不等式及其解集

合集下载

不等式的基本概念和解法

不等式的基本概念和解法

不等式的基本概念和解法不等式是数学中常见的数值比较关系表达方式之一,它描述了数之间大小关系的差异。

在解决实际问题和推导数学定理时,不等式起到了至关重要的作用。

本文将介绍不等式的基本概念和解法,帮助读者加深对不等式的理解和应用。

一、不等式的基本概念不等式是指使用不等号(如大于号、小于号)表示的数值关系,包括严格不等式和非严格不等式两种形式。

严格不等式如“<”表示不等关系,非严格不等式如“≤”表示不等关系。

在不等式中,被比较的两个数一般称为“不等式的两端”,用字母表示。

不等式的解集是使得不等式成立的数的集合。

二、不等式的解法1.代入法代入法是最常见的解不等式的方法之一。

即将候选解代入不等式,验证是否满足不等式。

通过逐个尝试的方式,找到符合不等式的解集。

例如,对于不等式3x - 4 > 5,可以逐个尝试不同的数值,如将x分别取1、2、3等代入,验证不等式是否成立,最终确定解集。

2.消元法消元法是解二元一次不等式常用的方法。

通过将不等式中的变量消去,得到一元一次不等式,进而求解。

例如,对于不等式2x + 3y > 4x - 5y,可以通过将两边的同类项合并后,消去变量y,得到3y + 5x > 2x,然后进一步化简为y > -3x。

3.图像法图像法常用于解关于一个或两个未知数的不等式。

通过将不等式转化为图形形式进行观察和判断,可快速得到不等式的解集。

例如,对于不等式y > 2x - 3,可以将不等式表示为一条直线y = 2x - 3,并通过观察直线和不等式中的“大于”关系,得出解集为直线上方的区域。

4.化简法化简法是解不等式时常用的方法之一。

通过对不等式进行化简,进而将其转化为较为简单的形式,以便求解。

例如,对于复杂的不等式2x^2 + 5x - 3 > 0,可以通过将不等式分解为(2x - 1)(x + 3) > 0,并找出方程两侧使得不等式成立的区间,进而得到解集。

9.1.1不等式及其解集

9.1.1不等式及其解集

填一填
像 2x = 6 这类,表
示左__右__两__边__相__等__关系 的式子,叫做等式
类比
像 2x>6 这类,表
示_大__小___关系的式子, 叫做不等式
方程 2x = 6 的解是 __x__=__3
不等式 2x>6 的解 集是_x__>___3
练一练
判断下列说法是否正确,正确的打“√”,错误的打“×”.
(2)“不小于”;__≥__;
(3)“至多”;___≤_____;
(4)“至少”;__≥___; (5)“高出”:___>_____; (6)“不足”__<____; (7)“不超过”;_≤_____; (8)“不低于”:__≥__; (9)“不相等”;__≠_____.
4.(1)x的5倍与2的差大于x与1的和的3倍,用不等式表示
改为:自然数? 0、1、2、3、4、5 3、不等式x-5<1的解集是( C )
A、x<4 B、x>5 C、x<6 D、x<7
知识点 3:在数轴上表示不等式的解集
问题 如何在数轴上表示出不等式 x>25 的解集呢?
先A则都的在大 点点因不数于表等此A轴示可式右 2上的5以的,边标数像解而所出都下集点有表小图的x示于A那点>左样22表25边5表5.示.的所示的点有数
把表示 25 的点上 画空心圆圈,表示 不包含这一点.
A
0
25
画一画:利用数轴来表示下列不等式的解集.
空心圆圈表 示不含此点
(1)
x>-1

(2)1 2
.x<
表示
1 2
的点
-1 0 表示-1的点 方向向右
01 1 2
方向向左

不等式及其解集·要点详析

不等式及其解集·要点详析

不等式及其解集·要点详析
重点
1.不等式的概念
用不等号表示不等关系的式子,叫做不等式.
例如:x-1<2,3-4<0,3-4≠4-3,a>0,a<0,a2≥0等都是不等式.五种不等号的读法及意义
(1)“≠”读作“不等于”,它说明两个量之间的关系是不相等的,但不能明确哪个大哪个小;
(2)“>”读作“大于”,表示其左边的量比右边的量大;
(3)“<”读作“小于”,表示其左边的量比右边的量小;
(4)“≥”读作“大于或等于”,即“不小于”,表示左边“不小于”右边;
(5)“≤”读作“小于或等于”,即“不大于”,表示左边“不大于”右边.2.不等式成立与不等式不成立的意义
对于含有未知数的不等式来说,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们就说,不等式成立;当未知数取某些数值时,不等式的左、右两边不符合不等号所表示的大小关系,我们就说,不等式不成立.3.不等式的解与不等式的解集
(1)不等式的解使不等式成立的未知数的值叫做不等式的解.
(2)不等式的解集一般地说,一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称为这个不等式的解集.
(3)不等式的解与解集的区别与联系
不等式的解与不等式的解集是两个不同的概念,不等式的解是指满足这个不等式的未知数的某个值,而不等式的解集,是指满足这个不等式的未知数的所有的值,不等式的所有解组成了不等式的解集,解集中包括了每一个解.难点
1.不等式的解及解集.
2.不等式的解集在数轴表示的方法.。

第 九章 不等式9.1.1不等式及其解集

第 九章 不等式9.1.1不等式及其解集
(1)x的一半不小于-1 (1) 0.5x≥-1.如 x=-1,1.
(2) y+4>0.5. 如y=0,1.
(2)y与4的和大于0.5 (3) a<0 . 如a=-3,-4.
(3)a是负数; (4)b是非负数;
(4) b是非负数,就是b不是 负数,它可以是正数或零, 即b>0或b=0.如b=0,2.
(3)x=3;
(4) x2+xy+y2;
(5)x≠5; (6)x+2>y+5.
解 : (1)(2)(5)(6)是不等式; (3)(4)不是不等式.
知识讲解
练一练
C
知识讲解
2 用不等式表示数量关系
例2 用不等式表示下列数量关系:
(1)x的5倍大于-7; (2)a与b的和的一半小于-1;
5x >-7
知识讲解
例4 直接写出x+4<6的解集,并在数轴上表示出来. 解:x<2. 这个解集可以在数轴上表示为:
0 12 变式1 已知x的解集如图所示,你能写出x的解集吗?
(1)
-4
0
解:(1)x<-4;
(2)
0
4
(2)x>4.
知识讲解
变式2 直接写出不等式2x>8的解集,并在数轴上表示 出来.
解:x>4. 这个解集在数轴上表示为:
二、如何在小学数学教学活动中体现数学核心素养 1.数学抽象(符号意识、数感;几何直观、空间想象) 2.逻辑推理(推理能力、运算能力) 3.数学模型(模型思想、数据分析观念)
三、如何在数学教学评价中考查数学核心素养
教育质量监测的四个原则 1.不要求计算速度(速度的训练是课业负担重的主要原因) 2.监测内容蕴含的数学素养(概念、推理、计算、想象) 3.应当有一道开放题(超市的位置,加分原则) 4.说学生能懂的话(对可 直接写出不等式-2x>8的解集.

不等式及其解集

不等式及其解集

不等式及其解集1. 不等式的概念和表示不等式是数学中一种表达式,它使用不等号(<,>,≤或≥)来表示两个数或两个代数式之间的大小关系。

不等式可以包含一个或多个未知数,并且可以包含常数和其他数学运算。

不等式的一般形式如下:p(x) < q(x)其中p(x)和q(x)是多项式函数,表示式子的左侧和右侧。

不等式的解集是满足不等式的x的值的集合。

2. 一元一次不等式一元一次不等式是指只包含一个未知数x,并且最高次数为一次的不等式。

例如:ax + b < 0其中a和b是常数。

要求解这个不等式,我们可以按照以下步骤进行:1.将不等式转化为等式:ax + b = 02.求解这个等式的解x_0。

3.根据x_0的位置确定不等式的解集。

假设x_0表示等式的解。

•如果a > 0,则解集为(x, −∞)•如果a < 0,则解集为(−∞, x)3. 一元二次不等式一元二次不等式是指只包含一个未知数x,并且最高次数为二次的不等式。

例如:ax^2 + bx + c > 0其中a,b和c是常数。

要求解这个不等式,我们可以按照以下步骤进行:1.将不等式转化为等式:ax^2 + bx + c = 02.求解这个等式的解集{x_1, x_2}。

3.根据x_1和x_2的位置确定不等式的解集。

假设x_1和x_2表示等式的解。

•如果a > 0,则解集为(−∞, x_1) ∪ (x_2, +∞)•如果a < 0,则解集为(x_1, x_2)4. 多元不等式多元不等式是指含有多个未知数的不等式。

解决多元不等式的方法通常是通过图形、代数方法或数值方法。

例如:考虑以下两个不等式:ax + by ≥ cdx + ey < f可以使用图形方法将它们表示在坐标系中,并找到满足这两个不等式的区域。

通过确定这些区域的交集,可以获得满足所有条件的解集。

5. 不等式解集的表示和性质不等式解集通常用集合表示法来表示,例如:S = {x | p(x) < q(x)}其中,S表示满足不等式的x的集合,p(x)和q(x)分别代表不等式的左侧和右侧。

2014..9.1.1.不等式及其解集

2014..9.1.1.不等式及其解集

比较等式与不等式的性质
等式的基本性质1
等式两边加(或 减)同一个数或式 子,结果仍相等。 等式的基本性质2 不等式的性质1 不等式两边加(或减) 同一个数(或式子),不 等号的方向不变。
不等式的性质2 不等式两边乘(或除以) 等式两边乘同一个 正数 同一个正数,不等号的方 数,或除以同一个 不变 向不变。 不为零的数,结果 不等式的性质3 仍相等. 不等式的两边乘(或除以)同 一个负数,不等号的方向改变 负数 改变.
达标检测
1、已知a>b,下列不等式不成立的是( B)
A: a-3>b-3 B:-2a>-2b C: D: -a<-b 2、由m>n到km<kn成立的条件是( B ) A: k>0 B :k<0 C: k≥0 D: k≤0 3、已知a>b,用“<”或“>”填空: > -3 < -3b (1) a-3____b (2) -3a____ > < -3b (4) a-b____0 (3) 3-3a____3 <-2,依据____________. 不等式的性质3 4、若-2x>4,则x___ 若m-2>3,则m___ _________. 1 >5 ,依据不等式的性质
正数:7×3
7 ×2 7 ×1 零: 7× 0
> > >
4×3
4× 2 4× 1
负数:7×(-1)
7 ×(-2) 7 × (-3)
< 4 × (-1) < 4 × (-2) <
4 × (-3)
= 4× 0
发现:同乘以一个正数,不等号方向不变,同乘以一
个 负数不等号方向改变,同乘以0的时候相等.

不等式及其解集

不等式及其解集

例子
对于不等式 x^2 - 4x + 4 > 0,我们可以分解为 (x - 2)^2 > 0,然后分别求解 x-2>0 和 x-2<0,得到 x 不等于 2 的解集 。
对于不等式 |x - 3| < 4,我们可以将其视为两个简单的不等 式 x - 3 < 4 和 3 - x < 4,然后分别求解得到 -1 < x < 7 的 解集。
《不等式及其解集》
2023-10-29
目录
• 不等式的定义和性质 • 不等式的解法 • 不等式的解集 • 不等式的应用
01
不等式的定义和性质
定义
不等式
用不等号连接两个代数式,表 示它们之间的关系,称为不等 式。例如,x+2>3是不等式。
严格不等式
在不等式中使用严格不等号“ >”或“<”,表示两个数或 式子之间的严格大小关系。例 如,x+2<3是严格不等式。
集合表示法
用花括号{}将解集的元素 括起来,并用逗号隔开。
数轴表示法
将解集的元素在数轴上表 示出来,边界值用实心点 表示,区间用空心区间表 示。
例子
x^2 - 4x + 4 > 0的解集为{x|x > 2}或{x|x < 0}。 x^2 + 2x + 1 = 0的解集为{x|x = -1}。
04
不等式的应用
实际应用
金融
在金融领域,不等式可以用来 建立数学模型,例如在投资组 合理论中,利用不等式来计算
投资组合的有效前沿。
物理
在物理学中,不等式可以用来描 述物理现象和规律,例如在力学 中,不等式可以表示两个力的关 系。
化学

不等式组及其解集

  不等式组及其解集

专题19 不等式组及其解集1.一元一次不等式组:把几个含有相同未知数的一元一次不等式合起来,组成一个一元一次不等式组.2.不等式组的解集:一般地,几个不等式的解集的公共部分,叫作由它们所组成的不 等式组的解集,解不等式组就是求它的解集. 不等式组(a <b )数轴表示 解集 口诀 同大取大 同小取小 大小小大 中间找 无解 大大小小 无解了当不等式带有“≤”或“≥”时,上面的口诀依然适用,如不等式组的解集为.4.解决和不等式组解集有关的问题时,注意利用数轴这一数学工具,过程直观明了.典例精析例1 解不等式组 并将解集在数轴上表示出来.【分析】解一元一次不等式组,先求出每个不等式的解集,然后利用数轴求出这些解集的公共部分即为不等式组的解集.【解】解不等式①,得x>-2解不等式②,得x≤2把不等式①和②的解集在数轴上表示出来,如图19-1所示.∴不等式的解集为-2<x ≤2【点评】熟练解出不等式,并准确地在数轴上表示出来,从而在数轴上找到不等式解集的公共部分即为不等式组的解集.拓展与变式1 解不等式组并写出它所有的整数解.,x a x b<⎧⎨>⎩x b >,x a x b <⎧⎨<⎩x a <,x a x b >⎧⎨<⎩a xb <<,x a x b <⎧⎨>⎩23x x ≤⎧⎨<⎩2x ≤22,11,39x x x x >-⎧⎪-+⎨≤⎪⎩①②()41710,85,3x x x x +≤+⎧⎪⎨--<⎪⎩①②拓展与变式2 不等式组的所有整数解的和是 . 拓展与变式3 若|x+1|=x+1,|2x-7|=7-2x ,则满足条件的所有非负整数x 有 .【反思】根据题意列出不等式(组),解出不等式组从而找出符合条件的解,注意非负整数即自然数,也就是0和正整数.例2 如果a>2,那么不等式组的解集为 ,的解集为 . 【分析】把每个不等式的解集表示在数轴上(或用口诀),结合数轴找不等式组的解集.【解】把不等式的解集表示在数轴上,不等式组表示在数轴上如图19-2所示,可知解集为x >a .不等式组表示在数轴上如图19-3所示, 可知解集为2<x ≤a .【点评】利用数轴上的数越往右越大,在数轴上找好数约位置,结合数轴找到不拓展与变式4 (1)已知关于x 的不等式组的解集为x ≥2,则a 的取值范围是 .(2)已知关于x 的不等式组有解,则a 的取值范围是 . 拓展与变式5 已知关于x 的不等式组的解集为0<x <2,求m -n 的值.拓展与变式6 解关于x 的不等式组34125x +-≤<,2x a x >⎧⎨>⎩,2x a x ≤⎧⎨>⎩,2x a x >⎧⎨>⎩,2x a x ≤⎧⎨>⎩,2x a x >⎧⎨≥⎩,2x a x <⎧⎨>⎩2,11x m n x m +>+⎧⎨-<-⎩①②0,12.23x a x x x -≥⎧⎪-+⎨+>⎪⎩①②拓展与变式7 已知关于x 的不等式组的整数共有3个,求a 的取值范围.拓展与变式8 定义新运算:对干任意实数a ,b 都有a #b =ab -a -b +1,等式右边是通常的加法减法及乘法运算.例如:2#4=2×4-2-4+1=3.请根据上述知识解决问题:若3#x 的值大于4而不大于m 时,恰有两个整数解,求m 的取值范围.【反思】解决含参数的不等式组问题,数形结合必不可少,同时要注意等号能否取到,可将取等号的值代入原题中检验.专题突破1.不等式组的整数解有( ). A. 1个 B. 2个 C. 3个 D. 4个0,321x a x -≥⎧⎨-≥-⎩①②24,241x x x x ≤+⎧⎨+<-⎩2.不等式组的解集是x>1,则m 的取值范围是 .3.解不等式组并将不等式组的解集在数轴上表示出来.4.某旅行社某天有空房10间,当天接待了一个旅行团,当每个房间只住3人时,有一个房间的住宿情况是不满也不空.若旅行团的人数为偶数,问:旅行团共有多少人?5.关于x 的不等式组有2个整数解,求a 的取值范围.551,1x x x m +<+⎧⎨-≥⎩()5623,3513,44x x x x -≤+⎧⎪⎨-<-⎪⎩①②()2331,324x x x x a <-+⎧⎪⎨+>+⎪⎩①②。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.1.1不等式及其解集
授课老师:何琴
自主学习
不等式的定义
用“<”或“>”号表示大小关系的式子叫做不等 式. 用“≠”表示不等关系的式子也是不等式
注:“<” 、“>” 、“≠”、“ ≤”、“ ≥”都是 不等号
不等式的解
使不等式成立的未知数的值叫做不等式的解 不等式的解集
一个含有未知数的不等式的所有的解,组成这个不 等式的解集. 求不等式的解集的过程叫解不等式.
大于 向右画界点 -1Fra bibliotek0X≤2
定方向 1 2 3
X>1
一元一次不等式的解集一般来说有 以下四种情况:
( 1) X > a
(2) X < a (3) X ≥ a (4) X ≤ a
a
a
. a
. a
:-O 的 收 获
不等式的解
不等式的解集
不等式的定义
不等式
一元一次 不等式 用数轴表示不 等式的解集

注: (1)解集中包括了每一个解; (2)解集是一个范围; (3)解集中可能包括一个解,也可能包括无数 解。
一元一次不等式的定义:
类似于一元一次方程,含有一个未知数, 未知数的次数是1的不等式,叫做一元一次 不等式.
自己动手,知识到手
不等式解集的表示方法
第一种:用式子(如x>3),即用最简形式的不等式(如 x>a或x<a)来表示. 第二种:利用数轴表示不等式的解集.
在数轴上表示不等式的解集 实心圆:表 你能用什么办法把不等式 x ≥- 1 的解 示 -1 在这个 集表示在数轴上?
解集内
-3 -2 -1 0 1 2 3 4
x ≥ -1
大于向右画,小于向左画; 有等号的画实心圆点,无等号的画空心圆圈 .如下图 总结: 用数轴表示不等式的解集的步骤 :
-1 0 1找界点 2 3 画数轴
……
疑 惑
相关文档
最新文档