数列极限的运算法则
极限的四则运算(数列极限、函数极限)

a
k
,lim(C n
an)
Ca
。
例1、已知 lnim(6an bn ) 11 lnim(3an 2bn ) 7
求 lnim(2an bn ) 的值。
解:2an+bn=
1 15
(6an-bn)+
8 15
(3an+bn),
∴ lnim(2an bn )
3)
lim (
x
x3 2x2 1
x2 2x
) 1
KEY:1) 0(分子分母同除以x4); 2)0(分子有理化) 3)1/4(通分)
例3、(1)求
lim
x1
2x2 x3
x 1 2x2 1
的值。
x2 1
(2)求
lim
x1
2x2
x 1
的值
(见课本P87,注意其中的说明。)
3 5
( 2)n1 5
[1 ( 2)n ] 5
2
3 [(2)n1 55
( 2)2n1] 5
∴
lim
n
Tn
3 5
[ 1
1
2
5 1
4
]
3 (5 10) 5 . 5 3 21 7
5 25
例5、有一个边长为1的正方形,以其四边中点为顶点画 第二个正方形,再以第二个正方形的四边中点为顶点画
=
lim[ 1 n 15
(6an
bn
)
185(3an
2bn
)]
=
1 15
×11+
185×(-7)
(完整版)数列极限的四则运算

lim qn 0 ( q 1)
n
2.运算法则:
lim a a(a为常数)
n
如果 lim an A lim bn B
n
n
则: lim (an bn ) A B n
lim (an bn ) A B
n
lim a n A , (B 0) b n n B
3.语言表达(见教材,略)
此法则可以推广到有限多个数列的情形
n
1 q
n
1 q
1 q
当
q
1
时,
lim
n
T
n
n
lim
1
n n 1
当
q
1
时,
lim
n
Tn
不存在
四、小结:运算法则、常用极限及手段
五、作业:练习 1、2 习题 1
补充:(附纸)
2
3. lim 5n3 n2 4 n 6n5 n 1
5 1 4
解:原式= lim n n3
5
n
6
1 n2
1 n3
6
514
解:原式= lim
n2
n3
n5
0 0
n 6 1 1
6
n4 n5
a0
小.结.:.lim n
a0 x p b0 x q
a1 x p1 b1 x q1
a2 x p2 b2 x q2
例三(机动,作巩固用)求下列数列的极限:
1. lim 2n 1 n 3n 2
解:原式= lim
2
1 n
lim (2
n
1) n
lim 2 lim 1
n
n n
20
2
1.2.2-1.2.4 数列极限的性质和运算法则

xn
a
,
lim
n
yn
b
,
且 a b ,则 N N ,当 n N xn yn 。
2
数列极限的性质和运算法则
性质 1(唯一性)若{ xn } 收敛,则其极限唯一。
证明:用反证法。
假设
lim
n
xn
a
,
lim
n
xn
b ,( a b),取
ba 2
0,
∴收敛数列的极限是唯一的。
3
数列极限的性质和运算法则
性质 2(有界性) 若{ xn } 收敛,则{ xn } 必有界,
即 M 0, n N , 有 xn M 。
注证明:②①:收性设敛质ln数im2列的x必n等有价a界命,;题反是之:若有界xn数无列界未,必则收敛xn。发散。
lim
n
n3
lim
n
n(n
1)(2n 6n3
1)
1 3
11
数列极限的性质和运算法则
(2) lim[ 1 2 L n 1 2 L (n 1)] n
解: lim[ 1 2 L n 1 2 L (n 1)] n
lim[ n (n 1) n (n 1) ] lim 1 [ n2 n n2 n]
n yn lim yn b
n
说明:可以推广到有限多个数列的和差或乘积。
7
数列极限的性质和运算法则
思考:
① 若:{ xn } 收敛,{ yn } 发散, 它们的和、差、积、商 数列的敛散性如何?
② 若:{ xn } , { yn } 都发散呢?
数列极限四则运算法则的证明

数列极限四则运算法则的证明设limAn=A,limBn=B,则有?法则1:lim(An+Bn)=A+B?法则2:lim(An-Bn)=A-B?法则3:lim(An·Bn)=AB?法则4:lim(An/Bn)=A/B.???法则5:lim(An的k次方)=A的k次方(k是正整数)?(n→+∞的符号就先省略了,反正都知道怎么回事.)?首先必须知道极限的定义:?如果数列{Xn}和常数A有以下关系:对于ε>0(不论它多么小),总存在正数N,使得对于满足n>N的一切Xn,不等式|Xn-A|<ε都成立,?则称常数A是数列{Xn}的极限,记作limXn=A.?根据这个定义,首先容易证明:?引理1: limC=C.?(即常数列的极限等于其本身)?法则1的证明:?∵limAn=A,? ∴对任意正数ε,存在正整数N?,使n>N?时恒有|An-A|<ε.①(极限定义)?同理对同一正数ε,存在正整数N?,使n>N?时恒有|Bn-B|<ε.②?设N=max{N?,N?},由上可知当n>N时①②两式全都成立.?此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)|≤|An-A|+|Bn-B|<ε+ε=2ε.?由于ε是任意正数,所以2ε也是任意正数.?即:对任意正数2ε,存在正整数N,使n>N时恒有|(An+Bn)-(A+B)|<2ε.?由极限定义可知,lim(An+Bn)=A+B.?为了证明法则2,先证明1个引理.?引理2:若limAn=A,则lim(C·An)=C·A.(C是常数)?证明:∵limAn=A,? ∴对任意正数ε,存在正整数N,使n>N时恒有|An-A|<ε.①(极限定义)?①式两端同乘|C|,得:?|C·An-CA|<Cε.?由于ε是任意正数,所以Cε也是任意正数.?即:对任意正数Cε,存在正整数N,使n>N时恒有|C·An-CA|<Cε.?由极限定义可知,lim(C·An)=C·A.?(若C=0的话更好证)?法则2的证明:?lim(An-Bn)?=limAn+lim(-Bn)??(法则1)?=limAn+(-1)limBn??(引理2)?=A-B.?为了证明法则3,再证明1个引理.?引理3:若limAn=0,limBn=0,则lim(An·Bn)=0.?证明:∵limAn=0,? ∴对任意正数ε,存在正整数N?,使n>N?时恒有|An-0|<ε.③(极限定义)?同理对同一正数ε,存在正整数N?,使n>N?时恒有|Bn-0|<ε.④?设N=max{N?,N?},由上可知当n>N时③④两式全都成立.?此时有|An·Bn|?=|An-0|·|Bn-0|?<ε·ε?=ε2.?由于ε是任意正数,所以ε2也是任意正数.?即:对任意正数ε2,存在正整数N,使n>N时恒有|An·Bn-0|<ε2.?由极限定义可知,lim(An·Bn)=0.?法则3的证明:令an=An-A,bn=Bn-B.?则liman=lim(An-A)?=limAn+lim(-A)??(法则1)?=A-A??(引理2)?=0.?同理limbn=0.?∴lim(An·Bn)?=lim[(an+A)(bn+B)]=lim(an·bn+B·an+A·bn+AB)?=lim(an·bn)+lim(B·an)+lim(A·bn)+limAB??(法则1)?=0+B·liman+A·limbn+limAB??(引理3、引理2)?=B×0+A×0+AB??(引理1)?=AB.?引理4:如果limXn=L≠0,则存在正整数N和正实数ε,使得对任何正整数n>N,有|Xn|≥ε.?证明:取ε=|L|/2>0,则存在正整数N,使得对任何正整数n>N,有|Xn-L|<ε.于是有|Xn|≥|L|-|Xn-L|≥|L|-ε=ε引理5:?若limAn存在,则存在一个正数M,使得对所有正整数n,有|An|≤M.?证明:设limAn=A,则存在一个正整数N,使得对n>N有|An-A|≤1,于是有|An|≤|A|+1,我们取M=max(|A1|,...,|AN|,|A|+1)即可法则4的证明:??由引理4,当B≠0时(这是必要条件),正整数N1和正实数ε0,使得对正整数n>N1,有|Bn|≥ε0.??由引理5,又正数M,K,使得使得对所有正整数n,有|An|≤M,|Bn|≤K.??现在对ε>0,正整数N2和N3,使得:??当n>N2,有|An-A|<ε0*|B|*ε/(M+K+1);??当n>N3,有|Bn-B|<ε0*|B|*ε/(M+K+1);??现在,当n>max(N1,N2,N3)时,有??|An/Bn-A/B|??=|An*B-Bn*A|/|B*Bn|??=|An(B-Bn)+Bn(An-A)|/|B*Bn|??≤(|An|*|B-Bn|+|Bn|*|A-An|)/(|B|*ε0)??≤ε(M+K)/((M+K+1)<ε法则5的证明:?lim(An的k次方)?=limAn·lim(An的k-1次方)??(法则3)?....(往复k-1次)?=(limAn)的k次方?=A的k次方. 精心搜集整理,只为你的需要。
数列极限四则运算法则的证明

数列极限四则运算法则的证明work Information Technology Company.2020YEAR数列极限四则运算法则的证明设limAn=A,limBn=B,则有法则1:lim(An+Bn)=A+B法则2:lim(An-Bn)=A-B法则3:lim(An·Bn)=AB法则4:lim(An/Bn)=A/B.法则5:lim(An的k次方)=A的k次方(k是正整数)(n→+∞的符号就先省略了,反正都知道怎么回事.)首先必须知道极限的定义:如果数列{Xn}和常数A有以下关系:对于ε>0(不论它多么小),总存在正数N,使得对于满足n>N的一切Xn,不等式|Xn-A|<ε都成立,则称常数A是数列{Xn}的极限,记作limXn=A.根据这个定义,首先容易证明: 引理1: limC=C. (即常数列的极限等于其本身)法则1的证明:∵limAn=A, ∴对任意正数ε,存在正整数N₁,使n>N₁时恒有|An-A|<ε.①(极限定义)同理对同一正数ε,存在正整数N₂,使n>N₂时恒有|Bn-B|<ε.②设N=max{N₁,N₂},由上可知当n>N时①②两式全都成立.此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)|≤|An-A|+|Bn-B|<ε+ε=2ε.由于ε是任意正数,所以2ε也是任意正数.即:对任意正数2ε,存在正整数N,使n>N时恒有|(An+Bn)-(A+B)|<2ε.由极限定义可知,lim(An+Bn)=A+B.为了证明法则2,先证明1个引理.引理2:若limAn=A,则lim(C·An)=C·A.(C是常数)证明:∵limAn=A, ∴对任意正数ε,存在正整数N,使n>N时恒有|An-A|<ε.①(极限定义)①式两端同乘|C|,得: |C·An-CA|<Cε.由于ε是任意正数,所以Cε也是任意正数.即:对任意正数Cε,存在正整数N,使n>N时恒有|C·An-CA|<Cε.由极限定义可知,lim(C·An)=C·A. (若C=0的话更好证)法则2的证明:lim(An-Bn)=limAn+lim(-Bn) (法则1)=limAn+(-1)limBn (引理2)=A-B.为了证明法则3,再证明1个引理.引理3:若limAn=0,limBn=0,则lim(An·Bn)=0.证明:∵limAn=0, ∴对任意正数ε,存在正整数N₁,使n>N₁时恒有|An-0|<ε.③(极限定义)同理对同一正数ε,存在正整数N₂,使n>N₂时恒有|Bn-0|<ε.④设N=max{N₁,N₂},由上可知当n>N时③④两式全都成立.此时有|An·Bn| =|An-0|·|Bn-0| <ε·ε=ε².由于ε是任意正数,所以ε²也是任意正数.即:对任意正数ε²,存在正整数N,使n>N时恒有|An·Bn-0|<ε².由极限定义可知,lim(An·Bn)=0.法则3的证明:令an=An-A,bn=Bn-B.则liman=lim(An-A)=limAn+lim(-A) (法则1)=A-A (引理2) =0.同理limbn=0.∴lim(An·Bn)=lim[(an+A)(bn+B)]=lim(an·bn+B·an+A·bn+AB)=lim(an·bn)+lim(B·an)+lim(A·bn)+limAB (法则1)=0+B·liman+A·limbn+limAB (引理3、引理2)=B×0+A×0+AB (引理1) =AB.引理4:如果limXn=L≠0,则存在正整数N和正实数ε,使得对任何正整数n>N,有|Xn|≥ε.证明:取ε=|L|/2>0,则存在正整数N,使得对任何正整数n>N,有|Xn-L|<ε.于是有|Xn|≥|L|-|Xn-L|≥|L|-ε=ε引理5: 若limAn存在,则存在一个正数M,使得对所有正整数n,有|An|≤M.证明:设limAn=A,则存在一个正整数N,使得对n>N有|An-A|≤1,于是有|An|≤|A|+1,我们取M=max(|A1|,...,|AN|,|A|+1)即可法则4的证明:由引理4,当B≠0时(这是必要条件),正整数N1和正实数ε0,使得对正整数n>N1,有|Bn|≥ε0.由引理5,又正数M,K,使得使得对所有正整数n,有|An|≤M,|Bn|≤K.现在对ε>0,正整数N2和N3,使得:当n>N2,有|An-A|<ε0*|B|*ε/(M+K+1);当n>N3,有|Bn-B|<ε0*|B|*ε/(M+K+1);现在,当n>max(N1,N2,N3)时,有|An/Bn-A/B|=|An*B-Bn*A|/|B*Bn|=|An(B-Bn)+Bn(An-A)|/|B*Bn|≤(|An|*|B-Bn|+|Bn|*|A-An|)/(|B|*ε0)≤ε(M+K)/((M+K+1)<ε法则5的证明:lim(An的k次方)=limAn·lim(An的k-1次方) (法则3) ....(往复k-1次) =(limAn)的k次方=A的k次方.。
数列的极限性质与计算方法

数列的极限性质与计算方法数列在数学中起着重要的作用,它们与极限的关系密切相关。
本文将介绍数列的极限性质以及常用的计算方法。
通过了解数列的极限性质,我们可以更好地理解和处理数学问题。
一、数列的极限性质数列的极限是指数列随着项数的增加趋向于某个确定的值。
数列的极限性质包括数列的有界性、单调性和收敛性。
1. 数列的有界性对于数列{an},如果存在常数M,使得对所有的n,有|an| ≤ M,那么数列{an}是有界的。
数列的有界性是指数列中的所有项都不会无限增加或减小,而是有一个上界和下界。
2. 数列的单调性对于数列{an},如果对于所有的n,都有an ≤ an+1 或an ≥ an+1,那么数列{an}是单调的。
数列的单调性是指数列中的项是否按照一定的规律递增或递减。
3. 数列的收敛性对于数列{an},如果存在常数L,使得当n趋向于无穷大时,an趋向于L,那么数列{an}收敛于L。
数列的收敛性是指数列是否有一个确定的极限值。
二、数列的计算方法在计算数列的极限时,我们常用的方法包括通项公式、夹挤准则以及数列的运算法则。
1. 通项公式有些数列可以通过通项公式来表示,通项公式可以帮助我们计算数列的任意一项。
例如,斐波那契数列可以通过通项公式an = (φ^n - (1-φ)^n)/√5来计算。
2. 夹挤准则夹挤准则是一种常用的计算数列极限的方法。
如果存在数列{bn}和数列{cn},满足对于所有的n,有bn ≤ an ≤ cn,并且{bn}和{cn}的极限都为L,那么数列{an}的极限也是L。
3. 数列的运算法则数列的运算法则包括数列的加法、减法、乘法和除法的性质。
例如,如果数列{an}和{bn}都收敛于L,那么它们的和数列{an + bn}也收敛于2L。
总结:数列的极限性质和计算方法是数学中的重要知识点。
通过了解数列的有界性、单调性和收敛性,我们可以判断数列的特性。
在计算数列的极限时,可以运用通项公式、夹挤准则和数列的运算法则等方法。
极限四则运算法则

DOCS SMART CREATE
极限四则运算法则
DOCS
01
极限四则运算的基本概念
极限的定义与性质
极限的定义
• 数列极限:当自变量趋向某一值时,数列的项趋向另一值
• 函数极限:当自变量趋向某一值时,函数的值趋向另一值
极限的性质
• 极限存在唯一性:如果一个函数在某个点存在极限,那么这个极限是唯一的
DOCS
间接法求解极限的步骤
• 通过已知条件和极限的性质,间接求出极限的值
• 分析已知条件,找出与极限相关的表达式
• 根据极限的性质,将表达式变形
• 求出极限的值
无穷小量与无穷大量在极限运算中的应用
无穷小量的概念
• 当自变量趋向某一值时,函数值趋向于0,但永远无法等于0
无穷大量的概念
• 当自变量趋向某一值时,函数值趋向于无穷大,但永远无法等于无穷
• 将复杂的极限问题转化为导数问题
过求导数的方法求解极限
• 通过洛必达法则求解极限,简化运算过程
对数函数与指数函数在极限运算中的技巧
对数函数与指数函数在极限运算中的性质
• 对数函数的极限:当自变量趋向于无穷大时,对数函数的极限等于无穷小量
• 指数函数的极限:当自变量趋向于无穷大时,指数函数的极限等于无穷大量
对数函数与指数函数在极限运算中的应用
• 利用对数函数和指数函数的性质,简化极限运算
• 通过变换函数形式,将复杂的极限问题转化为简单的极限问题
04
极限四则运算的案例分析
连续函数与间断函数的极限分析
连续函数的极限分析
断续函数的极限分析
• 连续函数在一点的极限等于函数在该点的值
数学分析 第二章21-2数列极限的准则、运算法则

2021/3/22
1
极限存在准则
1.定理3(夹逼准则)
若数列( xn )n1, ( yn )n1,(zn ) 满足下列条件:
(1) yn xn zn (n N),
(2)
lim
n
yn
lim
n
zn
a,
则数列
(
xn
)n1的极限存在,
且
lim
n
xna.Leabharlann 2021/3/222
证 yn a, zn a,(n )
xn
yn
a b.
3.lim xn a , (b 0).
y n n
b
2021/3/22
11
证1 xn a, yn b,(n )
0, N1 0, N2 0, 使得
当 n N1时恒有 xn a ,
当 n N2时恒有 yn b ,
取 N max{ N1, N2 }, 当 n N时, 恒有 上两式同时成立,
M | b | (M | b |)
即lim n
xn
yn
ab
lim
n
xn
lim n
yn
特别地,两个无穷小量的积仍是无穷小量.
更一般,一个有界量与一个无穷小量的积仍
是无穷小量.
2021/3/22
15
证3 xn a, yn b,(n )
0, N1 0, N2 0, 使得
当 n N1时恒有 xn a , 当 n N2时恒有 yn b ,
| (xn yn ) (a b) | | xn a | | yn b | 2
即lim( n
xn
yn )
a
b
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列极限的运算法则(5月3日)
教学目标:掌握数列极限的运算法则,并会求简单的数列极限的极限。
教学重点:运用数列极限的运算法则求极限 教学难点:数列极限法则的运用 教学过程: 一、复习引入:
函数极限的运算法则:如果,)(lim ,)(lim 0
B x g A x f x x x x ==→→则[]=±→)
()(lim 0
x g x f x x ___
[]=→)().(lim 0
x g x f x x ____,=→)
()
(lim
x g x f x x ____(B 0≠) 二、新授课:
数列极限的运算法则与函数极限的运算法则类似: 如果,lim ,lim B b A a n n n n ==∞
→∞
→那么
B A b a n n n +=+∞
→)(lim B A b a n n n -=-∞
→)(lim
B A b a n n n .).(lim =∞
→ )0(lim
≠=∞→B B A
b a n
n n
推广:上面法则可以推广到有限..
多个数列的情况。
例如,若{}n
a ,{}n
b ,{}n
c 有极限,
则:n n n n n n n n n n c b a c b a ∞
→∞
→∞
→∞
→++=++lim lim lim )(lim
特别地,如果C 是常数,那么CA a C a C n n n n n ==∞
→∞
→∞
→lim .lim ).(lim
二.例题:
例1.已知,5lim =∞
→n n a 3lim =∞→n n b ,求).43(lim n n n b a -∞
→
例2.求下列极限: (1))45(lim n
n +
∞
→; (2)2)11
(lim -∞→n n
例3.求下列有限:
(1)1312lim
++∞→n n n (2)1
lim 2-∞→n n
n
分析:(1)(2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,
上面的极限运算法则不能直接运用。
例4.求下列极限: (1) )1
1
2171513(
lim 2
222+++++++++∞
→n n n n n n (2))39312421(
lim 1
1
--∞→++++++++n n n
说明:1.数列极限的运算法则成立的前提的条件是:数列的极限都是存在,在进行极限运算时,要特别注意这一点。
当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。
2.有限个数列的和(积)的极限等于这些数列的极限的和(积)。
3.两个(或几个)函数(或数列)的极限至少有一个不存在,但它们的和、差、积、商的极限不一定不存在。
小结:在数列的极限都是存在的前提下,才能运用数列极限的运算法则进行计算;数列极限的运算法则是对有限的数列是成立的。
练习与作业:
1.已知,2lim =∞
→n n a 3
1
lim -
=∞
→n n b ,求下列极限 (1))32(lim n n n b a +∞
→; (2)n
n
n n a b a -∞→lim
2.求下列极限: (1))1
4(lim n
n -
∞
→; (2)n
n 3
52lim
+
-∞→。
3.求下列极限 (1)n n n 1lim +∞→; (2) 2
3lim -∞→n n
n ;
(3)2123lim n n n --∞→; (4)1
325lim 22
--∞→n n n n 。
4.求下列极限
已知,3lim =∞
→n n a ,5lim =∞
→n n b 求下列极限:
(1). ).43(lim n n n b a -∞
→ (2). n
n n
n n b a b a +-∞→lim
5.求下列极限:
(1). );27(lim n n -∞
→ (2). )51
(
lim 2-∞
→n
n
(3). )43
(1lim +∞→n n n (4).11
1
1lim -+∞→n
n n
(5). 2
2321lim n n n ++++∞→ (6).11657lim -+∞→n n
n
(7). 91lim 2-+∞→n n n (8))1412lim(22
n n n
n +-+∞→
(9)n
n n 3
1913112141211lim ++++++++
∞→ (10).已知,2lim =∞→n
n a 求n n n a n a n -+∞→lim。