动力弹塑性分析步骤

合集下载

动力弹塑性分析方法及其在结构设计中的应用

动力弹塑性分析方法及其在结构设计中的应用

1.2 数值仿真技术的应用在工程领域的应用中,数值仿真技术主要指以计算机为手段,通过对实际问题的分析建立数值模型,结合数值计算方法来获取研究结果,并且以云图、图表、动画等直观的方式展现,达到对工程问题或者物理问题进行科学研究的目的,其中也包括了动力弹塑性分析在抗震设计中的应用。

商业软件在工程领域的应用表1结构专业建筑专业工程问题仿真软件工程问题仿真软件动力弹塑性分析ABAQUSPERFORM-3D建筑能耗PHOENICS多尺度分析ANSYSMidas Gen声、光环境RAYNOISE数值风洞模拟FLUENT/CFX烟雾扩散FDS 连续倒塌模拟MSC.MARC人员疏散Simulex1.3 动力弹塑性分析的基本要素动力弹塑性分析基本流程如图2所示。

(a)建立物理模型(c)进行数值分析,得到分析结果图2 动力弹塑性分析基本流程动力弹塑性分析方法包括以下三个基本要素:1)建立结构的弹塑性模型及地震波的数值输入;2)数值积分运算分析;3)全过程响应输出。

从设计角度解释,静力或动力弹塑性分析都类似于一种“数值模拟试验”,尤其是动力弹塑性分析可在一定程度上仿真结构在地震波作用时段内的反应过程,可理解为一种“数字振动台试验”。

表2总结了振动台试验、静力及动力弹塑性分析之间的共同点与差异。

结构弹塑性分析与振动台试验表2振动台试验静力弹塑性分析动力弹塑性分析适当的模型比例适当的模型精细化程度(宏观构件模型、微观材料模型)适当的模型材料适当的材料应力-应变曲线或者截面、构件骨架曲线适当的材料本构模型或者截面、构件的滞回模型动力加载静力加载地震波输入试验结果监测(位移,转角,应变,裂缝发展等)分析结果监测(性能曲线及性能点,变形,材料应变,材料损伤,截面利用率)分析结果监测(变形及残余变形,材料应变,材料损伤,截面利用率,能量平衡等)而动力弹塑性分析方法与线性静力分析方法却有较大的不同,如表3所示。

线性静力分析与动力弹塑性分析特点对比 表3分析方法线性静力分析方法动力弹塑性分析方法材料假定弹性模量,泊松比更为真实的材料本构模型(如钢材双折线模型,混凝土三折线模型或者更复杂)构件模拟构件刚度不变构件刚度变化(如混凝土损伤开裂导致构件刚度退化)作用力直接施加外力荷载静载作用下直接输入地震波数据进行积分运算非线性简化方法考虑P-Δ效应考虑材料非线性,几何非线性,边界非线性工况组合不同工况可以线性组合必须累计重力作用对结构在地震作用下响应的影响平衡方程静力平衡方程:动力平衡方程:分析结果工况组合结果直接用于结构设计结构反应随时间变化,从变形角度,统计结构最大反应指导结构设计注:为刚度矩阵;为阻尼矩阵;为质量矩阵;为荷载向量;为节点位移向量;为节点速度向量;为节点加速度向量。

MIDAS-Gen动力弹塑性分析

MIDAS-Gen动力弹塑性分析
图27 地面加速度
23

例题 动力弹塑性分析

13.运行时程分析
主菜单选择 分析>运行分析
14.时程分析结果
1:主菜单选择 结果>时程分析结果>位移/速度/加速度: 可以查看在地震波作用下,各个时刻各节点的位移情况 荷载工况:SC1 步骤:11.16(可以任选某一时刻) 时间函数:Elcent-h 位移:任选一方向位移 若选择动画,可以以动画形式显示各时刻各节点的位移情况


4:主菜单选择 结果>时程分析结果>非弹性铰状态
时程荷载工况:SC1 步骤:12 (亦可以通过鼠标在地震波图形上点取) 时间函数:Elcent_h 结果类型:铰状态 成分: Ry
图33 非弹性铰状态
图34 非弹性铰图形显示
27Βιβλιοθήκη 注: 滞回模型说明 请参照帮助文 件
图22 定义梁铰特性值
计算卸载刚度的幂 阶,用来调整混凝土 开裂后刚度卸载
18



定义柱铰 名称:colu,屈服强度(面)计算方法:自动计算,材料类型:钢筋混凝土 构件类型:柱,截面名称:2:300×300,特性值:勾选Fx,My,铰数量:5 滞回模型:Clough,特性值:自动计算
图13 分配楼面荷载
6:主菜单选择 结果>荷载组合: 自定义荷载组合“组合”,荷载工况系数:DL(ST),1.0;LL(ST),0.5
图14 自定义荷载组合
12



7:主菜单选择 荷载>由荷载组合建立荷载工况:
图15 使用荷载工况建立荷载组合
8:主菜单选择 视图>激活>全部激活 视图>显示: 荷载 查看输入的荷载

YJK动力弹塑性时程分析详解

YJK动力弹塑性时程分析详解
8.955100e-005 -8.381950e-005 -2.350330e-004 -7.782120e-004 -7.265580e-004 -4.008440e-004 … SW: 1.855060e-004 9.636760e-005 2.856650e-004 2.530350e-004 4.269670e-004 3.687970e-004 5.499770e-004 … 地震波标示符说明
目标最佳。
2 弹塑性时程分析流程
完整的弹塑性时程分析过程如下图所示,程序提供下图所有功能模块,计算完成后以图 形和表格的方式输出超限结构弹塑性分析报告所用数据。
线弹性分析 与设计
分析与设计 施工图
选择地震波
3组或7组
弹塑性时程 分析
生成数据
含钢筋数据
动力方程求解
NewMark数 00200 -0.00200 -0.00100 -0.00100 -0.00100 -0.00100 -0.00100 -0.00100 -0.00100 0.00000 -0.00100 0.00000 -0.00000 -0.00100 -0.00100 -0.00100 -0.00100 -0.00100 -0.00100 -0.00100 -0.00100 -0.00100 -0.00100 0.00000 -0.00200 0.00200 0.00100 -0.00000 -0.00100 … 对话框中参数应按如下方式设置: 步长设置:0.02; 故数据起始行号:5,因前 5 行数据为说明行; 一行数据个数:5。
4.1.2 地震波选择
弹塑性动力时程分析结果,对地震波的依赖程度比较高。同一结构,采用不同的地震波, 计算结果可能有非常明显的差异。依据《高规》[4]5.5.1 条第 6 款:进行动力弹塑性计算时, 地面运动的加速度时程的选取、预估罕遇地震作用时的峰值加速度取值以及计算结果的选用 应符合该规程第 4.3.5 的规定。

结构动力弹塑性分析方法

结构动力弹塑性分析方法

结构动力弹塑性分析方法结构动力弹塑性分析方法是一种基于结构动力学理论和力学原理的计算方法,用于评估和预测结构在复杂荷载条件下的弹性和塑性响应。

在结构设计和分析中,结构动力弹塑性分析方法被广泛应用于工程领域,例如建筑物、桥梁、船舶和飞机等。

结构动力弹塑性分析方法是建立在结构动力学理论基础上的,因此首先需要建立结构的动力学模型。

这个模型可以是离散模型,也可以是连续模型。

离散模型将结构划分为多个节点,每个节点代表结构中的一个质点或刚体。

连续模型则使用连续介质力学理论,将结构看作一个连续的弹性体。

在弹塑性分析中,结构的弹性和塑性响应是重点。

弹性响应发生在结构荷载作用下,结构在荷载移除后可以恢复到初始形状。

而塑性响应发生在结构荷载作用下,结构发生永久形变,无法完全恢复到初始形状。

弹塑性分析方法通常将结构的材料行为建模为弹性-塑性材料行为,即在荷载作用下,材料先发生弹性变形,然后发生塑性变形。

在弹塑性分析中,结构中材料的塑性变形是通过应力-应变关系来计算的。

1.建立初始状态:首先,需要建立结构的初始状态,即结构在没有受到荷载作用时的形状和应力状态。

这通常需要进行结构静力分析或弹性分析。

2.荷载分析:然后,需要进行荷载分析,确定结构所受到的各种荷载,包括静态荷载、动态荷载和地震荷载等。

4.动力分析:进行结构的动力分析,计算结构在不同时间步骤下的位移、速度和加速度等响应。

5.弹塑性分析:根据动力分析的结果,使用弹塑性分析方法计算结构在荷载作用下的变形和应力分布。

这一步通常使用有限元分析方法进行。

6.评估结果和优化:分析结果可用于评估结构的安全性和稳定性,并进行结构设计的优化。

需要注意的是,结构动力弹塑性分析方法是一种比较复杂和计算密集的方法,通常需要使用计算机辅助工具进行计算和分析。

此外,在进行弹塑性分析时,还需要进行一些合理的假设和简化,以提高计算效率。

总之,结构动力弹塑性分析方法提供了一种全面和准确评估结构在复杂荷载条件下的响应的手段,能够帮助工程师进行结构设计和优化,并提高结构的安全性和耐久性。

弹塑性时程分析

弹塑性时程分析

弹塑性时程分析方法将结构作为弹塑性振动体系加以分析,直接按照地震波数据输入地面运动,通过积分运算,求得在地面加速度随时间变化期间内,结构的内力和变形随时间变化的全过程,也称为弹塑性直接动力法。

基本原理多自由度体系在地面运动作用下的振动方程为:式中、、分别为体系的水平位移、速度、加速度向量;为地面运动水平加速度,、、分别为体系的刚度矩阵、阻尼矩阵和质量矩阵。

将强震记录下来的某水平分量加速度-时间曲线划分为很小的时段,然后依次对各个时段通过振动方程进行直接积分,从而求出体系在各时刻的位移、速度和加速度,进而计算结构的内力。

式中结构整体的刚度矩阵、阻尼矩阵和质量矩阵通过每个构件所赋予的单元和材料类型组装形成。

动力弹塑性分析中对于材料需要考虑包括:在往复循环加载下,混凝土及钢材的滞回性能、混凝土从出现开裂直至完全压碎退出工作全过程中的刚度退化、混凝土拉压循环中强度恢复等大量非线性问题。

基本步骤弹塑性动力分析包括以下几个步骤:(1) 建立结构的几何模型并划分网格;(2) 定义材料的本构关系,通过对各个构件指定相应的单元类型和材料类型确定结构的质量、刚度和阻尼矩阵;(3) 输入适合本场地的地震波并定义模型的边界条件,开始计算;(4) 计算完成后,对结果数据进行处理,对结构整体的可靠度做出评估。

计算模型在常用的商业有限元软件中,ABAQUS、ADINA、ANSYS、MSC.MARC都内置了混凝土的本构模型,并提供了丰富的单元类型及相应的前后处理功能。

在这些程序中一般都有专用的钢筋模型,可以建立组合式或整体式钢筋。

以ABAQUS为例,它提供了混凝土弹塑性断裂和混凝土损伤模型以及钢筋单元。

其中弹塑性断裂和损伤的混凝土模型非常适合于钢筋混凝土结构的动力弹塑性分析。

它的主要优点有:(1) 应用范围广泛,可以使用在梁单元、壳单元和实体单元等各种单元类型中,并与钢筋单元共同工作;(2) 可以准确模拟混凝土结构在单调加载、循环加载和动力荷载下的响应,并且可以考虑应变速率的影响;(3) 引入了损伤指标的概念,可以对混凝土的弹性刚度矩阵进行折减,可以模拟混凝土的刚度随着损伤增加而降低的特点;(4) 将非关联硬化引入到了混凝土弹塑性本构模型中,可以更好的模拟混凝土的受压弹塑性行为,可以人为指定混凝土的拉伸强化曲线,从而更好的模拟开裂截面之间混凝土和钢筋共同作用的情况;(5) 可以人为的控制裂缝闭合前后的行为,更好的模拟反复荷载作用下混凝土的反应。

动力弹塑性分析方法及其在结构设计中的应用

动力弹塑性分析方法及其在结构设计中的应用

计算软

MIDAS Gen
PERFORM-3D
STRAT
不同软件弹塑性应用特点比较
表4
ABAQUS
LS-DYNA
材料模 型 梁柱 构件
剪力墙 构件
采用软件自带的材料模型
塑性铰或者纤维单元
需要进行等代 单向或者双向纤维
处理
宏单元
纤维单元
面内分块纤维 单元
自定义材料子程 序
纤维单元
非线性分层壳
软件自带或者用户二次开发 集中塑性铰或纤维模型
工程问题 动力弹塑性分析
多尺度分析 数值风洞模拟 连续倒塌模拟
结构专业 仿真软件 ABAQUS
PERFORM-3D ANSYS
Midas Gen FLUENT/CFX MSC.MARC
商业软件在工程领域的应用
表1
建筑专业
工程问题
仿真软件
建筑能耗
PHOENICS
声、光环境
烟雾扩散 人员疏散
RAYNOISE
(1)或
即结构分别承受两种激励——地面加速度
和外力=
——的运动方程是相同的。
2.3 基于ABAQUS软件的数值模型
在ABAQUS软件中,梁柱等单元一般都采用内置的纤维梁单元直接模拟(图4)。对于单积分点纤 维单元,单元长度的划分受塑性区长度限制。而显式分析的时间步长受单元长度影响,对于梁端、柱 端,其划分长度接近截面高度,此时积分步长达到了10-5s量级。如采用集中塑性铰模型,则单元长度不 再受限于塑性区。以LS-DYNA软件为例,对于梁、柱构件仅采用两个单元,就可以模拟跨中、端部塑性 发展,此时积分步长可以达到10-4s量级。
注: 为刚度矩阵; 为阻尼矩阵; 向量; 为节点加速度向量。

动力弹塑性分析方法及其在结构设计中的应用

动力弹塑性分析方法及其在结构设计中的应用
3.3 结构阻尼
阻尼作为反映结构振动过程中能量耗散的动力特性之一,不同于结构质量和刚度等其他动力特性可 直接通过计算确定,在计算中通常需要抽象为数学模型,其常见的建立形式主要有振型阻尼和瑞雷阻 尼,瑞雷阻尼由质量阻尼项αM和刚度阻尼项βK线性组成如图5所示。
图5瑞雷阻尼示意
在以PERFORM-3D为代表的隐式算法软件中,应用振型阻尼矩阵或瑞雷阻尼都较为方便。两类阻尼 矩阵可分别单独应用,也可结合一起应用。为了节约计算时间,通常用初始弹性刚度矩阵直接形成瑞雷 阻尼矩阵或计算结构的初始线弹性自振周期与振型间接形成振型阻尼矩阵,两类阻尼矩阵都不随时间变 化,虽然理论上可以采用弹塑性响应过程中更新后的结构弹塑性总体刚度矩阵。将线弹性响应阶段的振 型阻尼矩阵用于弹塑性响应阶段,是一种近似方法,因为结构进入弹塑性阶段工作后,自振周期延长, 振型形状也出现变化。如果用瑞雷阻尼矩阵,对于刚度阻尼项βK必须加以关注,特别是用纤维模型模拟 的混凝土单元的刚度阻尼项,如用纤维模型模拟的钢筋混凝土柱和剪力墙单元等。这类单元的混凝土纤 维在初始线弹性响应阶段假设为尚未开裂,开裂后单元刚度显著下降,继续用单元开裂前的刚度矩阵就 会过高估计与此类单元相关的阻尼力与能耗。
通过隐式方法求解时,在每个时间增量步长内需要迭代求解耦联的方程组,计算成本较高,增加的
计算量至少与自由度数的平方成正比。在采用显式方式进行方程求解时,计算在单元层次进行,无需组 装整体刚度矩阵,更无需对刚度矩阵求逆,只需对通常可简化为对角阵的质量矩阵求逆,计算过程中直 接求解解耦的方程组,不需要进行平衡迭代,故一般不存在收敛性问题,每个计算步的计算速度较快, 但是需要非常小的时间步长,通常要比隐式小几个数量级,计算量至少与自由度数成正比[9]。随着分析 模型中单元与节点数量的增加,显式方法的优点越加突出。

MIDAS-Gen动力弹塑性分析

MIDAS-Gen动力弹塑性分析

¾ 地震波: El Centro
¾ 分析时间: 12 秒
图1. 分析模型
3

例题 动力弹塑性分析

2.设定操作环境及定义材料和截面
在建立模型之前先设定环境及定义材料和截面
主菜单选择 文件>新项目 主菜单选择 文件>保存: 输入文件名并保存 主菜单选择 工具>单位体系: 长度 m, 力 kN本例题介绍使用MIDAS/Gen 的动力弹塑性分析功能来进行抗震设计的方法。例题模型为二
层钢筋混凝土框架结构。(该例题数据仅供参考)
基本数据如下:
¾ 轴网尺寸:见平面图
¾ 柱:
300x300
¾ 主梁: 200x300
¾ 混凝土: C30
¾ 层高: 一~二层 :3.0m
图30 节点位移时程图表
25

例题 动力弹塑性分析

3:主菜单选择 结果>时程分析结果>时程分析图形: 层数据图形,以图形方式查看各层在地震波作用下各时刻所分担的地震剪力 方向:X轴方向(Y轴方向) 层:2层 时程工况:SC1
图31 定义层剪力时程函数
图32 层剪力时程图表
26

图13 分配楼面荷载
6:主菜单选择 结果>荷载组合: 自定义荷载组合“组合”,荷载工况系数:DL(ST),1.0;LL(ST),0.5
图14 自定义荷载组合
12



7:主菜单选择 荷载>由荷载组合建立荷载工况:
图15 使用荷载工况建立荷载组合
8:主菜单选择 视图>激活>全部激活 视图>显示: 荷载 查看输入的荷载
图12 按层激活
11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文献一
结构弹塑性动力时程分析是将建筑物作为弹塑性振动系统,直接输入地面地震加速度记录[5],对运动方程直接积分,从而获得计算系统各质点的位移、速度、加速度和结构构件地震剪力的时程变化曲线。

通过计算还可以分析出结构的薄弱层和构件塑性铰位置。

所以这种分析方法能更准确而完整地反映结构在强烈地震作用下的变形特性,是改善结构抗震能力、提高抗震设计水平的一项重要措施。

弹塑性动力分析步骤:
1)建立整体结构模型;
2)定义材料的本构关系,通过对各个构件指定相应的单元类型和材料类型确定结构动力响应的各参数;
3)施加恒、活荷载等竖向荷载值以及风等横向荷载;
4)输入适合本场地的地震波;
5)定义模型的边界条件;
6)计算,并对结果进行评定。

文献二
弹塑性动力分析的基本方法
弹塑性动力分析包括以下几个步骤:
(1) 建立结构的几何模型并划分网格;
(2) 定义材料的本构关系,通过对各个构件指定相应的单元类型和材料类型确定结构的质量、刚度和阻尼矩阵;
(3) 输入适合本场地的地震波并定义模型的边界条件,开始计算;
(4) 计算完成后,对结果数据进行处理,对结构整体的可靠度做出评估。

相关文档
最新文档