人教版初中数学比较无理数大小的几种方法

合集下载

最新人教版初中数学代数部分知识点总结只是分享

最新人教版初中数学代数部分知识点总结只是分享

一、实数的分类:121.101001000100001……;特定意义二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。

(1)实数a 的相反数是 -a ; (2)a 和b2、倒数:(1)实数a (a ≠0(2)a 和b(3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。

(3)去掉绝对值符号(化简),先(正、负)确认,再去掉绝对值符号。

4、n 次方根(1)平方根,算术平方根:设a ≥0a a 的算术平方根。

(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

(3a 的立方根。

(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。

三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。

2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。

实数和数轴上的点是一一对应的关系。

四、实数大小的比较1、在数轴上表示两个数,右边的数总比左边的数大。

2、正数大于0;负数小于0;正数大于一切负数;用减法确定 五、实数的运算 1、加法: 2、减法:减去一个数等于加上这个数的相反数。

3、乘法:(1)同号取正,异号取负,并把绝对值相乘。

(2)n 个实数相乘,有一个因数为0,积就为0;(3)乘法可使用乘法交换律、乘法结合律、乘法分配律。

4、除法:除以一个数等于乘以这个数的倒数。

0除以任何数都等于0,0不能做被除数。

5、乘方与开方:乘方与开方互为逆运算。

6、实数的运算顺序:乘方、开方为三级运算,乘、除为二级运算,加、减是一级运算,如果没有括号,在同一级运算中要从左到右依次运算,不同级的运算,先算高级的运算再算低级的运算,有括号的先算括号里的运算。

无论何种运算,都要注意先定符号后运算。

16.3.2 二次根式的混合运算-人教版数学八年级下册分层作业(含答案)

16.3.2 二次根式的混合运算-人教版数学八年级下册分层作业(含答案)

人教版初中数学八年级下册16.3.2 二次根式的混合运算同步练习夯实基础篇一、单选题:1.下列计算中,正确的是()A.B.C.D.【答案】C【分析】根据二次根式的性质和二次根式的混合运算计算即可得出答案.【详解】解:A、与不是同类二次根式,不能合并,此选项错误,不符合题意;B、,此选项错误,不符合题意;C、,此选项正确,符合题意;D、,此选项错误,不符合题意;故选:C.【点睛】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.2.计算:()A.B.C.D.【答案】B【分析】将括号内化为最简二次根式,合并,再计算除法即可.【详解】故选B.【点睛】本题考查二次根式的混合运算.掌握二次根式的混合运算法则是解题的关键.3.化简的结果是()A.B.C.D.【答案】B【分析】分子分母同时乘以即可求解.【详解】解:.故选B.【点睛】本题考查了分母有理化,正确的计算是解题的关键.4.估计的值在( )A.1到2之间B.2到3之间C.3到4之间D.4到5之间【答案】B【分析】先根据二次根式的混合计算法则计算原式,然后对所得的结果进行估算即可得到答案.【详解】解:,∵,∴,∴,故选B.【点睛】本题主要考查了二次根式的混合计算,无理数的估算,正确根据二次根式的相关计算法则求出原式的结果是解题的关键.5.与的关系是()A.相等B.互为相反数C.互为倒数D.以上都不对【答案】A【分析】根据与的积为1,可得出与互为倒数,再选择即可.【详解】解:,与互为倒数,【点睛】本题考查了二次根式的混合运算,解题时要注意观察式子的形式,灵活借助平方差公式进行运算.6.已知,,则的值为()A.-32B.32C.D.【答案】C【分析】直接将原式变形,结合因式分解、二次根式的混合运算法则计算,进而得出答案.【详解】解:∵,,∴=ab(a﹣b)=(4+2)(4﹣2)(4+24+2)=(16﹣20)×4=﹣16.故选:C.【点睛】此题主要考查了二次根式的混合运算,正确运用因式分解是解题关键.7.计算:的结果是()A.B.6C.D.【答案】C【分析】利用平方差公式及积的乘方的法则对式子进行运算,从而可求解.【详解】解:=====【点睛】本题主要考查二次根式的混合运算,平方差公式,解答的关键是对相应的运算法则的掌握.二、填空题:8.计算:=_____.【答案】【分析】利用二次根式的乘法法则和加减运算法则进行计算即可.【详解】解:原式.故答案为:.【点睛】本题主要考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解题关键.9.计算:______.【答案】##【分析】利用完全平方公式和平方差公式计算即可.【详解】解:,故答案为:.【点睛】本题考查完全平方公式和平方差公式,二次根式的混合运算,解题的关键是熟练掌握完全平方公式和平方差公式以及二次根式的混合运算法则.10.化简:_____.【答案】【分析】先找到分母得有理化因式,再利用分式的性质进行化简.【详解】解:故答案为:【点睛】本题主要考查二次根式的分母有理化,利用平方差公式进行分母有理化计算是解题关键.11.比较大小_____.【分析】利用作差法进行比较即可,如a-b>0,则a>b.【详解】解:作差法可得:,∵与0的大小并不能直接观察得出,∴利用平方法比较与的大小,∵,又∵,∴,则,∴即<0,∴,得出:,故答案为:.【点睛】本题考查无理数的大小比较,可以利用近似值、作差法、分母有理化、求倒数等方法进行比较,选择合适的方法,灵活计算是解题的关键.12.已知,,则的值为_________.【答案】【分析】先把二次根式进行化简,然后把,,代入计算,即可得到答案.【详解】解:=,∵,,∴原式=;故答案为:.【点睛】本题考查了二次根式的混合运算,以及二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算的运算法则进行解题.13.已知,,则ab=_____;a2+b2=_____.【答案】 1 14【分析】先求出a+b、ab,再利用平方差公式、完全平方公式计算即可.【详解】解:∵,,∴a+b=2+2﹣=4,ab=(2+)(2﹣)=4﹣3=1.∴a2+b2=(a+b)2﹣2ab=42﹣2=14.故答案为:1,14.【点睛】本题主要考查了二次根式的混合运算,熟练掌握运算法则和乘法公式是解答本题的关键.三、解答题:14.计算:下面是李明同学在解答某个题目时的计算过程,请认真阅读并完成相应任务.……第一步……第二步……第三步任务一:填空:以上步骤中,从第_________步开始出现错误,这一步错误的原因是__________________;任务二:请写出正确的计算过程;任务三:除纠正上述错误外,请你根据平时的学习经验,就二次根式运算时还需注意的事项给其他同学提一条建议.【答案】一;运用完全平方公式错误,去括号错误;;注意二次根式的化简要彻底(答案不唯一,合理即可)【分析】直接利用完全平方公式将原式化简,再利用二次根式的混合运算法则计算即可.【详解】解:任务一:根据题意可得第一步错误,错误的原因是运用完全平方公式错误,去括号错误;故答案为:一;运用完全平方公式错误,去括号错误;任务二:;任务三:除上述错误外,二次根式的化简要彻底.【点睛】题目主要考查二次根式的混合运算,熟练掌握运算法则是解题关键.15.计算:(1);(2);(3);(4)(5);(6)【答案】(1)(2)(3)(4)(5)(6)【分析】(1)首先运算乘法和化简,再进行合并,即可求解;(2)首先利用平方差公式以及完全平方公式化简求出即可;(3)首先运算乘法和化简,以及进行零次幂的运算,最后再进行合并,即可求解;(4)首先运算乘法和化简,再进行合并,即可求解;(5)首先绝对值运算,负指数幂运算,利用平方差公式进行化简,再进行合并,即可求解;(6)首先运算乘法和化简,再进行合并,最后进行除法运算,即可求解.【详解】(1)解:原式==;(2)解:原式==;(3)解:原式===;(4)解:原式===;(5)解:原式====;(6)解:原式===.【点睛】此题考查实数的运算,二次根式的混合运算,负指数幂、零次幂的运算,正确应用乘法公式是解题关键.16.先化简.再求代数式的值,其中【答案】,【分析】先运用分式加法法则计算括号内的,再运用分式除法法则计算即可化简,然后把x的值代入计算即可求解.【详解】解:当时,原式.【点睛】本题考查分式化简求值,二次根式化简,熟练掌握分式运算法则是解题的关键.17.已知,求的值.【答案】【分析】先化简,然后计算的值,再根据完全平方公式变形求得代数式的值.【详解】解:∵∴,,∴,,∴.【点睛】本题考查了二次根式的混合运算,完全平方公式,平方差公式,正确的计算是解题的关键.能力提升篇一、单选题:1.已知,那么的值是()A.B.C.D.【答案】C【分析】根据题意xy=3,分两种情况讨论,当x和y都大于0时,当x和y都小于0时,然后分别化简计算即可.【详解】解:当x>0,y>0时,=2=;当x<0,y<0时,=-2=-;综上所述本题答案应为:C.【点睛】二次根式的化简求值是本题的考点,分类讨论是解题的关键.2.对于任意的正数m,n定义运算※为:,计算的结果为( )A.2﹣4B.3C.2D.20【答案】B【分析】根据定义的新运算列出算式,然后利用二次根式的乘法和减法法则进行计算即可解答.【详解】解:由题意得:,故选:B.【点睛】本题考查了二次根式的混合运算,理解定义的新运算是解题的关键.3.如图,在一个长方形中无重叠的放入面积分别为和的两张正方形纸片,则图中空白部分的面积为()A.B.C.D.【答案】C【分析】欲求S空白部分=S矩形HL FG+S矩形MCEF,需求HC以及LM.由题意得S正方形ABCH=HC2=16cm2,SLMEF=LM2=LF2=12cm2,故可求HC,LM,LF,进而解决此题.正方形【详解】解:如图:由题意知:S正方形ABCH=HC2=16cm2,S正方形LMEF=LM2=LF2=12cm2,∴HC=4cm,LM=LF=cm.∴S空白部分=S矩形HL FG+S矩形MCEF=HL•LF+MC•ME=HL•LF+MC•LF=(HL+MC)•LF=(HC-LM)•LF==cm2.故选:C.【点睛】本题主要考查二次根式的应用,熟练掌握二次根式的化简以及运算是解决本题的关键.二、填空题:4.设实数的整数部分为a,小数部分为b,则(2a+b)(2a﹣b)=_____.【答案】##【分析】根据题意先估算的大小,求得的值,然后代入代数式进行计算即可求解.【详解】解:∵实数的整数部分为a,小数部分为b,,∴;(2a+b)(2a﹣b)=.故答案为:.【点睛】本题考查了二次根式的混合运算,无理数的估算,平方差公式,求得的值是解题的关键.5.观察下列三个等式:①;②;③;针对上述各等式反映的规律,写出用n(n为正整数且n≥2)表示的等式________________.【答案】【分析】利用数字之间的变化规律:,,…进而得出等式的规律,求解即可.【详解】解:可化为:,可化为:,可化为:,∴用n(n为正整数且n≥2)表示以上各等式所反映的规律为:.故答案为:.【点睛】本题主要考查了数字变化的规律性问题,分式的规律性问题,二次根式的应用等知识,根据已知数据得出数字之间的关系是解题的关键.三、解答题:6.(1)在边长为cm的正方形的一角剪去一个边长为cm的小正方形,如图1,求图中阴影部分的面积;(2)小明是一位爱动脑筋的学生,他发现沿图1中的虚线将阴影部分前开,可拼成如图2的图形,请你根据小明的思路求图1中阴影部分的面积【答案】(1);(2)【分析】(1)根据阴影部分面积=边长为的正方形面积-边长为的正方形面积求解即可;(2)分别求出图2中长方形的长和宽,然后利用长方形面积公式求解即可.【详解】解:(1)由题意得;(2)由题意得,图2中长方形的长为:,图2中长方形的宽为:,∴;【点睛】本题主要考查了二次根式的应用,完全平方公式和平方差公式,正确得到阴影部分的面积与图1与图2中图形的关系是解题的关键.7.比较下列四个算式结果的木小:(在横线上选填“>”、“<”或“=”)(1)①________;②__________;③_________.(2)通过观察归纳,写出反映这一规律的一般结论.【答案】(1)>,>,=;(2).两个数的平方的和大于等于这两个数乘积的2倍.【分析】(1)分别计算各部分,再比较大小;(2)根据题意找到规律,并用式子表示.【详解】解:(1),,∴>,,,∴>,,,∴=,故答案为:>,>,=;(2)由题意可得:设两个实数a、b,则.通过观察上述关系式发现,等式的左边都是两个数的平方和的形式,右边是前面两数不平方乘积的2倍,通过几个例子发现两个数的平方的和大于等于这两个数乘积的2倍.【点睛】本题考查了二次根式的大小比较和混合运算,找到题中的规律,进行总结和描述是解题的关键.8.已知且,求的值.【答案】【分析】根据完全平方公式可得,然后由题意及平方差公式可进行求解.【详解】解:∵,∴,∵,∴,∴,∴.【点睛】本题主要考查完全平方公式、平方差公式及因式分解,熟练掌握完全平方公式及平方差公式是解题的关键.。

人教版初中数学知识点总结(精华)

人教版初中数学知识点总结(精华)

人教版初中数学知识点总结(精华)初中数学知识点总结(精华)第一章有理数有理数可分为以下几类:正整数、零、正分数、负整数、负分数。

数轴是一条直线,规定了原点、正方向和单位长度。

相反数指符号相反的两个数,它们的和为0.绝对值是一个数到原点的距离,正数的绝对值是其本身,负数的绝对值是它的相反数。

互为倒数的两个数积为1,若a≠0,则a的倒数为1/a。

有理数的四则运算:加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加为0;与任何数相加都等于任何数。

减法法则:减去一个数等于加上这个数的相反数。

乘法法则:同号得正,异号得负,并把绝对值相乘;多个不为0的数相乘,积的符号由负因数的个数决定:负因数有偶数个时,积为正数,负因数有奇数个时,积为负数,再把各个因数的绝对值相乘。

除法法则:同号得正,异号得负,再把绝对值相除;除以任何一个不为0的数都得;除以一个不为0的数,等于乘以这个数的倒数。

有理数乘法的运算律:乘法的交换律:ab=ba。

乘法的结合律:(ab)c=a(bc)。

乘法的分配律:a(b+c)=ab+ac。

比较两个数的大小:负数< 0 <正数,任何一个正数都大于一切负数。

数轴上的点表示的有理数,左边的数总比右边的数小。

两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小。

两数相乘(或相除),同号得正。

0,异号得负< 0.πR²,V圆柱πR²h,其中R为圆的半径,h为圆柱的高度。

3.一元一次方程的特殊情况:1)二元一次方程:形如ax+by+c=0(其中a、b、c都是常数,且a、b不同时为0),解出x和y的值,得到一个解(x,y).2)含有绝对值的一元一次方程,可转化为两个不含绝对值的一元一次方程,分别讨论解的情况.3)含有分数的一元一次方程,可通过去分母的方法,将其转化为不含分数的一元一次方程.4.一元一次不等式:形如ax+b>0或ax+b<0(其中a、b 是常数,且a≠0),解出x的取值范围.5.一元一次不等式的解法:将不等式转化为等式,得到x的解集,再根据不等式的符号确定x的取值范围.6.一元一次不等式的特殊情况:1)含有绝对值的一元一次不等式,可转化为两个不含绝对值的一元一次不等式,分别讨论解的情况.2)含有分数的一元一次不等式,可通过去分母的方法,将其转化为不含分数的一元一次不等式.1.圆的周长和面积公式:周长= 2πR,面积= πR^22.长方形的周长和面积公式:周长 = 2(a+b),面积 = ab3.正方形的周长和面积公式:周长 = 4a,面积 = a^24.环形的周长和体积公式:周长= π(R+r),体积= πh(R^2-r^2)5.长方体的体积公式:体积 = abc6.正方体的体积公式:体积 = a^37.圆锥的体积公式:体积= 1/3πr^2h第四章图形的认识初步1.直线公理:两点确定一条直线。

人教版初中八年级数学知识点总结

人教版初中八年级数学知识点总结

人教版初中八年级数学知识点总结八年级数学(上)知识点人教版八年级上册主要包括全等三角形、轴对称、实数、一次函数和整式的乘除与分解因式五个章节的内容。

第十一章全等三角形一、知识框架二、知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质:全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。

通过直观的理解和比较发现全等三角形的奥妙之处。

在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

第十二章轴对称一、知识框架二、知识概念1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

初一数学下册知识点《估算无理数的大小》150题和解析

初一数学下册知识点《估算无理数的大小》150题和解析

初一数学下册知识点《估算无理数的大小》150题和解析初一数学下册知识点《估算无理数的大小》150题及解析副标题一、选择题(本大题共77小题,共231.0分)1.估计√7+1的值().A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间【答案】C【解析】【分析】此题主要考查了估算无理数大小,正确得出√7的取值范围是解题关键.直接利用已知无理数得出√7的取值范围,进而得出答案.【解答】解:∵2<√7<3,∴3<√7+1<4,∴√7+1在3和4之间.故选C.2.若√3<a<√10,则下列结论中正确的是()A. 1<a<3B. 1<a<4C. 2<a<3D. 2<a<4【答案】B【解析】【分析】首先估算√3和√10的大小,再做选择.本题主要考查了估算无理数的大小,首先估算√3和√10的大小是解答此题的关键.【解答】解:∵1<√3<2,3<√10<4,又∵√3<a<√10,∴1.732<a<3.162,各选项中,只有B,1<a<4符合题意;故选B.3.估计√19的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】C【解析】解:∵√16<√19<√25,∴√19的值在4和5之间.故选:C.直接利用二次根式的性质得出√19的取值范围.此题主要考查了估算无理数大小,正确把握最接近√19的有理数是解题关键.4.估计√10+1的值应在()A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间【答案】B【解析】【分析】此题主要考查了估算无理数的大小,正确得出√10的取值范围是解题关键.首先得出√10的取值范围,进而得出答案.【解答】解:∵3<√10<4,∴4<√10+1<5.故选B.5.估计√13+1的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】C【解析】【分析】本题考查了估算无理数的大小,能估算出√13的范围是解此题的关键.先估算出√13的范围,即可得出答案.【解答】解:∵3<√13<4,∴4<√13+1<5,即√13+1在4和5之间.故选C.6.估计√6+1的值在()A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间【答案】B【解析】解:∵2=√4<√6<√9=3,∴3<√6+1<4,故选:B.利用”夹逼法“得出√6的范围,继而也可得出√6+1的范围.此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.7.估计5√6−√24的值应在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】C【解析】解:5√6−√24=5√6−2√6=3√6=√54,∵7<√54<8,∴5√6−√24的值应在7和8之间,故选:C.先合并后,再根据无理数的估计解答即可.本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.8.估计√38的值在()A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间【答案】C【解析】解:∵√36<√38<√49,∴6<√38<7,∴√38的值在整数6和7之间.故选:C.初一数学下册知识点《估算无理数的大小》150题和解析利用二次根式的性质,得出√36<√38<√49,进而得出答案.此题主要考查了估计无理数的大小,得出√36<√38<√49是解题关键.9.估计√10+1的值应在()A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间【答案】B【解析】解:∵3<√10<4,∴4<√10+1<5,故选:B.根据被开方数越大算术平方根越大,可得答案.本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<√10<4是解题关键,又利用了不等式的性质.10.已知整数m满足m<√38<m+1,则m的值为()A. 4B. 5C. 6D. 7【答案】C【解析】【分析】本题考查了无理数的大小问题,从√38的整数大小范围出发,然后确定m的大小.【解答】解:由题意∵√62<√38<√72∴当m=6时,则m+1=7适合.故选C.11.下列选项中的整数,与√17最接近的是()A. 3B. 4C. 5D. 6【答案】B【解析】解:∵16<17<20.25,∴4<√17<4.5,∴与√17最接近的是4.故选:B.依据被开方数越大对应的算术平方根越大进行解答即可.本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.12.估计√11的值在()A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间【答案】C【解析】解:∵9<11<16,∴√9<√11<√16,∴3<√11<4.故选:C.由于9<11<16,于是√9<√11<√16,从而有3<√11<4.本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.13.如图,表示√7的点在数轴上表示时,所在哪两个字母之间()A. C与DB. A与BC. A与CD. B与C【答案】A【解析】解:∵6.25<7<9,∴2.5<√7<3,则表示√7的点在数轴上表示时,所在C和D两个字母之间.故选:A.确定出7的范围,利用算术平方根求出√7的范围,即可得到结果.此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.14.面积为2的正方形的边长在()A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间【答案】B【解析】【分析】本题考查了算术平方根的定义和估算无理数的大小,运用“夹逼法”是解答此题的关键.面积为2的正方形边长是2的算术平方根,再利用夹逼法求得√2的取值范围即可.【解答】解:面积为2的正方形边长是√2,∵1<2<4,∴1<√2<2故选:B.15.若一正方形的面积为20平方公分,周长为x公分,则x的值介于下列哪两个整数之间?()A. 16,17B. 17,18C. 18,19D. 19,20【答案】B【解析】【分析】本题主要考查了无理数大小的估计.注意利用数的平方大小比较是解此题的方法.【解答】解:∵周长为x公分,∴边长为x公分,4)2=20,∴(x4∴x2=20,16∴x2=320,又∵172=289,182=324,∴172<320<182,即172<x2<182,又∵x为正整数,∴x介于17和18之间,故选B.初一数学下册知识点《估算无理数的大小》150题和解析16.与√37最接近的整数是()A. 5B. 6C. 7D. 8【答案】B【解析】解:∵36<37<49,∴√36<√37<√49,即6<√37<7,∵37与36最接近,∴与√37最接近的是6.故选:B.由题意可知36与37最接近,即√36与√37最接近,从而得出答案.此题主要考查了无理数的估算能力,关键是整数与√37最接近,所以√36=6最接近.17.下列无理数中,与4最接近的是()A. √11B. √13C. √17D. √19【答案】C【解析】解:∵√16=4,∴与4最接近的是:√17.故选:C.直接利用估算无理数的大小方法得出最接近4的无理数.此题主要考查了估算无理数的大小,正确得出接近4的无理数是解题关键.18.估计2+√7的值A. 在2和3之间B. 在3和4之间C. 在4和5之间D. 在5和6之间【答案】C【解析】解:∵2<√7<3,∴4<2+√7<5,∴2+√7的值在4和5之间,故选:C.直接得出2<√7<3,进而得出2+√7的取值范围.此题主要考查了估算无理数的大小,正确得出√7的范围是解题关键.19.估算√27−2的值()A. 在1到2之间B. 在2到3之间C. 在3到4之间D. 在4到5之间【答案】C【解析】解:∵5<√27<6,∴3<√27−2<4.故选:C.首先估计√27的整数部分,然后即可判断√27−2的近似值.本题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.20.判断2√11−1之值介于下列哪两个整数之间?()A. 3,4B. 4,5C. 5,6D. 6,7【答案】C【解析】解:∵2√11=√44,且√36<√44<√49,即6<2√11<7,∴5<2√11−1<6,故选:C.由√36<2√11<√49即6<2√11<7,由不等式性质可得2√11−1的范围可得答案.本题考查了估算无理数大小的知识,注意夹逼法的运用是解题关键.21.如图,已知数轴上的点A、B、C、D分别表示数−2、1、2、3,则表示数3−√5的点P应落在线段()A. AO上B. OB上C. BC上D. CD上【答案】B【解析】解:∵2<√5<3,∴0<3−√5<1,故表示数3−√5的点P应落在线段OB上.故选:B.根据估计无理数的方法得出0<3−√5<1,进而得出答案.此题主要考查了估算无理数的大小,得出√5的取值范围是解题关键.22.与无理数√31最接近的整数是()A. 4B. 5C. 6D. 7【答案】C【解析】解:∵√25<√31<√36,∴√31最接近的整数是√36,√36=6,故选:C.根据无理数的意义和二次根式的性质得出√25<√31<√36,即可求出答案.本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道√31在5和6之间,题目比较典型.23.若3+√5的小数部分为a,3−√5的小数部分为b,则a+b的值为()A. 0B. 1C. −1D. 2【答案】B【解析】【分析】本题考查了估算无理数的大小,解题的关键是用有理数逼近无理数,求无理数的近似值.运用有理数逼近无理数,求无理数的近似值求解.【解答】解:∵2<√5<3,∴5<3+√5<6,0<3−√5<1∴a=3+√5−5=√5−2.b=3−√5,∴a+b=√5−2+3−√5=1,故选B.24.估计√41−2的值()A. 在4和5之间B. 在3和4之间C. 在2和3之间D. 在1和2之间【答案】A【解析】【分析】本题考查了估算无理数的大小的应用,关键是确定√41的范围.求出√41的范围,都减去2即可得出答案.【解答】解:∵36<41<49,∴√36<√41<√49,初一数学下册知识点《估算无理数的大小》150题和解析∴6<√41<7,∴4<√41−2<5,故选A.25.实数√2的值在()A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间【答案】B【解析】解:∵1<√2<2,∴实数√2的值在:1和2之间.故选:B.直接利用估算无理数大小,正确得出√2接近的有理数,进而得出答案.此题主要考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.26.估算√19的值是在()A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间【答案】B【解析】【分析】本题主要考查了估计无理数大小的方法,找出最接近的有理数,再进行比较是解决问题的关键.找出比较接近√19的有理数,即√16与√25,从而确定它的取值范围.【解答】解:∵√16<√19<√25,∴4<√19<5.故选B.27.估计√40的值在()A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间【答案】C【解析】解:∵√36<√40<√49,即6<√40<7,故选:C.根据√40,可以估算出位于哪两个整数之间,从而可以解答本题.本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法.28.式子√13+1的整数部分是a,小数部分是b,则a−b的值是()A. √13−7B. 1−√13C. 5−√13D. 7−√13【答案】D【解析】【分析】此题考查无理数的估算和代数式的值,注意找出最接近的整数范围是解决本题的关键.因为3<√13<4,所以4<√13+1<5,由此求得整数部分与小数部分,代入a−b 即可即可得到结果.【解答】解:∵3<√13<4,∴4<√13+1<5,∴a=4,b=√13+1−4,∴a−b=4−(√13−3)=7−√13.故选D.29.一个正方形的面积是15,估计它的边长在()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间【答案】C【解析】解:∵一个正方形的面积是15,∴其边长=√15.∵9<15<16,∴3<√15<4.故选C.先求出正方形的边长,再估算出其大小即可.本题考查的是估算无理数的大小,熟知估算无理数大小要用逼近法是解答此题的关键.30.已知a是√17−3的整数部分,b是√17−3的小数部分,那么(−a)3+(b+4)2的平方根是()A. 4B. ±2C. ±8D. ±4【答案】D【解析】【分析】此题考查了估算无理数的大小,代数式的值,平方根,正确得出a,b的值是解题关键,根据4<√17<5,得到1<√17−3<2,求出a、b的值,再代入(−a)3+(b+4)2计算,根据平方根的定义求解,即可得到答案.【解答】解:∵4<√17<5,∴1<√17−3<2,∴a=1,b=√17−4,∴(−a)3+(b+4)2=(−1)3+(√17−4+4)2=−1+17=16,∴16的平方根是±4,故选D.31.估计√7+1的值在()A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间【答案】B【解析】【分析】本题考查了估算无理数的大小,能估算出√7的范围是解此题的关键.解答此题先求出√7的范围,然后再加1可得√7+1的范围.【解答】解:∵2<√7<3,∴3<√7+1<4,即√7+1在3和4之间,故选B.32.已知a是√17−3的整数部分,b是√17−3的小数部分,那么(−a)3+(b+4)2的平方根是()A. 4B. ±2C. ±8D. ±4【答案】D【解析】解:∵4<√17<5,∴1<√17−3<2,初一数学下册知识点《估算无理数的大小》150题和解析∴a=1,b=√17−4,∴(−a)3+(b+4)2=(−1)3+(√17−4+4)2=−1+17=16,∴16的平方根是±4.故选D.根据4<√17<5,利用不等式的性质可得1<√17−3<2,求出a、b的值,再代入(−a)3+(b+4)2计算,根据平方根的定义求解.此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键.33.√43在两个连续整数a和b之间,a<√43<b,那么a+b的值是()A. 11B. 13C. 14D. 15【答案】B【解析】解:∵6<√43<7,∴a=6,b=7,∴a+b=6+7=13.故选:B.首先用“夹逼法”确定a、b的值,进而可得a+b的值.此题主要考查了估算无理数的大小,关键是正确确定a、b的值.34.实数√28界于哪两个相邻的整数之间()A. 3和4B. 5和6C. 7和8D. 9和10【答案】B【解析】解:∵5<√28<6,∴√28在5和6之间.故选:B.先估算出√28的范围,即可得出答案.本题考查了估算无理数的大小,能估算出√28的范围是解此题的关键.35.实数√3的值在()A. 0与1之间B. 1与2之间C. 2与3之间D. 3与4之间【答案】B【解析】解:∵1<√3<√4,∴实数√3的值在1与2之间.故选:B.直接利用无理数最接近的有理数进而答案.此题主要考查了估算无理数大小,正确得出接近的有理数是解题关键.36.下列说法:①−1是1的平方根;②√10在两个连续整数a和b之间,那么a+b=7;③所有的有理数都可以用数轴上的点表示,反过来,数轴上的所有点都表示有理数;④无理数就是开放开不尽的数;正确的个数为()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】此题考查了估算无理数的大小、实数与数轴、实数,熟知有关定义和性质是本题的关键.根据估算无理数的大小、实数与数轴、无理数的定义和特点分别对每一项进行分析,即可得出答案.【解答】解:①−1是1的平方根是正确的;②√10在两个连续整数a和b之间,那么a+b=3+4=7是正确的;③所有的实数都可以用数轴上的点表示,反过来,数轴上的所有点都表示实数,题目中的说法是错误的;④无理数就是无限不循环的小数,题目中说法是错误的.故选B.37.估计√6+1的值在()A. 2 到3 之间B. 3 到4 之间C. 4 到5 之间D. 5 到6 之间【答案】B【解析】解:∵2<√6<3,∴3<√6+1<4,故选:B.首先确定√6在整数2和3之间,然后可得√6+1的值在3到4之间.此题主要考查了估算无理数,关键是掌握用有理数逼近无理数,求无理数的近似值.38.估计√16+√20的运算结果应在()A. 6与7之间B. 7与8之间C. 8与9之间D. 9与10之间【答案】C【解析】解:∵√16+√20=4+√20,而4<√20<5,∴原式运算的结果在8到9之间;故选C.首先计算出√16,再估算出√20即可得结果.本题考查了无理数的近似值问题,关键是利用“夹逼法”是估算的一般方法,也是常用方法.39.若a<1−√7<b,且a、b是两个连续整数,则a+b的值是()A. −1B. −2C. −3D. −4【答案】C【解析】解:∵2<√7<3,∴−2>−√7>−3,∴−1>1−√7>−2,∴a=−2,b=−1,∴a+b=−3,故选C.先求出√7的范围,再求出1−√7的范围,求出a、b的值,代入求出即可.本题考查了估算无理数的大小,能求出1−√7的范围是解此题的关键.40.设a=√13−1,a在两个相邻整数之间,则这两个整数是()A. 0和1B. 1和2C. 2和3D. 3和4【答案】C【解析】解:∵9<13<16,∴3<√13<4,即2<a=√13−1<3,则这两整数是2和3,故选C估算√13大小,即可得到结果.此题考查了估算无理数的大小,估算出√13大小是解本题的关键.41.估计√21的值()A. 1到2之间B. 2到3之间C. 3和4之间D. 4和5之间初一数学下册知识点《估算无理数的大小》150题和解析11 / 45第11页,共45页【答案】D【解析】解:∵√16<√21<√25, ∴4<√21<5,即√21在4到5之间, 故选:D .根据√16<√21<√25得出4<√21<5,即可得出答案.本题考查了估算无理数的大小的应用,关键是能求出√21的范围.42. 估计√76的值在哪两个整数之间( )A. 75和77B. 6和7C. 7和8D. 8和9【答案】D【解析】解:∵√64<√76<√81, ∴8<√76<9,∴√76在两个相邻整数8和9之间. 故选:D .先对√76进行估算,再确定√76是在哪两个相邻的整数之间.此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.43. 定义:对任意实数x ,[x]表示不超过x 的最大整数,如[3.14]=3,[1]=1,[−1.2}=−2.对数字65进行如下运算:①[√65]=8:②[√8]=2:③[√2]=1,这样对数字65运算3次后的值就为1,像这样对一个正整数总可以经过若干次运算后值为1,则数字255经过( )次运算后的结果为1. A. 3 B. 4 C. 5 D. 6 【答案】A【解析】解:255→第一次[√255]=15→第二次[√15]=3→第三次[√3]=1, 则数字255经过3次运算后的结果为1. 故选:A .根据[x]表示不超过x 的最大整数计算,可得答案.本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.44. 黄金分割数√5−12是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算√5−1的值( ) A. 在1.1和1.2之间 B. 在1.2和1.3之间 C. 在1.3和1.4之间 D. 在1.4和1.5之间【答案】B【解析】解:∵√5≈2.236, ∴√5−1≈1.236, 故选:B .根据√5≈2.236,可得答案.本题考查了估算无理数的大小,利用√5≈2.236是解题关键.45. 8的负的平方根介于( )A. −5与−4之间B. −4与−3之间C. −3与−2之间D. −2与−1之间【答案】C第12页,共45页【解析】解:∵4<8<9, ∴2<√8<3.∴−2>−√8>−3. 故选:C .先求得√8的范围,然后再求得−√8的范围即可.本题主要考查的是估算无理数的大小,利用夹逼法求得√8的大致范围是解题的关键.46. 通过估算,估计√193+1的值应在( )A. 2~3之间B. 3~4之间C. 4~5之间D. 5~6之间【答案】B【解析】解:∵8<19<27,∴√83<√193<√273,即2<√193<3,∴3<√193+1<4, 故选:B .根据8<19<27得出:2<√193<3,进而可得答案.本题考查了估算无理数的大小,利用了正数的被开方数越大立方根越大的关系.47. 估计√13的值在( )A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间【答案】C【解析】解:∵9<13<16, ∴3<√13<4,则√13的值在3和4之间, 故选:C .估算得出√13的范围即可.此题考查估算无理数的大小,熟练掌握算术平方根定义是解本题的关键.48. 如图,数轴上A ,B ,C ,D 四点中,与−√3对应的点距离最近的是( )A. 点AB. 点BC. 点CD. 点D【答案】B【解析】【分析】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键. 先估算出−√3的范围,结合数轴可得答案. 【解答】解:∵√1<√3<√4,即1<√3<2, ∴−2<−√3<−1,∴由数轴知,与−√3对应的点距离最近的是点B . 故选B .49. 下列各数中,介于正整数6和7之间的数是( )A. √41B. √52C. √26D. √383初一数学下册知识点《估算无理数的大小》150题和解析13 / 45第13页,共45页【答案】A【解析】解:∵36<41<49, ∴6<√41<7,故A 正确. ∵52>49,∴√52>7,故B 错误. ∵36>26,∴6>√26,故C 错误. ∵27<38<64,∴3<√383<4,故D 错误. 故选:A .依据被开方数越大对应的算术平方根(立方根)越大进行求解即可. 本题主要考查的是估算无理数的大小,夹逼法的应用是解题的关键.50. 若n −1<√45<n ,则整数n =( )A. 5B. 6C. 7D. 8【答案】C【解析】解:∵6<√45<7, ∴n =7, 故选:C .先估算出√45的范围,再得出选项即可.本题考查了估算无理数的大小,能估算出√45的范围是解此题的关键.51. 在数轴上有一块墨迹,被覆盖住的无理数可能是( )A. √17B. √11C. √5D. −√3【答案】B【解析】【分析】此题主要考查了估算无理数的大小,数轴的有关知识,应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解. 【解答】解:由图可知:被覆盖的数在3和4之间; ∴被墨迹覆盖的无理数有可能是√11. 故选B .52. 对于实数x ,我们规定[x]表示不大于x 的最大整数,如[4]=4,[√3]=1,[−2.5]=−3.现对82进行如下操作: 82→第1次[√82]=9→第2次[93]=3→第3次[√3]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( )A. 1B. 2C. 3D. 4【答案】C【解析】解:121→第1次[12111]=11→第2次[√11]=3→第3次[√3]=1,∴对121只需进行3次操作后变为1,故选:C .[x]表示不大于x 的最大整数,依据题目中提供的操作进行计算即可.本题考查了估算无理数的大小,解决本题的关键是明确[x]表示不大于x的最大整数.53.估计√10的值在哪两个整数之间()A. 9和10B. 7和8C. 5和6D. 3和4【答案】D【解析】解:∵3<√10<4,∴√10在3和4之间.故选D.先估算出√10的范围,即可得出选项.本题考查了估算无理数的大小的应用,能估算出√10的范围是解此题的关键.54.与1+√5最接近的整数是()A. 1B. 2C. 3D. 4【答案】C【解析】解:∵2.22=4.84,2.32=5.29,∴2.22<5<2.32.∴2.2<√5<2.3.∴3.2<1+√5<3.3.∴与1+√5最接近的整数是3.故选:C.先依据被开方数越大对应的算术平方根也越大估算出√5的大小,然后即可做出判断.本题主要考查的是估算无理数的大小,利用夹逼法估算出√5的大小是解题的关键.55.在数轴上标注了四段范围,如图,表示√8的点落在()A. 段①B. 段②C. 段③D. 段④【答案】C【解析】【分析】根据数的平方,即可解答.本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.【解答】解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴2.8<√8<2.9,∴√8的点落在段③,故选:C.56.如图,数轴上点N表示的数可能是()A. √10B. √5C. √3D. √2【答案】A【解析】解:∵√10≈3.16,√5≈2.24,√3≈1.73,√2≈1.41,根据点N在数轴上的位置,知:3<N<4,∴四个选项中只有3<3.16<4,即3<√10<4.故选:A.第14页,共45页初一数学下册知识点《估算无理数的大小》150题和解析先对四个选项中的无理数进行估算,再根据N点的位置即可求解.本题考查了同学们估算无理数大小的能力,及能够根据点在数轴的位置确定数的大小.57.数轴上表示√21−1的点A的位置应该在()A. 2与3之间B. 3与4之间C. 4与5之间D. 7与8之间【答案】B【解析】【分析】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,难度一般.先估算无理数√21的大小,然后求解即可.【解答】解:∵4=√16<√21<5=√25,∴3<√21−1<4,故数轴上表示√21−1的点A的位置应在3与4之间.故选:B.58.估计√6的值在()A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间【答案】A【解析】解:∵√4<√6<√9,∴2<√6<3,故选:A.根据估算无理数的大小,即可解答.本题考查了估算无理数的大小,解决本题的关键是估算无理数的大小.59.如图,已知数轴上的点A、B、C、D分别表示数−2、−1、1、2,则表示1−√7的点P应落在线段()A. AB上B. OB上C. OC上D. CD上【答案】A【解析】解:∵2<√7<3,∴−2<1−√7<−1,∴表示1−√7的点P应落在线段AB上.故选:A.直接根据题意得出−2<1−√7<−1进而得出答案.此题主要考查了估算无理数的大小,正确得出√7的取值范围是解题关键.60.a与b是两个连续整数,若a<√7<b,则a,b分别是()A. 6,8B. 3,2C. 2,3D. 3,4【答案】C【解析】解:∵4<7<9,∴2<√7<3,∵a<√7<b,且a与b是两个连续整数,∴a=2,b=3.故选C.根据4<7<9,结合a<√7<b,即可得出a、b的值.本题考查了估算无理数的大小,解题的关键是找出2<√7<3.15/ 45第15页,共45页61.估计√7+1的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】B【解析】解:∵2<√7<3,∴3<√7+1<4,故选:B.直接利用2<√7<3,进而得出答案.此题主要考查了估算无理数的大小,正确得出√7的取值范围是解题关键.62.若m<√14<n,且m、n为连续正整数,则n2−m2的值为()A. 5B. 7C. 9D. 11【答案】B【解析】解:∵m<√14<n,且m、n为连续正整数,∴m=3,n=4,则原式=7,故选:B.根据题意确定出m与n的值,代入原式计算即可求出值.此题考查了估算无理数的大小,设实数为a,a的整数部分A为不大于a的最大整数,小数部分B为实数a减去其整数部分,即B=a−A;理解概念是解题的关键.63.估计√30的值在两个整数()A. 3与4之间B. 5与6之间C. 6与7之间D. 3与10之间【答案】B【解析】解:∵√25<√30<√36,∴5<√30<6,∴√30的值在5与6之间.故选:B.直接利用估算无理数的方法得出接近无理数的整数进而得出答案.此题主要考查了估算无理数的大小,正确掌握无理数的估算方法是解题关键.64.3+√10的结果在下列哪两个整数之间().A. 6和7B. 5和6C. 4和5D. 3和4【答案】A【解析】解:∵3<√10<4,∴6<3+√10<7,故选:A.直接利用3<√10<4,进而得出答案.此题主要考查了估算无理数的大小,正确得出无理数接近的整数是解题关键.65.关于“√19”,下列说法不正确的是()A. 它是一个无理数B. 它可以用数轴上的一个点来表示C. 它可以表示面积为19的正方形的边长D. 若为整数),则n=5【答案】D第16页,共45页初一数学下册知识点《估算无理数的大小》150题和解析17 / 45第17页,共45页【解析】【分析】本题主要考查了无理数的定义、数轴的意义以及无理数的估算,无理数的估算关键是确定无理数的整数部分.“夹逼法”是估算的一般方法,也是常用方法. 分别根据无理数的定义、数轴的意义、正方形面积公式以及无理数的估算方法判断即可. 【解答】解:A .√19是一个无理数,说法正确,故选项A 不合题意;B .√19可以用数轴上的一个点来表示,说法正确,故选项B 不合题意;C .它可以表示面积为19的正方形的边长,说法正确,故选项C 不合题意;D .4<√19<5,n =4,故选项D 符合题意. 故选D .66. 如图,数轴上点P 表示的数可能是( ) A. √2 B. √3C. √5D. √73【答案】C【解析】解:从数轴可知:P 点表示数在2和3之间,A 、1<√2<2,故本选项不符合题意;B 、1<√3<2,故本选项不符合题意;C 、2<√3<3,故本选项符合题意;D 、1<√73<2,故本选项不符合题意; 故选C .从数轴可知P 点表示数在2和3之间,先估算出每个无理数的范围,即可得出答案. 本题考查了估算无理数的大小,能估算出每个无理数的范围是解此题的关键.67. 估计√5在( )A. 0~1之间B. 1~2之间C. 2~3之间D. 3~4之间【答案】C【解析】解:∵√4<√5<√9, 即:2<√5<3, ∴√5在2到3之间. 故选:C .根据二次根式的性质得出√4<√5<√9,即:2<√5<3,可得答案.本题考查了估算无理数的大小和二次根式的性质,解此题的关键是知道√5在√4和√9之间.68. 若√13的整数部分是a ,小数部分是b ,则式子3(a +b)−ab 的值是( )A. −9B. 9C. 19D. 3√13 【答案】B【解析】解:∵√9<√13<√16, ∴3<√13<4,∴a =3,b =√13−3,∴3(a +b)−ab =3×(3+√13−3)−3×(√13−3)=3√13−3√13+9=9. 故选:B .先进行估算√13的范围,确定a ,b 的值,再代入代数式即可解答. 本题考查了估算无理数的大小,解决本题的关键是估算√13的范围.69. 关于“√10”,下列说法不正确的是( )A. 它是数轴上唯一一个距离原点√10个单位长度的点表示的数B. 它是一个无理数C. 若a<√10<a+1,则整数a的值为3D. 它可以表示面积为10的正方形的边长【答案】A【解析】解:数轴上距离原点√10个单位长度的点表示的数是±√10,故A错误,符合题目要求√10它是一个无理数,故B正确,不符合题目要求∵9<10<16,∴3<√10<4,故整数a的值为3,故C正确,不故符合题目要求√10它可以表示面积为10的正方形的边长,故D正确,不符合题目要求.故选:A.依据绝对值的定义、无理数的概念,依据夹逼法估算无理数大小的方法、依据算术平方根的定义进行判断即可.本题主要考查的是估算无理数的大小,实数与数轴,熟练掌握相关知识是解题的关键.70.若a<√5<b,且a、b是两个连续整数,则a+b的值是()A. 2B. 3C. 4D. 5【答案】D【解析】解:∵4<5<9,∴2<√5<3,由a<√5<b,且a、b是两个连续的整数,得到a=2,b=3,则a+b=5,故选:D.由被开方数5的范围确定出√5的范围,进而求出a与b的值,代入原式计算即可得到结果.71.设面积为6的正方形的边长为a.下列关于a的四种说法:①a是有理数;②a是无理数;③a可以用数轴上的一个点来表示;④2<a<3.其中说法正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:∵面积为3的正方形的边长为a,∴a=√6,故①a是有理数,错误;②a是无理数,正确;③a可以用数轴上的一个点来表示,正确;④2<a<3,正确,则说法正确的是:②③④共3个.故选:C.直接利用得出正方形的边长,再利用实数的性质分析得出答案.此题主要考查了实数的性质以及无理数的估算,正确掌握实数有关性质是解题关键.72.有下列说法:①实数与数轴上的点一一对应;②2−√7的相反数是√7−2;③在1和3之间的无理数有且只有√2,√3,√5,√7这4个;④2+3x−4x2是三次三项式;第18页,共45页。

人教版初中数学知识点总结(完美版)

人教版初中数学知识点总结(完美版)

初中数学知识点总结七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一. 知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.(这一概念比较重要,使学生清楚,这对后续的学习很有帮助)正整数、0、负整数统称整数;(零和正整数统称为自然数)正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π33(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.(数形结合思想的渗入,若中考复习,可将不等式的解法与之联系,绝对值的几何意义)3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数(此概念具有相对性);0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的几何意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

初中数学常用十种解题方法

初中数学常用十种解题方法

初中数学常用的十种解题方法数学的解题方法是随着对数学对象的研究的深入而发展起来的。

教师钻研习题、精通解题方法,可以促进教师进一步熟练地掌握中学数学教材,练好解题的基本功,提高解题技巧,积累教学资料,提高业务水平和教学能力。

下面介绍的解题方法,都是初中数学中最常用的,有些方法也是中学教学大纲要求掌握的。

1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

人教版数学七年级下册《无理数、实数概念》教案1

人教版数学七年级下册《无理数、实数概念》教案1

人教版数学七年级下册《无理数、实数概念》教案1一. 教材分析人教版数学七年级下册《无理数、实数概念》这部分内容,主要让学生了解无理数和实数的概念,理解无理数和实数在数轴上的位置关系,以及它们在数学中的应用。

这部分内容是初中的重要知识,也是高中数学的基础。

二. 学情分析初中的学生已经有了一定的数学基础,但是对于无理数和实数这样的抽象概念,可能还比较难以理解。

因此,在教学过程中,需要引导学生从实际问题中抽象出无理数和实数的概念,并通过具体的例子,让学生感受无理数和实数在生活中的应用。

三. 教学目标1.让学生了解无理数和实数的概念,理解它们在数轴上的位置关系。

2.让学生能够运用无理数和实数的知识,解决实际问题。

3.培养学生抽象思维的能力,提高学生解决问题的能力。

四. 教学重难点1.重难点:无理数和实数的概念,无理数和实数在数轴上的位置关系。

2.难点:无理数和实数在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出无理数和实数的概念。

2.使用多媒体教学,通过动画、图片等形式,让学生更直观地理解无理数和实数。

3.采用小组合作学习的方式,让学生在讨论中巩固无理数和实数的知识。

六. 教学准备1.多媒体教学设备。

2.无理数和实数的教学素材。

3.小组合作学习的指导手册。

七. 教学过程1.导入(5分钟)通过一个实际问题,引出无理数和实数的概念。

问题:如果一个正方形的边长是2,那么它的对角线的长度是多少?2.呈现(10分钟)通过多媒体教学,呈现无理数和实数的定义,以及它们在数轴上的位置关系。

3.操练(10分钟)让学生通过小组合作学习的方式,解决一些与无理数和实数有关的问题。

4.巩固(10分钟)让学生回答一些关于无理数和实数的问题,以巩固他们刚刚学到的知识。

5.拓展(10分钟)让学生通过一些实际的例子,了解无理数和实数在生活中的应用。

6.小结(5分钟)对本节课的内容进行小结,让学生了解他们今天学到了什么。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

比较无理数大小的几种方法
比较无理数大小的方法很多,在解题时,要根据所给无理数的特点,选择合适的比较方法。

下面举例说明。

一、直接法
直接利用数的大小来进行比较。

例1.
解:因为,所以
因为,所以
所以
二、隐含条件法
根据二次根式定义,挖掘隐含条件。

例2.
解:因为成立
所以,即
所以
所以
所以
三、同次根式下比较被开方数法
例3.
解:因为
所以,即
例4.
解:因为
所以,即
四、作差法
若,则
例5.
解:因为
所以

五、作商法
,若,则。

例6.
解:因为
所以
六、找中间量法
要证,可找中间量c,转证。

例7.
解:因为
所以
七、平方法
,若,则。

例8.
解:因为
所以
八、倒数法
若,则。

例9.
解:因为
所以
所以
九、有理化法
可分母有理化,也可分子有理化。

例10.
解:因为
所以
所以
十、放缩法
欲证,可转证。

例11.
解:因为
所以.。

相关文档
最新文档