:机械设计在机械设计领域,立体几何与三角函数同样发挥着重要作用。

例如,设计师需要计算一台机器的体积时,可以将其划分为若干个几何体,并计算它们的体积。

此外,在机械运动的设计过程中,三角函数常用于计算角度、转速等参数,以确保机器的正常运行。

综上所述,立体几何与三角函数是数学中非常重要的分支,它们在各个领域的实际应用中发挥着重要的作用。

通过对立体几何的体积计算和三角函数的角度计算的综合运用,可以解决许多实际问题,如建筑设计、地理测量和机械设计等。

对于学习者而言,深入理解立体几何和三角函数的概念和性质,能够帮助他们更好地应用于实际问题中,提高解决实际问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解答题规范练
三角函数的综合应用
(推荐时间:70分钟)
1. 设函数f (x )=a ·b ,其中向量a =(2cos x,1),b =(cos x ,3sin 2x ),x ∈R .
(1)若函数f (x )=1-3,且x ∈⎣⎡⎦
⎤-π3,π
3,求x 的值; (2)求函数y =f (x )的单调增区间,并在给出的坐标系中画出y =f (x )在区间[0,π]上的图象.
解 (1)依题设得f (x )=2cos 2x +3sin 2x =1+cos 2x +3sin 2x =2sin ⎝⎛⎭⎫2x +π
6+1. 由2sin ⎝⎛⎭⎫2x +π6+1=1-3,得sin ⎝⎛⎭⎫2x +π6=-3
2. ∵-π3≤x ≤π3,∴-π2≤2x +π6≤5π
6,
∴2x +π6=-π3,即x =-π4
.
(2)当-π2+2k π≤2x +π6≤π
2
+2k π(k ∈Z ),
即-π3+k π≤x ≤π
6
+k π(k ∈Z )时,函数y =f (x )单调递增,即函数y =f (x )的单调增区间为
⎣⎡⎦
⎤-π3+k π,π6+k π(k ∈Z ),
x 0 π
6 π3 π2 2π3 5π6 π y
2
3
2
-1
2
2. 已知向量a =(cos x +3sin x ,3sin x ),b =(cos x -3sin x ,2cos x ),函数f (x )=a ·b -
cos 2x .
(1)求函数f (x )的值域;
(2)若f (θ)=1
5,θ∈⎣⎡⎦⎤π6,π3,求sin 2θ的值. 解 (1)f (x )=a ·b -cos 2x
=(cos x +3sin x )(cos x -3sin x )+3sin x ·2cos x -cos 2x =cos 2x -3sin 2x +23sin x cos x -cos 2x =cos 2x -sin 2x -2sin 2x +23sin x cos x -cos 2x =cos 2x +3sin 2x -1 =2sin ⎝⎛⎭⎫2x +π
6-1, f (x )的值域为[-3,1].
(2)由(1)知f (θ)=2sin ⎝
⎛⎭⎫2θ+π
6-1, 由题设2sin ⎝⎛⎭⎫2θ+π6-1=1
5,即sin ⎝⎛⎭⎫2θ+π6=35, ∵θ∈⎣⎡⎦⎤π6,π3,∴2θ+π6∈⎣⎡⎦⎤π2,5π6, ∴cos ⎝⎛⎭⎫2θ+π6=-45
, ∴sin 2θ=sin ⎣⎡⎦⎤⎝⎛⎭⎫2θ+π6-π6=sin ⎝⎛⎭⎫2θ+π6cos π6-cos ⎝⎛⎭⎫2θ+π6sin π
6 =35×3
2-⎝⎛⎭⎫-45×12=33+410
.
3. 已知向量m =⎝
⎛⎭⎫sin A ,1
2与n =(3,sin A +3cos A )共线,其中A 是△ABC 的内角. (1)求角A 的大小;
(2)若BC =2,求△ABC 面积S 的最大值.
解 (1)∵m ∥n ,∴sin A ·(sin A +3cos A )-3
2=0.
∴1-cos 2A 2+32sin 2A -32=0,

32sin 2A -1
2
cos 2A =1, 即sin ⎝
⎛⎭⎫2A -π
6=1. ∵A ∈(0,π),∴2A -π
6∈⎝⎛⎭⎫-π6,11π6. 故2A -π6=π2,A =π
3
.
(2)∵BC =2,由余弦定理得b 2+c 2-bc =4,
又b 2+c 2≥2bc ,∴bc ≤4(当且仅当b =c 时等号成立), 从而S △ABC =12bc sin A =34bc ≤3
4×4= 3.
即△ABC 面积S 的最大值为 3.
4. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -3cos C cos B =3c -a
b
.
(1)求
sin C
sin A
的值; (2)若B 为钝角,b =10,求a 的取值范围. 解 (1)由正弦定理,设
a sin A =
b sin B =
c sin C
=k , 则3c -a b =3k sin C -k sin A k sin B =3sin C -sin A sin B ,
所以cos A -3cos C cos B =3sin C -sin A sin B

即(cos A -3cos C )sin B =(3sin C -sin A )cos B , 化简可得sin(A +B )=3sin(B +C ). 又A +B +C =π,所以sin C =3sin A , 因此sin C
sin A =3.
(2)由
sin C
sin A
=3得c =3a .
由题意知⎩
⎪⎨⎪⎧
a +c >b
a 2+c 2<
b 2,
又b =10,所以5
2
<a <10.
5. 已知函数f (x )=A sin(ωx +φ)⎝
⎛⎭⎫其中x ∈R ,A >0,ω>0,-π2<φ<π
2的部分图象如图所示.
(1)求函数f (x )的解析式;
(2)已知函数f (x )的图象上的三点M ,N ,P 的横坐标分别为-1,1,5,求sin ∠MNP 的值. 解 (1)由图可知,A =1,最小正周期T =4×2=8. 由T =2πω=8,得ω=π
4
.
又f (1)=sin ⎝⎛⎭⎫π4+φ=1,且-π2<φ<π
2, 所以π4+φ=π2,解得φ=π
4.
所以f (x )=sin ⎝⎛⎭⎫π4x +π4. (2)因为f (-1)=0,f (1)=1, f (5)=sin ⎝⎛⎭⎫5π4+π4=-1,
所以M (-1,0),N (1,1),P (5,-1). 所以|MN |=5,|PN |=20,|MP |=37. 由余弦定理得
cos ∠MNP =5+20-3725×20=-35.
因为∠MNP ∈(0,π), 所以sin ∠MNP =4
5
.
6. 已知向量a =(cos α,sin α),b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),其中
0<α<x <π.
(1)若α=π
4
,求函数f (x )=b ·c 的最小值及相应x 的值;
(2)若a 与b 的夹角为π
3
,且a ⊥c ,求tan 2α的值.
解 (1)∵b =(cos x ,sin x ),c =(sin x +2sin α,cos x +2cos α),α=π
4

∴f (x )=b ·c =cos x sin x +2cos x sin α+sin x cos x +2sin x cos α=2sin x cos x +2(sin x +cos x ).
令t =sin x +cos x ⎝⎛⎭⎫π
4<x <π,则2sin x cos x =t 2-1,且-1<t < 2. 则y =t 2+2t -1=⎝
⎛⎭⎫t +
222-3
2
,-1<t <2, ∴t =-
22时,y min =-32,此时sin x +cos x =-22
, 即2sin ⎝⎛⎭⎫x +π4=-22, ∵π4<x <π,∴π2<x +π4<5
4π, ∴x +π4=76π,∴x =11π12
.
∴函数f (x )的最小值为-32,相应x 的值为11π12.
(2)∵a 与b 的夹角为π
3

∴cos π3=a ·b |a |·|b |=cos αcos x +sin αsin x =cos(x -α).
∵0<α<x <π,∴0<x -α<π,∴x -α=π3.
∵a ⊥c ,
∴cos α(sin x +2sin α)+sin α(cos x +2cos α)=0, ∴sin(x +α)+2sin 2α=0,即sin ⎝⎛⎭⎫2α+π
3+2sin 2α=0. ∴52sin 2α+3
2cos 2α=0, ∴tan 2α=-
3
5
.。

相关文档
最新文档