周振荣版拓扑学第5章分离公理 课后答案
拓扑学复习题与参考答案

点集拓扑学练习题一、单项选择题(每题2分)1、已知{,,,,}X a b c d e =,下列集族中,( )是X 上的拓扑.①{,,{},{,},{,,}}X a a b a c e φ=T②{,,{,,},{,,},{,,,}}X a b c a b d a b c e φ=T③{,,{},{,}}X a a b φ=T④{,,{},{},{},{},{}}X a b c d e φ=T2、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.①{,,{},{,},{}}X a a b c φ=T ②{,,{},{,},{,}}X a a b a c φ=T③{,,{},{},{,}}X a b a c φ=T ④{,,{},{},{}}X a b c φ=T3、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.①{,,{},{,},{,,}}X a a b a c d φ=T ②{,,{,,},{,,}}X a b c a b d φ=T③{,,{},{},{,,}}X a b a c d φ=T ④{,,{},{}}X a b φ=T4、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.①{,,{},{},{,}}X b c a b φ=T ②{,,{},{},{,},{,}}X a b a b a c φ=T③{,,{},{},{,}}X a b a c φ=T ④{,,{},{},{}}X a b c φ=T5、已知{,,,}X a b c d =,下列集族中,( )是X 上的拓扑.①{,,{,},{,,}}X a b a c d φ=T ②{,,{,},{,,}}X a b a c d φ=T③{,,{},{},{,,}}X a b a c d φ=T ④{,,{},{},{,}}X a c a c φ=T6、设{,,}X a b c =,下列集族中,( )是X 上的拓扑.①{,,{},{},{,}}X a b b c φ=T ②{,,{,},{,}}X a b b c φ=T③{,,{},{,}}X a a c φ=T ④{,,{},{},{}}X a b c φ=T7、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则}{b =( )①φ②X ③{}b ④{,,}b c d8、 已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{,,}b c d =( )①φ②X ③{}b ④{,,}b c d9、 已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ②X ③{}a ④{}b10、已知{,}X a b =,拓扑{,,{}}X a φ=T ,则{}b =( )①φ②X ③{}a ④{}b11、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}a =( )①φ②X ③{,}a b ④{,,}b c d12、已知{,,,}X a b c d =,拓扑{,,{}}X a φ=T ,则{}c =( )①φ②X ③{,}a c ④{,,}b c d13、设{,,,}X a b c d =,拓扑{,,{},{,,}}X a b c d φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1②2③ 3④ 414、设{,,}X a b c =,拓扑{,,{},{,}}X a b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1②2③ 3④ 415、设{,,}X a b c =,拓扑{,,{},{,}}X b b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 0②1③ 2④ 316、设{,}X a b =,拓扑{,,{}}X b φ=T ,则X 的既开又闭的子集的个数为( )① 0②1③ 2④ 317、设{,}X a b =,拓扑{,,{},{}}X a b φ=T ,则X 的既开又闭的子集的个数为( )① 1②2③ 3④ 418、设{,,}X a b c =,拓扑{,,{},{},{,},{,}}X a b a b b c φ=T ,则X 的既开又闭的非空真子集的个数为( )① 1②2③ 3④ 419、在实数空间中,有理数集Q 的部Q 是( )①φ②Q ③R -Q ④R20、在实数空间中,有理数集Q 的边界()Q ∂是( )①φ②Q ③R -Q ④R21、在实数空间中,整数集Z 的部Z 是( )①φ②Z ③R -Z ④R22、在实数空间中,整数集Z 的边界()Z ∂是( )①φ②Z ③R -Z ④R23、在实数空间中,区间[0,1)的边界是( )①φ②[0,1]③{0,1}④(0,1)24、在实数空间中,区间[2,3)的边界是( )①φ②[2,3]③{2,3}④(2,3)25、在实数空间中,区间[0,1)的部是( )①φ②[0,1]③{0,1}④(0,1)26、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中错误的是( ) ①()()()d A B d A d B ⋃=⋃②A B A B ⋃=⋃③()()()d A B d A d B ⋂=⋂④A A =27、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( ) ①()()()d A B d A d B ⋃=⋃②A B A B -=-③()()()d A B d A d B ⋂=⋂④A A =28、设X 是一个拓扑空间,A ,B 是X 的子集,则下列关系中正确的是( ) ①()d A B A B ⋃=⋃②A B A B -=-③()()()d A B d A d B ⋂=⋂④(())()d d A A d A ⊂⋃29、已知X 是一个离散拓扑空间,A 是X 的子集,则下列结论中正确的是() ①()d A φ=②()d A X A =-③()d A A =④()d A X =30、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中不正确的是()①若A φ=,则()d A φ=② 若0{}A x =,则()d A X A =-③若A={12,x x },则()d A X =④ 若A X ≠, 则()d A X ≠31、已知X 是一个平庸拓扑空间,A 是X 的子集,则下列结论中正确的是()①若A φ=,则()d A φ=② 若0{}A x =,则()d A X =③若A={12,x x },则()d A X A =-④若12{,}A x x =,则()d A A =32、设{,,,}X a b c d =,令{{,,},{},{}}a b c c d =B ,则由B 产生的X 上的拓扑是()① { X ,φ,{c },{d },{c ,d },{a ,b ,c }}② {X ,φ,{c },{d },{c ,d }}③{ X ,φ,{c },{a ,b ,c }}④ { X ,φ,{d },{b ,c },{b ,d },{b ,c ,d }}33、设X 是至少含有两个元素的集合,p X ∈,{|}{}G X p G φ=⊂∈⋃T 是X 的拓扑,则( )是T 的基.①{{,}|{}}B p x x X p =∈-②{{}|}B x x X =∈③{{,}|}B p x x X =∈④{{}|{}}B x x X p =∈-34、 设{,,}X a b c =,则下列X 的拓扑中()以{,,{}}S X a φ=为子基.①{ X ,φ,{a },{a ,c }} ② {X ,φ,{a }}③{ X ,φ,{a },{b },{a ,b }} ④ {X ,φ}35、离散空间的任一子集为( )① 开集 ② 闭集 ③ 即开又闭④非开非闭36、平庸空间的任一非空真子集为( )① 开集 ② 闭集 ③ 即开又闭④非开非闭37、实数空间R 中的任一单点集是 ( )① 开集 ② 闭集 ③ 既开又闭 ④ 非开非闭38、实数空间R 的子集A ={1,21,31 ,41,……},则A =( ) ①φ②R ③A ∪{0}④A39、在实数空间R 中,下列集合是闭集的是()①整数集②[)b a ,③有理数集④无理数集40、在实数空间R 中,下列集合是开集的是()①整数集Z ②有理数集③ 无理数集④ 整数集Z 的补集Z '41、已知{1,2,3}X =上的拓扑{,,{1}}T X φ=,则点1的邻域个数是( )①1 ②2 ③3 ④442、已知{,}X a b =,则X 上的所有可能的拓扑有( )①1个 ②2个③3个④4个43、已知X ={a ,b ,c },则X 上的含有4个元素的拓扑有( )个① 3② 5③ 7④ 944、设(,)T X 为拓扑空间,则下列叙述正确的为 ( )①T , T X φ∈∉②T ,T X φ∉∈③当T T '⊂时,T T U U '∈∈④ 当T T '⊂时,T T U U '∈∈45、在实数下限拓扑空间R 中,区间[,)a b 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭46、设X 是一个拓扑空间,,A B X ⊂,且满足()d A B A ⊂⊂,则B 是( )① 开集 ② 闭集 ③ 既是开集又是闭集 ④ 非开非闭47、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,2}A =,则X 的子空间A的拓扑为( )①{,{2},{1,2}}φ=T ②{,,{1},{2},{1,2}}T X φ=③{,,{1},{2}}T A φ=④{,,{1},{2}}T X φ=48、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1,3}A =,则X 的子空间A的拓扑为( )①{,{1},{3},{1,3}}T φ=②{,,{1}}T A φ=③{,,{1},{3},{1,3}}T X φ=④{,,{1}}T X φ=49、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2,3}A =,则X 的子空间A的拓扑为( )①{,{3},{2,3}}φ=T ②{,,{2},{3}}T A φ=③{,,{2},{3},{2,3}}T X φ=④{,,{3}}T X φ=50、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{1}A =,则X 的子空间A 的拓扑为( )①{,{1}}T φ=②{,,{1,2}}T A φ=③{,,{1},{3},{1,3}}T X φ=④{,,{1}}T X φ=51、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{2}A =,则X 的子空间A 的拓扑为( )①{,{2},{1,2}}T φ=②{,}T A φ=③{,,{2}}T X φ=④{,,{1,2}}T X φ=52、设{1,2,3}X =,{,,{1,2},{1,3},{1},{2}}T=X φ是X 的拓扑,{3}A =,则X 的子空间A 的拓扑为( )①{,{2},{1,2}}T φ=②{,{},{1,3}}T X φ=③{,,{3}}T X φ=④{,{3}}T φ=53、设R 是实数空间,Z 是整数集,则R 的子空间Z 的拓扑为( )①{,}T Z φ=②()T P Z =③T Z =④{}T Z =54、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.1P 是X 到1X 的投射,则1P 是( )①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射55、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.2P 是X 到2X 的投射,则2P 是( ) ①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射56、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.3P 是X 到3X 的投射,则3P 是( ) ①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射57、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.4P 是X 到4X 的投射,则4P 是( ) ①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射58、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.5P 是X 到5X 的投射,则5P 是( ) ①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射59、设126X X X X =⨯⨯⨯是拓扑空间126,,,X X X 的积空间.6P 是X 到6X 的投射,则6P 是( ) ①单射② 连续的单射③ 满的连续闭映射④ 满的连续开映射60、设1X 和2X 是两个拓扑空间,12X X ⨯是它们的积空间,1A X ⊂,2B X ⊂,则有( ) ①A B A B ⨯≠⨯②A B A B ⨯=⨯③()A B A B ⨯≠⨯④()()()A B A B ∂⨯=∂⨯∂61、有理数集Q 是实数空间R 的一个( )①不连通子集② 连通子集③开集④以上都不对62、整数集Z 是实数空间R 的一个( )①不连通子集② 连通子集③开集④以上都不对63、无理数集是实数空间R 的一个( )①不连通子集② 连通子集③开集④以上都不对64、设Y 为拓扑空间X 的连通子集,Z 为X 的子集,若Y Z Y ⊂⊂, 则Z 为( )①不连通子集 ② 连通子集 ③ 闭集 ④ 开集65、设12,X X 是平庸空间,则积空间12X X ⨯是( )①离散空间 ② 不一定是平庸空间③ 平庸空间 ④ 不连通空间66、设12,X X 是离散空间,则积空间12X X ⨯是( )①离散空间 ② 不一定是离散空间③ 平庸空间 ④ 连通空间67、设12,X X 是连通空间,则积空间12X X ⨯是( )①离散空间 ② 不一定是连通空间③ 平庸空间 ④ 连通空间68、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 以上都不对69、实数空间R 中的不少于两点的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 以上都不对70、实数空间R 中的连通子集E 为( )① 开区间 ② 闭区间 ③区间 ④ 区间或一点71、下列叙述中正确的个数为( )(Ⅰ)单位圆周1S 是连通的; (Ⅱ){0}R -是连通的(Ⅲ)2{(0,0)}R -是连通的 (Ⅳ)2R 和R 同胚① 1 ② 2 ③3 ④ 472、实数空间R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对73、整数集Z 作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对74、有理数集Q 作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对75、无理数集作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对76、正整数集Z +作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对77、负整数集Z -作为实数空间R 的子空间( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对78、2维欧氏间空间2R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对79、3维欧氏间空间3R ( )① 仅满足第一可数性公理 ② 仅满足第二可数性公理③ 既满足第一又满足第二可数性公理 ④ 以上都不对80、下列拓扑学的性质中,不具有可遗传性的是( )① 平庸性 ②连通性③离散性④第一可数性公理81、下列拓扑学的性质中,不具有可遗传性的是( )① 第一可数性公理 ②连通性③第二可数性公理④平庸性82、下列拓扑学的性质中,不具有可遗传性的是( )① 第一可数性公理 ②可分性③第二可数性公理④ 离散性83、下列拓扑学的性质中,不具有可遗传性的是( )① 平庸性 ②可分性③离散性④第二可数性公理84、设X 是一个拓扑空间,若对于,,x y X x y ∀∈≠,均有{}{}x y ≠,则X 是( )①0T 空间 ②1T 空间 ③2T 空间 ④以上都不对85、设{1,2}X =,{,,{1}}X φ=T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对86、设{1,2}X =,{,,{2}}X φ=T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 道路连通空间87、设{1,2,3}X =,{,,{1}}X φ=T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对88、设{1,2,3}X =,{,,{23}}X φ=,T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对89、设{1,2,3}X =,{,,{13}}X φ=,T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对90、设{1,2,3}X =,{,,{12}}X φ=,T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对91、设{1,2,3}X =,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①0T 空间 ②1T 空间 ③2T 空间 ④ 以上都不对92、设X 是一个拓扑空间,若X 的每一个单点集都是闭集,则X 是( )①正则空间 ②正规空间 ③1T 空间④4T 空间93、设X 是一个拓扑空间,若X 的每一个有限子集都是闭集,则X 是( )①正则空间 ②正规空间 ③1T 空间④4T 空间94、设X 是一个拓扑空间,若对x X ∀∈与x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ⊂,则X 是( )①正则空间 ②正规空间 ③1T 空间④4T 空间95、设X 是一个拓扑空间,若对X 的任何一个闭集A 与A 的每一个开邻域U ,都存在A的一个开邻域V ,使得V U ⊂,则X 是( )①正则空间 ②正规空间 ③1T 空间④4T 空间96、设{1,23}X =,,{,,{1},{23}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ②1T 空间 ③2T 空间 ④正规空间97、设{1,23}X =,,{,,{2},{13}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ②1T 空间 ③2T 空间 ④正规空间98、设{1,23}X =,,{,,{3},{12}}X φ=,T ,则(,)X T 是( ) ①0T 空间 ②1T 空间 ③2T 空间 ④正则空间99、设{1,23}X =,,{,,{1},{2},{1,2}}X φ=T ,则(,)X T 是( )①2T 空间 ②正则空间③4T 空间④正规空间100、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是( )①2T 空间 ②正则空间③4T 空间④正规空间101、设{1,23}X =,,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是( )①2T 空间 ②正则空间③4T 空间④正规空间102、若拓扑空间X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个() ① 连通空间 ② 道路连通空间 ③ 紧致空间 ④ 可分空间103、紧致空间中的每一个闭子集都是( )① 连通子集 ② 道路连通子集 ③ 紧致子集 ④ 以上都不对104、Hausdorff 空间中的每一个紧致子集都是( )① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对105、紧致的Hausdorff 空间中的紧致子集是( )① 连通子集 ② 开集 ③ 闭集 ④ 以上都不对106、拓扑空间X 的任何一个有限子集都是( )① 连通子集 ② 紧致子集 ③ 非紧致子集 ④ 开集107、实数空间R 的子集{1,2,3}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集108、实数空间R 的子集{1,2,3,4}A =是( )① 连通子集 ② 紧致子集 ③开集 ④ 非紧致子集109、如果拓扑空间X 的每个紧致子集都是闭集,则X 是( )①1T 空间 ② 紧致空间 ③ 可数补空间 ④ 非紧致空间二、填空题(每题2分)1、设{,}X a b =,则X 的平庸拓扑为 ;2、设{,}X a b =,则X 的离散拓扑为 ;3、同胚的拓扑空间所共有的性质叫 ;4、在实数空间R 中,有理数集Q 的导集是___________.5、)(A d x ∈当且仅当对于x 的每一邻域U 有 ;6、设A 是有限补空间X 中的一个无限子集,则()d A = ;7、设A 是有限补空间X 中的一个无限子集,则A = ;8、设A 是可数补空间X 中的一个不可数子集,则()d A = ;9、设A 是可数补空间X 中的一个不可数子集,则A = ;10、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,2}A = 的部为 ;11、设{1,2,3}X =,X 的拓扑{,,{1},{2,3}}T X φ=,则X 的子集{1,3}A = 的部为 ;12、设{1,2,3}X =,X 的拓扑{,,{1},{2,3}}T X φ=,则X 的子集{1,2}A = 的部为 ;13、设{1,2,3}X =,X 的拓扑{,,{2},{2,3}}T X φ=,则X 的子集{1,3}A = 的部为 ;14、设{,,}X a b c =,则X 的平庸拓扑为 ;15、设{,,}X a b c =,则X 的离散拓扑为 ;16、设{1,2,3}X =,X 的拓扑{,,{2},{3},{2,3}}T X φ=,则X 的子集{1,3}A = 的部为 ;17、设{1,2,3}X =,X 的拓扑{,,{1},{3},{1,3}}T X φ=,则X 的子集{1,2}A = 的部为 ; 18、:f X Y →是拓扑空间X 到Y 的一个映射,若它是一个单射,并且是从X 到它的象集()f X 的一个同胚,则称映射f 是一个 .19、:f X Y →是拓扑空间X 到Y 的一个映射,如果它是一个满射,并且Y 的拓扑是对于映射f 而言的商拓扑,则称f 是一个.20、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个开集U 的象集()f U 是Y 中的一个开集,则称映射f 是一个 ;21、设,X Y 是两个拓扑空间,:f X Y →是一个映射,若X 中任何一个闭集U 的象集()f U 是Y 中的一个闭集,则称映射f 是一个 ;22、若拓扑空间X 存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;23、若拓扑空间X 存在两个非空的开子集,A B ,使得,A B A B X φ⋂=⋃=,则X 是一个 ;24、若拓扑空间X 存在着一个既开又闭的非空真子集,则X 是一个 ;25、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个 ;26、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它在任何一个连续映射下的象所具有,则称这个性质是一个 ;27、拓扑空间的某种性质,如果为一个拓扑空间所具有也必然为它的任何一个商空间所具有,则称这个性质是一个 ;28、若任意1n ≥个拓扑空间12,,,n X X X ,都具有性质P ,则积空间12n X X X ⨯⨯⨯也具有性质P ,则性质P 称为 ;29、设X 是一个拓扑空间,如果X 中有两个非空的隔离子集,A B ,使得A B X ⋃=,则称X 是一个 ;30、若12,X X 满足第一可数性公理,则积空间12X X ⨯满足 ;31、若12,X X 满足第二可数性公理,则积空间12X X ⨯也满足 ;32、如果一个拓扑空间具有性质P ,那么它的任何一个子空间也具有性质P ,则称性质P 为 ;33、设D 是拓扑空间X 的一个子集,且D X =,则称D 是X 的一个;34、若拓扑空间X 有一个可数稠密子集,则称X 是一个 ;35、设X 是一个拓扑空间,如果它的每一个开覆盖都有一个可数子覆盖,则称X 是一个 ;36、如果一个拓扑空间具有性质P ,那么它的任何一个开子空间也具有性质P ,则称性质P 为 ;37、如果一个拓扑空间具有性质P ,那么它的任何一个闭子空间也具有性质P ,则称性质P 为 ;38、设X 是一个拓扑空间,如果则称X 是一个0T 空间;39、设X 是一个拓扑空间,如果则称X 是一个1T 空间;40、设X 是一个拓扑空间,如果则称X 是一个2T 空间;41、正则的1T 空间称为 ;42、正规的1T 空间称为 ;43、完全正则的1T 空间称为 ;44、设X 是一个拓扑空间.如果X 的每一个开覆盖都有一个有限子覆盖,则称拓扑空间X 是一个 .45、设X 是一个拓扑空间,Y 是X 的一个子集.如果Y 作为X 的子空间是一个紧致空间,则称Y 是拓扑空间X 的一个 .46、设X 是一个拓扑空间.如果X 的每一个可数开覆盖都有有限子覆盖,则称拓扑空间X 是一个 .47、设X 是一个拓扑空间.如果X 的每一个无限子集都有凝聚点,则称拓扑空间X 是一个 .48、设X 是一个拓扑空间.如果X 中的每一个序列都有一个收敛的子序列,则称拓扑空间X 是一个 .三.判断(每题3分,判断1分,理由2分)1、从离散空间到拓扑空间的任何映射都是连续映射( )2、设12, T T 是集合X 的两个拓扑,则12 T T ⋂不一定是集合X 的拓扑( )3、从拓扑空间X 到平庸空间Y 的任何映射都是连续映射( )4、设A 为离散拓扑空间X 的任意子集,则()d A φ= ( )5、设A 为平庸空间X (X 多于一点)的一个单点集,则()d A φ= ( )6、设A 为平庸空间X 的任何一个多于两点的子集,则()d A X = ( )7、设X 是一个不连通空间,则X 中存在两个非空的闭子集,A B ,使得,A B A B X φ⋂=⋃=( )8、若拓扑空间X 中存在一个既开又闭的非空真子集,则X 是一个不连通空间( )9、设拓扑空间X 满足第二可数性公理,则X 满足第一可数性公理( )10、若拓扑空间X 满足第二可数性公理,则X 的子空间Y 也满足第二可数性公理( )11、若拓扑空间X 满足第一可数性公理,则X 的子空间Y 也满足第一可数性公理( )12、设{1,2,3}X =,{,,{2},{3},{2,3}}X φ=T ,则(,)X T 是3T 空间.( )13、设{1,2,3}X =,{,,{1},{2},{1,2}}T X φ=,则(,)X T 是3T 空间.( )14、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是1T 空间.( )15、设{1,23}X =,,{,,{1},{3},{1,3}}X φ=T ,则(,)X T 是4T 空间.( )16、3T 空间一定是2T 空间.( )17、4T 空间一定是3T 空间.( )18、设,A B 是拓扑空间X 的两个紧致子集,则A B ⋃是一个紧致子集.( )19、Hausdorff 空间中的每一个紧致子集都是闭集.( )四.名词解释(每题2分)1.同胚映射2、集合A 的点3、集合A 的部4.拓扑空间(,)T X 的基5.闭包6、序列7、导集8、不连通空间9、连通子集10、不连通子集11、1 A 空间12、2 A 空间13、可分空间14、0T 空间:15、1T 空间:16、2T 空间:17、正则空间:18、正规空间:19、完全正则空间:20、紧致空间21、紧致子集22、可数紧致空间23、列紧空间24、序列紧致空间五.简答题(每题4分)1、设X 是一个拓扑空间,,A B 是X 的子集,且A B ⊂.试说明()()d A d B ⊂.2、设,,X Y Z 都是拓扑空间.:f X Y →,:g Y Z →都是连续映射,试说明:g f X Z →也是连续映射.3、设X 是一个拓扑空间,A X ⊂.试说明:若A 是一个闭集,则A 的补集A '是一个开集.4、设X 是一个拓扑空间,A X ⊂.试说明:若A 的补集A '是一个开集,则A 是一个闭集.5、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集]}2[],1[],0{[=Y ,试写出Y 的商拓扑T .6、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集]}3[],2[],1{[=Y ,试写出Y 的商拓扑T .7、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[1],[1],[2]}Y =-,试写出Y 的商拓扑T .8、在实数空间R 中给定如下等价关系:~x y ⇔)1,(,-∞∈y x 或者)2,1[,∈y x 或者),2[,+∞∈y x设在这个等价关系下得到的商集{[2],[1],[2]}Y =-,试写出Y 的商拓扑T .9、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[3]}Y =,试写出Y 的商拓扑T .10、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[0],[2],[4]}Y =,试写出Y 的商拓扑T .11、在实数空间R 中给定如下等价关系:~x y ⇔]1,(,-∞∈y x 或者]2,1(,∈y x 或者),2(,+∞∈y x设在这个等价关系下得到的商集{[1],[2],[4]}Y =-,试写出Y 的商拓扑T .12、离散空间是否为2A 空间?说出你的理由.13、试说明实数空间R 是可分空间.14、试说明每一个度量空间都满足第一可数性公理.15、设X 是一个1T 空间,试说明X 的每一个单点集是闭集.16、设X 是一个拓扑空间,若X 的每一个单点集都是闭集,试说明X 是一个1T 空间.17、设(,)X T 是一个1T 空间,∞是任何一个不属于X 的元素.令*{}X X =⋃∞和*X =⋃*T T {},试说明拓扑空间*(,)X *T 是一个0T 空间.18、若X 是一个正则空间,试说明:对x X ∀∈与x 的每一个开邻域U ,都存在x 的一个开邻域V ,使得V U ⊂.19、若X 是一个正规空间,试说明:对X 的任何一个闭集A 与A 的每一个开邻域U ,都存在A 的一个开邻域V ,使得V U ⊂.20、试说明1T 空间X 的任何一个子集的导集都是闭集.21、试说明紧致空间X 的无穷子集必有凝聚点.22、如果X Y ⨯是紧致空间,则X 是紧致空间.23、如果X Y ⨯是紧致空间,则Y 是紧致空间.24、试说明紧致空间X 的每一个闭子集Y 都是紧致子集.六、证明题(每题8分)1、设:f X Y →是从连通空间X 到拓扑空间Y 的一个连续映射.则()f X 是Y 的一个连通子集.2、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的开集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.3、设Y 是拓扑空间X 的一个连通子集, 证明: 如果A 和B 是X 的两个无交的闭集使得B A Y ⋃⊂,则或者A Y ⊂,或者B Y ⊂.4、设Y 是拓扑空间X 的一个连通子集,Z X ⊂满足Y Z Y ⊂⊂,则Z 也是X 的一个连通子集.5、设{}Y γγ∈Γ是拓扑空间X 的连通子集构成的一个子集族.如果Y γγφ∈Γ≠,则Y γγ∈Γ是X 的一个连通子集.6、设A 是拓扑空间X 的一个连通子集,B 是X 的一个既开又闭的集合.证明:如果A B φ⋂≠,则A B ⊂.7、设A 是连通空间X 的非空真子集. 证明:A 的边界()A φ∂≠.8、设X 是一个含有不可数多个点的可数补空间.证明X 不满足第一可数性公理.9、设X 是一个含有不可数多个点的有限补空间.证明:X 不满足第一可数性公理.10、设,X Y 是两个拓扑空间,:f X Y →是一个满的连续开映射.X 满足第二可数性公理,证明:Y 也满足第二可数性公理.11、设,X Y 是两个拓扑空间,:f X Y →是一个满的连续开映射.X 满足第一可数性公理,证明:Y 也满足第一可数性公理.12、A 是满足第二可数性公理空间X 的一个不可数集。
大学物理课后习题答案第五章-推荐下载

vx ' u
1
v c2
vx
'
3 4
c
(2) vBA vAB vx ' 0.4c
5.6 惯性系S′相对另一惯性系 S 沿 x 轴作匀速直线运动,取两坐标原点重合时刻作为
计时起点.在S系中测得两事件的时空坐标分别为 x1 =6×104m, t1 =2×10-4s,以及
x2 =12×104m, t2 =1×10-4s.已知在S′系中测得该两事件同时发生.试问:
问在以下两种情况中,它们对 S ' 系是否同时发生?
(1)两事件发生于 S 系的同一地点;
(2)两事件发生于 S 系的不同地点。
解 由洛伦兹变化 t (t v x) 知,第一种情况, x 0 , t 0 ,故 S ' 系 c2
中 t 0 ,即两事件同时发生;第二种情况, x 0 , t 0 ,故 S ' 系中 t 0 ,两
第 5 章 狭义相对论 习题及答案
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线0产中不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资22负料,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看2与全22过,22度并22工且22作尽2下可护1都能关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编5试技写、卷术重电保交要气护底设设装。备备4置管高调、动线中试电作敷资高气,设料中课并3技试资件且、术卷料拒管中试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
半导体物理分章答案第五章

Rn = rn n( N t − nt ) N t :复合中心浓度 其中, 其中,rn 是与温度有关的 比例系数, 比例系数,称为电子俘获 nt :复合中心上电子浓度 系数。 系数。
⑵电子的发射过程(乙) 电子的发射过程( 是温度的函数,与导带空状态密度成正比。 电子激发几率s-是温度的函数,与导带空状态密度成正比。 在非简并情况下, 可写成: 在非简并情况下,电子的产生率Gn可写成:
材料是均匀的电场分布也是均匀的则分布也是均匀的则所以所以通解为通解为其中其中1122是下面方程的两个根是下面方程的两个根22连续性方程求解特例连续性方程求解特例被称为牵引长度被称为牵引长度则则的方程式表示为的方程式表示为22光激发的载流子衰减光激发的载流子衰减141141页例页例1133少数载流子脉冲在电少数载流子脉冲在电场中的漂移如图场中的漂移如图551919所示所示在一块均匀的在一块均匀的nn型半导体用局部的光脉冲体用局部的光脉冲照射会产生非平衡载照射会产生非平衡载流子
(5-14) 14)
把 n = n0 +△p,p = p0 +△p以及△n =△p代入上 式,得到 Ud = r (n0 + p0)△p + r (△p)2 16) (5-16) 所以,非平衡载流子的寿命为: 所以,非平衡载流子的寿命为:
∆p 1 τ= = U d r [(n0 + p0 ) + ∆p ]
非平衡态的电子与空穴各自处于热平衡态 则 1 fn (E) = E−En
F
f p (E) =
1 + e k0T 1
p EF − E k 0T
1+ 1+ e n E F → 电子准费米能级
p E F → 空穴准费米能级
拓扑答案

– 任取 U ⊆ τ,则
(
)
∪ (A ∪U) = A ∪
∪ U
∈ τ′.
U ∈U
U ∈U
练习 5 (4.). • 证明 X 上任意一族拓扑之交仍是 X 上的拓扑. 证明
• 设 {τλ |λ ∈ Λ} 是 X 的一族拓扑,τ = ∩ τλ .
λ ∈Λ
1. 显然 0/ , X ∈ τ;
(a) 任取 U1,U2 ∈ τ,则对任意的 λ ∈ Λ 有 U1,U2 ∈ τλ .由于 τλ 是拓扑,有 U1 ∩U2 ∈ τλ ,
· 这个 U = U ∩ A 也是 x 在 A 中的开邻域,因此 x ∈ B◦A.
练习 13 (13.). a.
证明
• 余可数拓扑空间 X 的序列 {xn} 收敛于 a 的充分必要条件是该序列的尾部是
• 如果 {xn} 的尾部是 a,则 {xn} 显然收敛于 a;
– 如果 xn 收敛于 a,取 a 邻域 U = (X\{xn|n ∈ N}) ∪ {a},则当 n 充分大时,xn 在 U 内, 即存在 N ∈ N,使得当 n > N 时,有 xn ∈ U,从而 xn = a.
练习 12 (12.). • 设 Y 为拓扑空间 X 的子空间,B ⊆ A.证明:
(1) ClA(B) = ClX((B) ∩)A,这里,ClA(B) 表示 B 在 A 中的闭包. (2) B◦A = A\ A\B ,这里 B◦A 表示 B 在 A 中的内部.; (3) 如果 A 是 X 的开集,则 B◦A = B◦,
练习 16 (16.). • 证明:如果 A 是 B 的稠密子集,B 是 X 的稠密子集,则 A 是 X 的稠密子集. 证明
• 由于 A 在 B 中稠密,所以 A− ∩ B = A−B = B,于是 B ⊆ A−. – 两边取闭包得 B− ⊆ A−− = A−. – 另一方面,B 在 X 中稠密,所以 B− = X. – 于是有 X = B− ⊆ A− ⊆ X,因此 A− = X.
拓扑习题解答精编版

为点 在 中的一个邻域基。
5.(1)设 ,则 ,故 为连续映射。
(2)对任意 存在 ,使 ,因为 为连续映射,对 ,
,因此
6.设 为连续映射,因为 为 的子空间。设 为 的开集。则存在 的开集 ,使 。
是 中的开集。所以 为连续映射。
反之,设 为连续映射,因为 为 的子空间。设 为 的开集,则 为 的开集,而 为 中开集,所以 为连续映射。
因而存在 ,使 ,但显然 收敛于 ,有 知
收敛于 ,这与 矛盾。.
第三章子空间,积空间,商空间
1.证:(1)作 ,使 ,显见 是同胚,因此 同胚于
(2)作 ,使得
则 为同胚,因此 同胚于 。
任意 ,则 可唯一地表成,
令 即
,作 ,使得 时,
则 为 到 的同胚映射,因此 与 同胚,又 与 同胚,所以 与 同胚
(2)设 为从离散空间 到任一拓扑空间 的映射,对 中每开集 ,因为 是离散空间,所以 是 的开集,即 连续。
12.证:设 分别是 的两个拓扑, 是 的一个度量,则 ,由设 是 到 的一同胚映射,对一切 ,令 可以证明 是 到 同胚映射。由于,由于 是拓扑空间 到拓扑空间 的一同胚映射,可以证明
2.4导集,闭集,闭包
(3) (1)因为 ,所以 是一一的映射,又 ,所以 是漫射,因此 是满的一一映射。
4.解:(1)当 ,则 是在上的,当 为单点集 ,则 是一一的。
(2)
5.解:
(1)当 时,有 。所以 是一一映射。
(2)任意 , ,所以
(3)因为 ,所以 是定义1.4.1中的对角线.
8.证:(1)因 所以 为 的扩张(限制)
(2)当 和 均为有限集,可数补空间 可嵌入有限补空间。
半导体物理第五章习题答案

第5章 非平衡载流子1. 一个n 型半导体样品的额外空穴密度为1013cm -3,已知空穴寿命为100μs ,计算空穴的复合率。
解:复合率为单位时间单位体积内因复合而消失的电子-空穴对数,因此1317306101010010U cm s ρτ--===⋅⨯ 2. 用强光照射n 型样品,假定光被均匀吸收,产生额外载流子,产生率为g p ,空穴寿命为τ,请①写出光照开始阶段额外载流子密度随时间变化所满足的方程; ②求出光照下达到稳定状态时的额外载流子密度。
解:⑴光照下,额外载流子密度∆n =∆p ,其值在光照的开始阶段随时间的变化决定于产生和复合两种过程,因此,额外载流子密度随时间变化所满足的方程由产生率g p 和复合率U 的代数和构成,即()p d p pg dt τ=-⑵稳定时额外载流子密度不再随时间变化,即()0d p dt=,于是由上式得0p p p p g τ∆=-=3. 有一块n 型硅样品,额外载流子寿命是1μs ,无光照时的电阻率是10Ω⋅cm 。
今用光照射该样品,光被半导体均匀吸收,电子-空穴对的产生率是1022/cm 3⋅s ,试计算光照下样品的电阻率,并求电导中少数载流子的贡献占多大比例?解:光照被均匀吸收后产生的稳定额外载流子密度226163101010 cm p p n g τ-∆=∆==⨯=-取21350/()n cm V s μ=⋅,2500/()p cm V s μ=⋅,则额外载流子对电导率的贡献1619()10 1.610(1350500) 2.96 s/cm n p pq σμμ-=∆+=⨯⨯⨯+=无光照时0010.1/s cm σρ==,因而光照下的电导率0 2.960.1 3.06/s cm σσσ=+=+=相应的电阻率 110.333.06cm ρσ===Ω⋅少数载流子对电导的贡献为:p p p p q p pq pq g σμμτμ=≈=代入数据:16190()10 1.6105000.8/p p p p p q pq s cm σμμ-=+∆≈∆=⨯⨯⨯=∴00.80.26263.06p σσσ===+﹪ 即光电导中少数载流子的贡献为26﹪4.一块半导体样品的额外载流子寿命τ =10μs ,今用光照在其中产生非平衡载流子,问光照突然停止后的20μs 时刻其额外载流子密度衰减到原来的百分之几?解:已知光照停止后额外载流子密度的衰减规律为0()tP t p e τ-=因此光照停止后任意时刻额外载流子密度与光照停止时的初始密度之比即为()t P t e P τ-= 当520210t s s μ-==⨯时202100(20)0.13513.5P e e P --====﹪ 5. 光照在掺杂浓度为1016cm -3的n 型硅中产生的额外载流子密度为∆n=∆p= 1016cm -3。
半导体物理第五章习题参考答案pn 结

ln
Nd Na ni 2
1.381023 300 1.6 1019
ln
1015 1017 (1.51010 )2
V
0.694V
(2) 当 ni=2.31013/cm3 时:
i
kT q
ln
Nd Na ni 2
1.381023 300 1.6 1019
ln
1015 1017 (2.3 1013 )
掺杂浓度 Nd 和 Na 越高,耗尽电容越大。 4) 由自建势公式:
i
kT q
ln
Nd Na ni 2
0.7V
从而:
0.73m V 0.3V
W
20 Si q
1 Na
1 Nd
i
V
1.341104 i V m V 1 2 0.97m
3.79m
V 0 V 10V
1.4610-4 F m2
答:t<0 时,pn 结正向导通,p 区的空穴,n 区的电子不断向对方区域扩散,并 在对方区域内形成相当数量的存储积累,正向电流越大,存储载流子的数目也越 多,在 t=0 时,外加电压突然由Va 变为 Va 时,上述存储的电荷基本不变,但电
场出现反向,因此会出现电流反向,大小保持不变的现象。在反向电压作用下, 此前注入基区的积累电荷逐渐被反向电压抽走,积累电荷浓度逐渐减小,反向电 流也随之减小,逐渐减小到反向饱和电流,pn 结转为截止状态。
qN
0
a
qNd
xp x 0 x xp , 0 x d, x xn
d x xn
结合 E d ,以及边界条件: dx
d 2
dx 2
Si
E xp E xn 0 E 0 E 0 Ed Ed
第5章点集拓扑学练习题参考答案

点集拓扑学练习题参考答案(第5章)一、单项选择题1、实数空间R( )①仅满足第一可数性公理②仅满足第二可数性公理③既满足第一又满足第二可数性公理④以上都不对答案:③2、整数集Z作为实数空间R的子空间()①仅满足第一可数性公理②仅满足第二可数性公理③既满足第一又满足第二可数性公理④以上都不对答案:③3、有理数集Q作为实数空间R的子空间()①仅满足第一可数性公理②仅满足第二可数性公理③既满足第一又满足第二可数性公理④以上都不对答案:③4、无理数集作为实数空间R的子空间()①仅满足第一可数性公理②仅满足第二可数性公理③既满足第一又满足第二可数性公理④以上都不对答案:③5. 实数集合R的可数补空间是)3()2()1(空间A)4(T可分空间空间空间Lindeloff12答案:(4)6、2维欧氏间空间2R()①仅满足第一可数性公理②仅满足第二可数性公理③既满足第一又满足第二可数性公理④以上都不对答案:③7、下列拓扑学的性质中,不具有可遗传性的是()①平庸性②可分性③离散性④第一可数性公理答案:②8. 下列拓扑学的性质中,对开子空间不具有可遗传性的是( )① 第一可数性公理 ② 第二可数性公理 ③ 可分性 ④ Lindelorff答案:④二、填空题1、若12,X X 满足第一可数性公理,则积空间12X X ⨯满足 ;答案:第一可数性公理2、如果一个拓扑空间具有性质P ,那么它的任何一个子空间也具有性质P ,则称性质P 为 ;答案:可遗传性质3、设D 是拓扑空间X 的一个子集,且D X =,则称D 是X 的一个 ;答案:稠密子集4、若拓扑空间X 有一个可数稠密子集,则称X 是一个 ;答案:可分空间5、设X 是一个拓扑空间,如果它的每一个开覆盖都有一个可数子覆盖,则称X 是一 个 ;答案:Lindel Öff 空间6、如果一个拓扑空间具有性质P ,那么它的任何一个开子空间也具有性质P ,则称性质 P 为 ;答案:对于开子空间可遗传性质7、如果一个拓扑空间具有性质P ,那么它的任何一个闭子空间也具有性质P ,则称性质 P 为 ;答案:对于闭子空间可遗传性质8. Lindelorff 空间的每一个 都是Lindelorff ;这说明Lindelorff 空间具有 . 闭子空间,闭遗传9. 每一个可分的度量空间都满足 公理;每一个正则且正规的空间一定是空间.第二可数;完全正则三.判断(每题4分,判断1分,理由3分)1、设拓扑空间X 满足第二可数性公理,则X 满足第一可数性公理( )答案:√理由:设拓扑空间X 满足第二可数性公理,B 是它的一个可数基,对于每一个x X ∈,易知{} B B|x B x B =∈∈是点x 处的一个邻域基,它是B 的一个子族所以是可数族,从而X 在点x 处有可数邻域基,故X 满 足第一可数性公理.2、若拓扑空间X 满足第二可数性公理,则X 的子空间Y 也满足第二可数性公理( )答案:√理由:由于X 满足第二可数性公理,所以它有一个可数基B ,因为Y 是X 的子空间,则{|}B| B Y B Y B =⋂∈是Y 的一个可数基,从而X 的 子空间Y 也满足第二可数性公理.3、若拓扑空间X 满足第一可数性公理,则X 的子空间Y 也满足第一可数性公理( )答案:√理由:由于X 满足第一可数性公理,所以对x Y ∀∈,X 在点x 处有一个可数邻域基V x ,因为Y 是X 的子空间,则{|}V | V x Y x V Y V =⋂∈是Y 在点x 的一个可数邻域基,从而X 的子空间Y 也满足第一可数性公理.4.度量空间中任一不可数子集,必含有凝聚点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章分离性练习题November26,20121练习0.1.证明X 是正规空间⇔X 的任意闭子集A 以及A 的任意邻域U ,存在A 的邻域V ,使得¯V⊆U .Proof.必要性:不妨设U 是A 的开邻域,则U c 是X 的闭集,且有U c ∩A =∅.这样,U c ,A 就是X 中两个不相交的闭集.根据正规性条件,分别存在A 和U c 的开邻域U 和V 使得U ∩V =∅,即U ⊆V c ,所以U ⊆V c =V c .另一方面,因U c ⊆V ,我们有V c ⊆U,所以,U ⊆U .充分性:设A,B 是两个不交闭集.令U =B c ,则U 是A 的邻域.由假设条件可知存在A 的邻域V 使得¯V ⊆U .令U = ¯V c ,则U 是B 的邻域,再根据假设条件可知存在B 的邻域W ,使得¯W⊆U .于是¯V ∩¯W ⊆¯V ∩U =∅.练习0.2.证明拓扑空间X 为正则空间的充要条件是X 的任意闭集A 以及任意x /∈A ,存在x 的开邻域U 以及A 的开邻域V ,使得¯U∩¯V =∅.Proof.必要性.设X 为正则空间.∀x ∈A c ,则存在x 的开邻域V 以及A 的开邻域U 使U ∩V =∅.另一方面,存在x 的邻域W ,使¯W ⊆V .由于U ⊆V c ,有¯U ⊆V c =V c ,因此¯W ∩¯U ⊆V ∩V c =∅.充分性.显然.练习0.3.证明拓扑空间X 为正规空间的充要条件是X 的任意两个不相交的闭集A 和B ,分别存在开邻域U 以及V ,使得¯U∩¯V =∅.Proof.充分性显然.下证必要性.由正规性,存在A,B 的邻域U,V 使U ∩V =∅.另一方面,存在A 的邻域U 使U ⊆U .同理,存在B 的邻域V 使V ⊆V .则U ∩V =∅.练习0.4.证明拓扑空间X 为T 1空间当且仅当∀x ∈X ,单点集{x }是x 的所有开邻域之交.Proof.充分性.设{x }= V x ∈U x V x .任取y ∈X ,y =x ,则存在V x ∈U x 使y /∈V x .同理,有x 的邻域不含y ,所以X 为T 1空间.必要性.设X 为T 1空间.∀y ∈X,y =x .则存在V x ∈U x 使y /∈V x ,所以y /∈ V x ∈U x V x .故{x }= V x ∈U x V x .练习0.5.证明拓扑空间X 为T 2空间的充要条件是X ×X 的对角线∆={(x,x )|x ∈X }为闭集.Proof.必要性.设X 为T 2空间.∀(x,y )∈∆c ,则y =x .所以存在邻域U x ,U y 使U x ∩U y =∅.因此U x ×U y ∈∆c ,故∆c 是开集,从而∆是闭集.充分性.设∆是闭集,则∆c 是开集.∀x,y ∈X,x =y ,则(x,y )∈∆c .于是存在积空间的基开集U x ×U y 使(x,y )∈U x ×U y ⊆∆c ,即U x ∩U y =∅,从而X 是T2空间.练习0.6.设A 是T 1空间X 的任意子集,则A 的导集是闭集.2 Proof.证法一.设x∈A ,则对任意的U∈O x,有U∩(A \{x})=∅.取y∈U∩(A \{x}),则U∈O y,y=x,且y∈A .因X是T1的,所以存在V∈O y,使得x/∈V.因此有U∩(A\{x})=(U\{x})∩A⊇((V∩U)\{x})∩A=(V∩U)∩A⊇V∩U∩(A\{y})=∅这说明x∈A ,A ⊆A ,从而A是闭集.证法二.由杨忠道定理,只需证明单点集的导集是闭集.对任意的x∈X,由于{x} ⊆{x}={x},所以{x} =∅是闭集.练习0.7.设f,g:X→Y是连续映射,Y是Hausdorff空间,证明(1)集合E={x∈X|f(x)=g(x)}是X的闭子集;(2)如果A是X的稠密子集且f|A=g|A,则f=g.Proof.(1)证法一:设x∈E c,则f(x)=g(x),于是存在G∈N f(x)以及W∈N g(x)使得G∩W=∅.因f,g连续,故存在U,V∈N x使得f(U)⊆G,g(V)⊆W.又U∩V∈N x,且对任意的z∈U∩V,有f(z)=g(z),即U∩V⊆E c,从而E c是X的开集,即E为闭集.证法二:设(x d)d∈D是E中的网,x∈lim x d.因为对任意的d∈D,x d∈E,故f(x d)=g(x d).由于f,g都连续,所以f(x),g(x)∈lim f(x d)=lim g(x d).由于Y是Hausdorff空间,根据极限的唯一性可知f(x)=g(x).于是lim x d⊆E,E是闭集.(2)因f|A=g|A,故A⊆E,而X=¯A⊆¯E=E,于是X=E,即对任意的x∈X,有f(x)=g(x),即f=g.练习0.8.证明Urysohn引理的充分性:如果拓扑空间的任意两个不交闭集可用一个连续函数分离,则该拓扑空间是正规的.Proof.设A,B是X的两个不交闭集,则存在连续函数f:X→[0,1],使得f|A= 0,f|B=1。
令U=f−1([0,1/2)),V=f−1((1/2,1]),则U,V分别是A,B的邻域,并且U∩V=∅,所以X是正规的。
练习0.9.证明多于一点的连通T3.5空间的开子集是不可数子集.Proof.设G是T3.5空间X的非空开集,x∈G.(1)如果G=X,则存在y∈X,且x=y.于是存在连续函数f:X→[0,1]使f(x)=0,f(y)=1.由X的连通性可知f(X)=[0,1],所以X不可数.(2)如果G=X,则G c=∅.而G c是X的闭集,故存在连续映射g:X→[0,1]使g(x)=0,g|G c=1.因X连通,所以有g(X)=[0,1].又g(X)=g(G)∪g(G c)=g(G)∪{1},所以[0,1)⊆g(G),即g(G)不可数,从而G不可数.练习0.10.证明分离性质是拓扑性质.3 Proof.以完全正则性为例.设h:X→Y是同胚映射,X是完全正则空间,下证Y也是完全正则空间.任取y∈Y以及不含y的闭集B⊆Y,则h−1(B)是X中不含x=h−1(y)的闭集.由X的完全正则性可知,存在连续映射f:X→[0,1],使得f(x)= 0,f|h−1(B)=1.于是连续映射g=f◦h−1:Y→[0,1]满足g(y)=0,g|B= 1.练习0.11.证明T0∼T3.5空间的子空间仍然是T0∼T3.5空间.Proof.参看第0.12题.练习0.12.证明正则空间的子空间是正则的.Proof.设X是正则空间,Y是其子空间.设y∈Y,B是Y中不含y的闭子集.则在X中存在一个闭子集B0使得B=B0∩Y.因y/∈B,所以y/∈B0.因X正则,所以分别存在y和B0在X中的邻域U0和V0使得U0∩V0=∅.令U=U0∩∩Y,则U,V分别是y和B在Y中的邻域,而且U∩V=∅.Y,V=V练习0.13.证明正规空间的闭子空间是正规的,并举例说明正规空间的一般子空间不一定是正规的.Proof.先证明正规空间、T4空间对闭子集具有遗传性.设X是正规空间,A是X的闭子集,B1,B2是A的不交闭集,则它们也是X的不交闭集.由X的正规性,存在B1的邻域U和B2的邻域V使得U∩V=∅,从而U∩A与V∩A就分别是B1与B2在A中的不交邻域,所以A是正规的.如果X是T4空间,A是X的闭子集,则A是正则的和T1的,所以是正规的.下面举例说明正规性对一般子集是不可遗传的.设(X,T)是非正规的,∞是不属于X的任意元素.令X∗=X∪{∞},T∗= T∪{X∗},则(X∗,T∗)是拓扑空间.下面证明这个空间是正规的.设A,B是X∗的任意两个不交闭集,则至少有一个不含∞.不妨设∞/∈A,则X∗\A为∞的邻域,从而X∗\A=X∗,故A=∅.于是∅和X∗分别是A和B的邻域,且不相交.练习0.14.证明完全正则性是有限可积性质.先证明一个引理:引理0.15.*设I=[0,1],m:I×I→I定义为m(t1,t2)=max{t1,t2},则m是连续的.Proof.对任意的a∈(0,1],有m−1([0,a))=[0,a)2是I×I的开集;对每个b∈[0,1),有m−1([0,b])=[0,b]2是I×I的闭集,从而m−1((b,1])=m−1([0,1]\[0,b])=(I×I)\m−1([0,b])是I×I的开集.另一方面,S={[0,a)|a∈(0,1]}∪{(b,1]|b∈[0,1)}是I的拓扑子基,所以m连续.4下面设X1,X2是完全正则空间,证明X=X1×X2也是完全正则的.Proof.设x=(x1,x2)∈X,B是X中不含x的闭集,则存在x i在X i中的邻域U i(i= 1,2),使得x=(x1,x2)∈U1×U2⊆B c.由于X i是完全正则的,所以有连续函数f i:X i→I满足f i(x i)=0,f i|Xi \U i=1.定义映射f=m◦(f1×f2):X1×X2→I,则f是连续的,且f(x)=m◦(f1×f2)(x1,x2)=max{f1(x1),f2(x2)}=0.而且当y=(y1,y2)∈(X1×X2)\(U1×U2)时,有y1/∈U1或者y2/∈U2.因此有f1(y1)=1或者f2(y2)=1.从而有f(y)=m◦(f1×f2)(y1,y2)=max{f1(y1),f2(y2)}=1.由于B⊆(X1×X2)\(U1×U2),故对每个y∈B都有f(y)=1.练习0.16.证明T0∼T3.5空间的积空间仍然是T0∼T3.5空间,正则空间的积空间是正则空间.Proof.以正则空间为例.设X1,X2是正则空间,x=(x1,x2)∈X1×X2,U是x的开邻域,则存在x1在X1中的开邻域U1和x2在X2中的开邻域U2使得U1×U2⊆U.由X1,X2的正则性,存在x1的开邻域V1和x2的开邻域V2使V−1⊆U1,V−2⊆U2.于是,V1×V2就是x在X1×X2中的邻域,并且V1×V2=V−1×V−2⊆U1×U2⊆U,所以X1×X2是正则的.练习0.17.举例说明正规空间的积不必是正规空间,T4空间的积也不必是T4空间.Proof.下限拓扑空间(R,T)是T4空间,而两个下限拓扑空间的乘积不是正规空间.事实上,(R,T)显然是T1的.由于每一个点的每一个邻域有一个闭子邻域,所以(R,T)是正则的.由于下限拓扑空间是Linderlof空间,由吉洪诺夫分离性定理可知下限拓扑空间是正规的.设˜R是两个下限拓扑空间的乘积,E=(x,y)∈˜R|x=y,则E是˜R的闭子集.如果˜R是正规的,则其闭子集E必然也是正规的.然而E不是正规的,因为E的子集A={(x,y)|x∈Q}与B=A c不能用邻域分离.因此˜R不是正规的.练习0.18.设X是Hausdorff空间,f:X→X是连续映射且满足f◦f=f,证明f(X)是闭集.5Proof.证法一.设x ∈(f (X ))c ,则x =f (x ),故存在U 1∈N x ,V ∈N f (x )使得U 1∩V =∅.又f 连续,所以存在U 2∈N x 使f (U 2)⊆V .令U =U 1∩U 2,则U 是x 的邻域,且U ⊆(f (X ))c .事实上,若存在z ∈U ,使得z ∈f (X ),即存在y ∈X 使z =f (y ),则有f (z )=f (f (y ))=f (y )=z ,而f (z )∈f (U )⊆V ,所以有z ∈U ∩V ⊆U 1∩V =∅,矛盾.矛盾说明U ⊆(f (X ))c ,即f (X )是闭集.证法二.设ξ是f (X )的网,y ∈lim ξ.因f ◦f =f ,所以有f ◦ξ=f ◦f ◦η=f ◦η=ξ,这里,η是X 中的网,且f ◦η=ξ.由连续性可知f (y )∈lim f ◦ξ=lim ξ.根据Hausdorff空间极限的唯一性可知y =f (y ),所以y ∈f (X ).于是有lim ξ⊆f (X ),因此f (X )是闭集.练习0.19.证明:如果T 1空间有一个有限基,那么该空间只有有限个点,而且是离散拓扑.Proof.设X 是T 1空间,B 是有限基.根据基与拓扑的关系可知只有有限个开集,从而只有有限个闭集.又因为T 1空间的单点集是闭集,所以X 是有限集.由于X 的单点集是闭集,且X 是有限集,所以任意子集都是闭集,从而任意子集也是开集,因此是离散空间.练习0.20.设A 是T 1空间X 的多于一点的连通子集,那么A ⊆A .Proof.用反证法.假设存在x ∈A ,但x /∈A ,则必有U ∈O x 使U ∩(A \{x })=∅,因此有U ∩A ={x }.于是{x }是A 的既开又闭的非空真子集,这与A 的连通性矛盾.练习0.21.*设(X,T )是无限的Hausdorff空间,证明(1)在(X,T )中存在无限多个非空开集互不相交;(2)如果(X,T )是第二可数的,则Card T =2ℵ0.Proof.(1)若X =∅,则对任意的x ∈X ,存在U ∈O x ,使得U ∩(X \{x })=∅,即单点集是开集,X 是离散空间,结论成立.若X =∅,设x ∈X ,取x 1∈X \{x },则存在开集G 1,U 1使得x 1∈G 1,x ∈U 1,且U 1∩G 1=∅.现在归纳假设G 1,···,G n 是一组两两不相交的非空开集,U 1,···,U n 是x 的一组开邻域,使得对i =1,···,n −1有U i +1⊆U i ,对i =1,···,n 有G i ∩U i =∅.下面定义G n +1.因U n ∩(X \{x })=∅,可取x n +1∈U n ∩(X \{x }),则存在开集G ∗n +1,U ∗n +1使得x n +1∈G ∗n +1,x ∈U ∗n +1,而且G ∗n +1∩U ∗n +1=∅.令G n +1=G ∗n +1∩U n ,U n +1=U ∗n +1∩U n ,则x n +1∈G n +1,故G n +1=∅,且对任意的i =1,···,n 有G n +1∩G i =G ∗n +1∩U n ∩G i ⊆G ∗n +1∩U i ∩G i =∅.由归纳原理可知G 1,···,G n ,···即为所求.(2)设B 是X 的可数基.对任意的非空开集G ,记B (G )={B ∈B|B ⊆G }.6令φ:T \{∅}→P (B ),G →B (G ).由于 B (G )=G ,所以φ是单射,从而有Card T ≤2ℵ0.另一方面,由(1)可知X 有无限多个两两不相交的非空开集,记这样的开集族为G ,定义f :P (G )\{∅}→T ,A → A ,则f 是单射,所以有2ℵ0≤Card P (G )≤Card T .练习0.22.*设X ={(x,y )∈Q ×Q |y ≥0},对固定的无理数θ,令N ε(x,y )= {(x,y )}∪ B ε(x +y θ)∪B ε(x −y θ) ∩Q .令T 是X 上以{N ε(x,y )|(x,y )∈X,ε>0}为基的拓扑,证明(X,T )是T 2的,但不是T 2.5的.这里,B ε(r )是x -轴上的区间(r −ε,r +ε),Q 是x -轴上的有理数集.练习0.23.*设T 是R 的通常的拓扑,令K = 1n |n ∈N ,T 1={G \E |G ∈T ,E ⊆K },则(R ,T 1)是T 2的,但不是正则和正规的.练习0.24.*令X = (x 1,x 2)∈R 2|x 2≥0 ,B ={B ε(x )|0<ε<x 2,x =(x 1,x 2)∈X } {B (x,x 2)∪{(x 1,0)}|x =(x 1,x 2)∈X }.证明:(1)B 是X 的某个拓扑T 的基;(2)拓扑空间(X,T )是一个T 3空间;(3)拓扑空间(X,T )不是正规空间.练习0.25.如果一个子集族的每个可数子族有非空交集,则称该子集族具有可数交性质.设B 是(X,T )的基,则下列条件等价:(1).X 是Lindelof 空间;(2).由B 的成员构成的覆盖有可数子覆盖;(3).X 的每个具有可数交性质的闭集族有非空交.练习0.26.Linderlof 性质是否为拓扑性质?7Proof.设f :X →Y 是拓扑空间X 到Y 的连续满映射,若X 是一个Lindeloff空间,则Y 也是一个Lindeloff空间.事实上,设τ是空间Y 的任一个开覆盖,因为f :X →Y 是连续满映射,所以{f −1(A )|A ∈τ}为X 的开覆盖,故存在可数子覆盖{f −1(A 1),{f −1(A 2),···},使得X = if −1(A i ),从而Y =f (X )=f (i f −1(A i ))= i f (f −1(A i ))⊂ i A i ,所以{Ai |i =1,2,···}为Y 的可数开覆盖,即Y 是Lindeloff空间.练习0.27.设(X,T )是正则空间,证明:如果X 的每个非空闭集都有一个孤立点,那么X 的子集A ={x ∈X |{x }∈T }是X 的稠密子集.Proof.对任意的x ∈X 以及U ∈N x ∩T ,由正则性可知存在V ∈T 使得x ∈V ⊆¯V ⊆U .根据假设条件,存在y ∈¯V \V ,则y ∈V 且存在W ∈N y ∩T 使得{y }=W ∩V ∈T .故y ∈A ,于是U ∩A ⊇V ∩A ⊇{y },所以x ∈¯A ,所以A 稠密.。