初中数学中比较无理数大小的方法
最新初中数学实数单元汇编及答案解析(3)

最新初中数学实数单元汇编及答案解析(3)一、选择题1.在实数范围内,下列判断正确的是( )A .若2t ,则m=nB .若22a b >,则a >bC 2=,则a=bD =a=b 【答案】D【解析】【分析】根据实数的基本性质,逐个分析即可.【详解】A 、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B 、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C 、两个数可能互为相反数,如a=-3,b=3,故选项错误;D 、根据立方根的定义,显然这两个数相等,故选项正确.故选:D .【点睛】考核知识点:实数的性质.理解算术平方根和立方根性质是关键.2的平方根是( )A .2B C .±2 D .【答案】D【解析】【分析】,然后再根据平方根的定义求解即可.【详解】,2的平方根是,.故选D .【点睛】正确化简是解题的关键,本题比较容易出错.3.规定用符号[m]表示一个实数m 的整数部分,例如:[23]=0,[3.14]=3.按此规定+1]的值为( )A .3B .4C .5D .6【答案】B【解析】【分析】【详解】解:根据91016<<,则34<<,即415<<,根据题意可得:14⎤=⎦. 考点:无理数的估算4.在3.14,237,π这几个数中,无理数有( ) A .1个B .2个C .3个D .4个【答案】B【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.14,237,π中无理数有:, π,共计2个. 故选:B.【点睛】 考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5.下列实数中的无理数是( )AB C D .227【答案】C【解析】【分析】无限不循环小数是无理数,根据定义解答.【详解】=1.1是有理数;,是有理数;是无理数;D. 227是分数,属于有理数, 故选:C.【点睛】 此题考查无理数的定义,熟记定义是 解题的关键.6.估计的值在( ) A .0到1之间B .1到2之间C .2到3之间D .3到4之间【答案】B【解析】【分析】利用“夹逼法”估算无理数的大小.【详解】=﹣2. 因为9<11<16, 所以3<<4. 所以1<﹣2<2. 所以估计的值在1到2之间. 故选:B . 【点睛】本题考查估算无理数的大小.估算无理数大小要用逼近法.7.下列六个数:0315,9,,,0.13π•-中,无理数出现的频数是( ) A .3 B .4 C .5 D .6【答案】A【解析】 【分析】根据无理数的定义找出无理数,根据频数的定义可得频数.【详解】 因为六个数:0315,9,,,0.13π•-35,9,π 即:无理数出现的频数是3故选:A【点睛】考核知识点:无理数,频数.理解无理数,频数的定义是关键.8.如图,长方形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是1-,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是( )A .45B 52C 51D .35【答案】C【解析】【分析】 首先根据勾股定理算出AC 的长度,进而得到AE 的长度,再根据A 点表示的数是-1,可得E 点表示的数.【详解】∵2,1AD BC AB === ∴22521AC =+=∴AE 5∵A 点表示的数是1-∴E 51【点睛】掌握勾股定理;熟悉圆弧中半径不变性.9.2246-的值应在( ) A .2.5和3之间B .3和3.5之间C .3.5和4之间D .4和4.5之间 【答案】C【解析】【分析】直接利用二次根式乘法运算法则化简,进而估算无理数的大小即可.【详解】224646636--==13.5 ∵3.52=12.25,42=16,12.25<13.5<16,∴3.513.5 4.故选:C.【点睛】本题考查了估算无理数的大小,正确进行二次根式的运算是解题的关键.10.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;3a -=﹣;④0.01的立方根是0.00001,其中正确的个数是()A.1个B.2个C.3个D.4个【答案】A【解析】【分析】利用平方根和立方根的定义解答即可.【详解】①﹣0.064的立方根是﹣0.4,故原说法错误;②﹣9没有平方根,故原说法错误;④0.000001的立方根是0.01,故原说法错误,其中正确的个数是1个,故选:A.【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.11.估计值应在()2A.3到4之间B.4到5之间C.5到6之间D.6到7之间【答案】A【解析】【分析】先根据二次根式乘法法则进行计算,得到一个二次根式后再利用夹逼法对二次根式进行估算即可得解.【详解】=解:2<<∵91216<<∴34<<∴估计值应在3到4之间.2故选:A【点睛】本题考查了二次根式的乘法、无理数的估算,熟练掌握相关知识点是解决问题的关键.12.下列各组数中互为相反数的是()A .5和2(5)-B .2--和(2)--C .38-和38-D .﹣5和15【答案】B【解析】 【分析】 直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A 、5和()25-=5,两数相等,故此选项错误; B 、-|-2|=-2和-(-2)=2互为相反数,故此选项正确;C 、-38=-2和38-=-2,两数相等,故此选项错误;D 、-5和15,不互为相反数,故此选项错误. 故选B .【点睛】 本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.13.如图,已知x 2=3,那么在数轴上与实数x 对应的点可能是( )A .P 1B .P 4C .P 2或P 3D .P 1或P 4【答案】D【解析】试题解析:∵x 2=3,∴3根据实数在数轴上表示的方法可得对应的点为P 1或P 4.故选D .14.若x 2=16,则5-x 的算术平方根是( )A .±1B .±3C .1或9D .1或3【答案】D【解析】【分析】根据平方根和算术平方根的定义求解即可.【详解】∵x2=16,∴x=±4,∴5-x=1或5-x=9,∴5-x的算术平方根是1或3,故答案为:D.【点睛】本题考查了平方根和算术平方根的定义,解题的关键是要弄清楚算术平方根的概念与平方根的概念的区别.15.在-1.414,0,π,227,3.14,2+3,3.212212221…,这些数中,无理数的个数为()A.5 B.2 C.3 D.4【答案】C【解析】【分析】根据无理数的概念解答即可.【详解】-1.414,0,π,227,3.14,2+3,3.212212221…,这些数中,无理数有:π,2+3,3.212212221…,无理数的个数为:3个故选:C【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.16.实数a,b,c,d在数轴上的对应点的位置如图所示,则下列结论正确的是()A.|a|>|b| B.a>﹣3 C.a>﹣d D.11 c<【答案】A【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案.【详解】由数轴可知,﹣4<a<﹣3,b=﹣1,0<c<1,d=3,∴|a|>|b|,A正确;a <﹣3,B 错误;a <﹣d ,C 错误;11c>,D 错误, 故选A .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义等,熟练掌握是解题的关键.17.已知甲、乙、丙三个数,甲2=,乙3=,丙2=-,则甲、乙、丙之间的大小关系,下列表示正确的是( ). A .甲<乙<丙B .丙<甲<乙C .乙<甲<丙D .甲<丙<乙 【答案】C【解析】【分析】由无理数的估算,得到324<<,132<<,425<<,然后进行判断,即可得到答案.【详解】解:∵12<,∴324<<,即3<甲<4,∵45<<,∴132<<,即1<乙<2,∵67<<,∴425<<,即4<丙<5,∴乙<甲<丙;故选:C.【点睛】本题考查了实数比较大小,以及无理数的估算,解题的关键是熟练掌握无理数的估算,以及比较大小的法则.18.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x =的图象中,y 随x 增大而增大,正确,是真命题;C 、菱形的对角线垂直且平分,故错误,是假命题;D 、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C .【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.19.对于两个不相等的实数a ,b ,我们规定符号max {a ,b }表示a 、b 中的较大的数,如:max {2,4}=4,按照这个规定,方程max {x ,﹣x }=x 2﹣x ﹣1的解为( )A .1+2或1﹣2B .1或﹣1C .1﹣2或1D .1+2或﹣1【答案】D【解析】【分析】根据题意应分为x>0和x<0两种情况讨论,并列出关于x 的分式方程求解,结合x 的取值范围确定方程max {x ,﹣x }=x 2﹣x ﹣1的解即可.【详解】解:①当x ≥﹣x ,即x ≥0时,∵max {x ,﹣x }=x 2﹣x ﹣1,∴x =x 2﹣x ﹣1,解得:x =1+2(1﹣2<0,不符合舍去);②当﹣x >x ,即x <0时,﹣x =x 2﹣x ﹣1,解得:x =﹣1(1>0,不符合舍去),即方程max {x ,﹣x }=x 2﹣x ﹣1的解为1+2或﹣1,故选:D .【点睛】本题考查了解分式方程,有关实数、实数运算的新定义,掌握分式方程的解法是解题的关键.20.如图,数轴上的点P 表示的数可能是( )A 5B .5C .-3.8D .10-【答案】B【分析】【详解】≈,所以P点表示的数是2.2。
初二数学无理数知识点总结

初二数学无理数知识点总结初二数学无理数知识点总结知识要领:无理数,即非有理数之实数,不能写作两整数之比。
若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
无理数概念无理数是无限不循环小数。
如圆周率、√2(根号2)等。
有理数是由所有分数,整数组成,它们都可以化成有限小数,或无限循环小数。
如22/7等。
实数(real number)分为有理数和无理数(irrational number)。
有理数可分为整数(正整数、0、负整数)和分数(正分数、负分数); 也可分为正有理数(正整数、正分数),0,负有理数(负整数、负分数)。
除了无限不循环小数以外的实数统称有理数。
无理数与有理数的区别区别1把有理数和无理数都写成小数形式时,有理数能写成整数、小数或无限循环小数,比如4=4.0, 4/5=0.8,1/3=0.33333……。
而无理数只能写成无限不循环小数,比如√2=1.414213562…………。
根据这一点,人们把无理数定义为无限不循环小数。
区别2无理数不能写成两整数之比。
利用有理数和无理数的主要区别,可以证明√2是无理数。
证明:假设√2。
”他闻听此言,便摔掉柴禾南渡地中海到泰勒斯门下去求学。
毕达哥拉斯本来就极聪明,经泰勒一指点,许多数学难题在他的手下便迎刃而解。
其中,他证明了三角形的内角和等于180度;能算出你若要用瓷砖铺地,则只有用正三角、正四角、正六角三种正多角砖才能刚好将地铺满;还证明了世界上只有五种正多面体,即:正4、6、8、12、20面体。
他还发现了奇数、偶数、三角数、四角数、完全数、友数,直到毕达哥拉斯数。
然而他最伟大的成就是发现了后来以他的名字命名的毕达哥拉斯定理(勾股弦定理),即:直角三角形两直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积。
据说,这是当时毕达哥拉斯在寺庙里见工匠们用方砖铺地,经常要计算面积,于是便发明了此法。
毕达哥拉斯将数学知识运用得纯熟之后,觉得不能只满足于用来算,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的“孔隙”。
初中数学_平方根第二课时教学设计学情分析教材分析课后反思

6.1平方根教学设计(第二课时)【教学目标】知识与能力:1.会用平方法比较两个数的大小。
2.了解用夹逼法估无理数的值。
3.会用估值法比较两个数的大小。
过程与方法:1.通过拼图活动发展学生的形象思维。
2.在探究活动中,让学生经历发现无理数的过程,认识到无理数的存在。
情感、态度与价值观:通过教学激发学生的参与性和求知欲,使学生体验小组合作学习的快乐,充分认识到社会生活与数学的密切联系,感受生活处处皆数学。
【教学重点】利用平方法和估值法比较数的大小。
【教学难点】 探究的大小【教学过程】课前交流:模拟购物街:一台笔记本价值在4000~5000元之间,给你三次机会你来估一下它的实际售价。
如果你猜中的价格与实际价格差距在50元范围内,这台电脑就送给你。
学生活动设计:学生估价,一名学生负责提示估价是高了还是低了。
教师活动设计:引导学生分析估价的方法,关注学生不要只顾活动,而忽略了情境里面蕴含的数学问题。
设计意图:从现实生活中提出估值的技巧,让学生在活动中体会夹逼法(二分法)在生活中的应用,同时唤起学生的生活经验,为后面利用夹逼法估的值作迁移准备。
本着从学生的生活经验出发,在做中学的理念,让学生在轻松的氛围中积极参与对数学问题的讨论,使学生感受到生活处处皆数学。
一、复习导入1、 什么叫算术平方根?2、 算术平方根的大小与被开方数的关系3、 判断下列各数有没有算术平方根,如果有请求出它们。
100,1, ,0,—0.0025,4, 师: 的算术平方根是多少?生:。
师:你是怎么想的。
师:你发现与我们前面求出的平方根有什么不一样的地方? 师:那么对于这样的数你有什么疑问吗?1211644二、 新课师:是呀,这样的数到底存不存在呢?如果存在到底有多大呢?今天我们就来研究这样的数。
板书:《平方根》1、拼一拼:首先我们来研究一下能否用两个面积为1的小正方形拼成一个面积为2的大正方形? 师:直接拼行不行?为什么?那面积符合吗?那看来要通过拼剪的方法。
(必考题)初中数学七年级下期末经典题

一、选择题1.在实数3π,227,0.2112111211112……(每两个2之多一个1),3,38中,无理数的个数有A.1个B.2个C.3个D.4个2.如图,直线BC与MN相交于点O,AO⊥BC,OE平分∠BON,若∠EON=20°,则∠AOM的度数为()A.40°B.50°C.60°D.70°3.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD 的周长为()A.20cm B.22cmC.24cm D.26cm4.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,买鸡的钱数为y,依题意可列方程组为()A.8374x yx y+=⎧⎨+=⎩B.8374x yx y-=⎧⎨-=⎩C.8374x yx y+=⎧⎨-=⎩D.8374x yx y-=⎧⎨+=⎩5.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.303278x yx y+=⎧⎨+=⎩6.已知关于x的方程2x+a-9=0的解是x=2,则a的值为A .2B .3C .4D .57.若|321|20x y x y --++-=,则x ,y 的值为( ) A .14x y =⎧⎨=⎩B .2x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩8.在实数0,-π,3,-4中,最小的数是( ) A .0B .-πC .3D .-49.已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( )A .491b a -=B .321a b +=C .491b a -=-D .941a b +=10.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( ) A .210x +90(15﹣x )≥1.8 B .90x +210(15﹣x )≤1800 C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.811.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是( )A .35°B .45°C .55°D .125° 12.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-2 13.已知4+3,则以下对m 的估算正确的( ) A .2<m <3B .3<m <4C .4<m <5D .5<m <614.若0a <,则下列不等式不成立的是( ) A .56a a +<+B .56a a -<-C .56a a <D .65a a< 15.过一点画已知直线的垂线,可画垂线的条数是( ) A .0B .1C .2D .无数二、填空题169________. 17.已21x y =⎧⎨=-⎩是关于x 、y 的二次元方程39ax y +=的解,则a 的值为___________18.若关于x ,y 的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足x +y <2,则a 的取值范围为_____.19.不等式71x ->的正整数解为:______________.20.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°21.一个三角形的三边长分别为15cm 、20cm 、25cm ,则这个三角形最长边上的高是_____ cm .22.《孙子算经》是中国古代重要的数学著作,现在的传本共三卷,卷上叙述算筹记数的纵横相间制度和筹算乘除法;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法,其中记载:“今有木、不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何?”译文:“用一根绳子量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还到余1尺,问木长多少尺?”设绳长x 尺,木长y 尺.可列方程组为__________.23.已知(m-2)x |m-1|+y=0是关于x ,y 的二元一次方程,则m=______.24.如图,直线//a b ,点B 在直线上b 上,且AB ⊥BC ,∠1=55°,则∠2的度数为______.25.已知在一个样本中,50个数据分别在5个组内,第一、二、三、五组数据的个数分别为2,8,15,5,则第四组的频数为__________.三、解答题26.诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩(x 为整数,总分100分),绘制了如下尚不完整的统计图表. 组别 成绩分组(单位:分) 频数 A 50≤x <60 40 B 60≤x <70 a C 70≤x <80 90 D 80≤x <90 b E90≤x <100100合计 c根据以上信息解答下列问题:(1)统计表中a = ,b = ,c = ;(2)扇形统计图中,m 的值为 ,“E ”所对应的圆心角的度数是 (度); (3)若参加本次大赛的同学共有4000人,请你估计成绩在80分及以上的学生大约有多少人?27.问题情境在综合与实践课上,老师让同学们以“两条平行线AB ,CD 和一块含60°角的直角三角尺EFG(∠EFG =90°,∠EGF =60°)”为主题开展数学活动. 操作发现(1)如图(1),小明把三角尺的60°角的顶点G 放在CD 上,若∠2=2∠1,求∠1的度数; (2)如图(2),小颖把三角尺的两个锐角的顶点E 、G 分别放在AB 和CD 上,请你探索并说明∠AEF 与∠FGC 之间的数量关系; 结论应用(3)如图(3),小亮把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上.若∠AEG =α,则∠CFG 等于______(用含α的式子表示).28.已知,点、、A B C 不在同一条直线上,//AD BE(1)如图①,当,58118A B ︒︒∠=∠=时,求C ∠的度数;(2)如图②,,AQ BQ 分别为,DAC EBC ∠∠的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下且//AC QB ,QP PB ⊥,直接写11,,DAC ACB CBE ∠∠∠的值29.如图,平面直角坐标系中,ABCD 为长方形,其中点A 、C 坐标分别为(﹣8,4)、(2,﹣8),且AD ∥x 轴,交y 轴于M 点,AB 交x 轴于N . (1)求B 、D 两点坐标和长方形ABCD 的面积; (2)一动点P 从A 出发(不与A 点重合),以12个单位/秒的速度沿AB 向B 点运动,在P 点运动过程中,连接MP 、OP ,请直接写出∠AMP 、∠MPO 、∠PON 之间的数量关系; (3)是否存在某一时刻t ,使三角形AMP 的面积等于长方形面积的13?若存在,求t 的值并求此时点P 的坐标;若不存在请说明理由.30.已知关于,x y 的方程组354522x y ax by -=⎧⎨+=-⎩和2348x y ax by +=-⎧⎨-=⎩有相同解,求(a)b -值.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.C2.B3.D4.D5.A6.D7.D8.D9.D10.C11.C12.A13.B14.C15.B二、填空题16.【解析】【分析】根据算术平方根的性质求出=3再求出3的算术平方根即可【详解】解:∵=33的算术平方根是∴的算术平方根是故答案为:【点睛】本题考查算术平方根的概念和求法正数的算术平方根是正数0的算术平17.6【解析】【分析】把x与y的值代入方程组求出a的值代入原式计算即可求出值【详解】解:把代入得解得:故答案为:6【点睛】此题考查了解二元一次方程掌握方程的解是解答本题的关键18.【解析】由①+②得4x+4y=4+ax+y=1+∴由x+y<2得1+<2即<1解得a<4故答案是:a<419.12345【解析】【分析】【详解】解:由7-x>1-x>-6x<6∴x的正整数解为123456故答案为1234520.57°【解析】【分析】根据平行线的性质和三角形外角的性质即可求解【详解】由平行线性质及外角定理可得∠2=∠1+30°=27°+30°=57°【点睛】本题考查平行线的性质及三角形外角的性质21.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C 作CD⊥AB于D∵AC2+B22.【解析】【分析】本题的等量关系是:绳长-木长=45;木长-绳长=1据此可列方程组求解【详解】设绳长x尺长木为y尺依题意得故答案为:【点睛】此题考查由实际问题抽象出二元一次方程组解题关键在于列出方程23.0【解析】【分析】根据二元一次方程的定义可以得到x的次数等于1且系数不等于0由此可以得到m的值【详解】根据二元一次方程的定义得|m-1|=1且m-2≠0解得m=0故答案为0【点睛】考查了二元一次方程24.【解析】【分析】先根据∠1=55°AB⊥BC求出∠3的度数再由平行线的性质即可得出结论【详解】解:∵AB⊥BC∠1=55°∴∠3=90°-55°=35°∵a∥b∴∠2=∠3=35°故答案为:35°【25.【解析】【分析】每组的数据个数就是每组的频数50减去第1235小组数据的个数就是第4组的频数【详解】50−(2+8+15+5)=20则第4小组的频数是20【点睛】本题考查频数与频率解题的关键是掌握频三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【详解】无理数有3π,0.2112111211112……(每两个2之多一个1,共三个,故选C.【点睛】本题考查了无理数的知识,解题的关键是熟练掌握无理数的三种形式.2.B解析:B【解析】【分析】首先根据角的平分线的定义求得∠BON,然后根据对顶角相等求得∠MOC,然后根据∠AOM=90°﹣∠COM即可求解.【详解】∵OE平分∠BON,∴∠BON=2∠EON=40°,∴∠COM=∠BON=40°,∵AO⊥BC,∴∠AOC=90°,∴∠AOM=90°﹣∠COM=90°﹣40°=50°.故选B.【点睛】本题考查了垂直的定义、角平分线的定义以及对顶角的性质,正确求得∠MOC的度数是关键.3.D解析:D【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD=BE=3,DF=AC,DE=AB,EF=BC,所以:四边形ABFD的周长为:AB+BF+FD+DA=AB+BE+EF+DF+AD=AB+BC+CA+2AD=20+2×3=26.故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.4.D解析:D【解析】【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有x人,买鸡的钱数为y,根据题意,得:8374x y x y-=⎧⎨+=⎩.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.5.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.6.D解析:D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选D.7.D解析:D 【解析】分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可.详解:∵3210x y --=,∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1, 把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩.故选:D .点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.8.D解析:D 【解析】 【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解. 【详解】∵正数大于0和一切负数, ∴只需比较-π和-4的大小, ∵|-π|<|-4|, ∴最小的数是-4. 故选D . 【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.9.D解析:D 【解析】 【分析】 把3{2x y =-=-,代入1{2ax cy cx by +=-=,即可得到关于,,a b c 的方程组,从而得到结果.【详解】由题意得,321322a cc b--=⎧⎨-+=⎩①②,3,2⨯⨯①②得,963 644a cc b--=⎧⎨-+=⎩③④-④③得941a b+=,故选:D.10.C解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x)≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键. 11.C解析:C【解析】【分析】利用平行线的判定和性质即可解决问题.【详解】如图,∵∠1+∠2=180°,∴a∥b,∴∠4=∠5,∵∠3=∠5,∠3=55°,∴∠4=∠3=55°,故选C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.12.A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->x b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.13.B解析:B【解析】【分析】【详解】∵12,∴3<m <4,故选B .【点睛】的取值范围是解题关键.14.C解析:C【解析】【分析】直接根据不等式的性质进行分析判断即可得到答案.【详解】A .0a <,则a 是负数,56a a +<+可以看成是5<6两边同时加上a ,故A 选项成立,不符合题意;B .56a a -<-是不等式5<6两边同时减去a ,不等号不变,故B 选项成立,不符合题意;C .5<6两边同时乘以负数a ,不等号的方向应改变,应为:56a a >,故选项C 不成立,符合题意;D .65a a<是不等式5<6两边同时除以a ,不等号改变,故D 选项成立,不符合题意.【点睛】本题考查的实际上就是不等式的基本性质:不等式的两边都加上(或减去)同一个数(或式子)不等号的方向不变;不等式两边同乘以(或除以)同一个正数,不等号的方向不变;不等式两边同乘以(或除以)同一个负数,不等号的方向改变.15.B解析:B【解析】【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答.【详解】在平面内,过一点有且只有一条直线与已知直线垂直,故选:B【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.二、填空题16.【解析】【分析】根据算术平方根的性质求出=3再求出3的算术平方根即可【详解】解:∵=33的算术平方根是∴的算术平方根是故答案为:【点睛】本题考查算术平方根的概念和求法正数的算术平方根是正数0的算术平【解析】【分析】,再求出3的算术平方根即可.【详解】,3,.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.17.6【解析】【分析】把x与y的值代入方程组求出a的值代入原式计算即可求出值【详解】解:把代入得解得:故答案为:6【点睛】此题考查了解二元一次方程掌握方程的解是解答本题的关键解析:6【解析】把x 与y 的值代入方程组求出a 的值,代入原式计算即可求出值.【详解】解:把21x y =⎧⎨=-⎩,代入得239a -=, 解得:6a =故答案为:6【点睛】此题考查了解二元一次方程,掌握方程的解是解答本题的关键.18.【解析】由①+②得4x+4y=4+ax+y=1+∴由x+y<2得1+<2即<1解得a<4故答案是:a<4解析:4a <【解析】3+=1,33x y a x y +⎧⎨+=⎩①②由①+②得4x+4y=4+a , x+y=1+4a , ∴由x+y<2,得 1+4a <2, 即4a <1, 解得,a<4.故答案是:a<4.19.12345【解析】【分析】【详解】解:由7-x>1-x>-6x<6∴x 的正整数解为123456故答案为12345解析:1,2,3,4,5.【解析】【分析】【详解】解:由7-x>1-x>-6,x<6,∴x 的正整数解为1,2,3,4,5,6故答案为1,2,3,4,5.20.57°【解析】【分析】根据平行线的性质和三角形外角的性质即可求解【详解】由平行线性质及外角定理可得∠2=∠1+30°=27°+30°=57°【点睛】本题考查平行线的性质及三角形外角的性质【解析】【分析】根据平行线的性质和三角形外角的性质即可求解.【详解】由平行线性质及外角定理,可得∠2=∠1+30°=27°+30°=57°.【点睛】本题考查平行线的性质及三角形外角的性质.21.【解析】【分析】过C作CD⊥AB于D根据勾股定理的逆定理可得该三角形为直角三角形然后再利用三角形的面积公式即可求解【详解】如图设AB=25是最长边AC=15BC=20过C作CD⊥AB于D∵AC2+B解析:【解析】【分析】过C作CD⊥AB于D,根据勾股定理的逆定理可得该三角形为直角三角形,然后再利用三角形的面积公式即可求解.【详解】如图,设AB=25是最长边,AC=15,BC=20,过C作CD⊥AB于D.∵AC2+BC2=152+202=625,AB2=252=625,∴AC2+BC2=AB2,∴∠C=90°.∵S△ACB=12AC×BC=12AB×CD,∴AC×BC=AB×CD,∴15×20=25CD,∴CD=12(cm).故答案为12.【点睛】本题考查了勾股定理的逆定理和三角形的面积公式的应用.根据勾股定理的逆定理判断三角形为直角三角形是解答此题的突破点.22.【解析】【分析】本题的等量关系是:绳长-木长=45;木长-绳长=1据此可列方程组求解【详解】设绳长x尺长木为y尺依题意得故答案为:【点睛】此题考查由实际问题抽象出二元一次方程组解题关键在于列出方程解析:4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩【解析】【分析】本题的等量关系是:绳长-木长=4.5;木长-12绳长=1,据此可列方程组求解.设绳长x尺,长木为y尺,依题意得4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩,故答案为:4.5 11 2x yx y-=⎧⎪⎨=-⎪⎩.【点睛】此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程.23.0【解析】【分析】根据二元一次方程的定义可以得到x的次数等于1且系数不等于0由此可以得到m的值【详解】根据二元一次方程的定义得|m-1|=1且m-2≠0解得m=0故答案为0【点睛】考查了二元一次方程解析:0【解析】【分析】根据二元一次方程的定义,可以得到x的次数等于1,且系数不等于0,由此可以得到m 的值.【详解】根据二元一次方程的定义,得|m-1|=1且m-2≠0,解得m=0,故答案为0.【点睛】考查了二元一次方程的定义.二元一次方程必须符合以下三个条件: (1)方程中只含有2个未知数; (2)含未知数项的最高次数为一次;(3)方程是整式方程.24.【解析】【分析】先根据∠1=55°AB⊥BC求出∠3的度数再由平行线的性质即可得出结论【详解】解:∵AB⊥BC∠1=55°∴∠3=90°-55°=35°∵a∥b∴∠2=∠3=35°故答案为:35°【解析:【解析】【分析】先根据∠1=55°,AB⊥BC求出∠3的度数,再由平行线的性质即可得出结论【详解】解:∵AB⊥BC,∠1=55°,∴∠3=90°-55°=35°.∵a ∥b ,∴∠2=∠3=35°.故答案为:35°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等。
人教部编版初中数学七年级上册考试必考的高频考点总结

人教部编版初中数学七年级上册考试必考的高频考点总结1.数轴数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。
数轴的三要素:原点,单位长度,正方向。
数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。
2.相反数相反数的概念:只有符号不同的两个数叫做互为相反数.相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。
多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。
规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
3.绝对值概念:数轴上某个数与原点的距离叫做这个数的绝对值。
①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.如果用字母a表示有理数,则数 a 绝对值要由字母a 本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.即|a|={a(a>0),0(a=0),﹣a(a<0)4.有理数大小比较有理数的大小比较比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小。
规律方法·有理数大小比较的三种方法:(1)法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.(2)数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.(3)作差比较:若a﹣b>0,则a>b;若a﹣b<0,则a若a﹣b=0,则a=b.5.有理数的减法有理数减法法则减去一个数,等于加上这个数的相反数。
初中数学03-实数的运算及有效数字-教师版

知识点1:实数比较大小正数>0>负数;比较两数大小是中学数学中的基本类型.基本技能,以下介绍几种常用的方法:1.近似值法:借用两个数的不足和过剩近似值来判别两个数大小的方法;2.平方法:将两个数先平方,再来判定两个数大小的方法;3.求差法:先求两个数的差,用差与0作比较来判定两个数大小的方法.即a b-大于、等于、小于0可判定a大于、等于、小于b;4.求商法:先求两个数的商,用商与1作比较判定两个数大小的方法.即ab大于、等于、小于1,可判定正数a大于、等于、小于正数b;5.求倒数法:先求两个数的倒数,用倒数的大小来判定两个数大小的方法.即对于符号相同的a,b两数,若11a b<,则a b>;若11a b>,则a b<.实数的运算知识结构模块一实数的运算知识精讲知识点2:数轴上两点的距离公式在数轴上,如果点A .点B 所对应的数分别为a .b ,那么A .B 两点的距离AB a b =-. 知识点3:实数的运算在实数范围内,可以进行加减乘除乘方等运算,而且有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序与有理数运算顺序基本相同,先乘方.开方.再乘除,最后算加减,同级按从左到右顺序进行,有括号先算括号里的.实数运算的结果是唯一的.实数运算常用到的公式有:第一组:2()(0)a a a =≥;2a a =; 第二组:(00)ab a b a b =≥≥g ,;(00)a aa b b b=≥>,.【例1】 填空:1.在数轴上,原点左边是实数,原点右边是实数,原点为0;2.数轴上右边的点所表示的数 左边的点所表示的数.【难度】★【答案】1.负,正;2.大于. 【解析】考查实数的大小比较的最基本方法.【例2】 化简:(1)6242-+; (2)33-;(3)3242g ; (4)22⎛÷- ⎪⎝⎭;(5)()332-;(6)()232-.【难度】★【答案】(1)22-; (2)3-;(3)24;(4)2-;(5)2-;(6)18. 【解析】(2)原式=333233-=-=-; (4)原式=()222⨯-=-; (6)原式=()()323218-⨯-=.【例3】 下列各式计算正确的是( )A .382=±B .()()6363222-=-=-例题解析C 12D .(2【难度】★【答案】C【解析】A 、原式=2;B 、原式2==;D 、左边=2-,右边=2,所以不相等.【总结】考查实数的基本运算,注意法则的准确运用.【例4】 比较下列各数的大小(填“>”.“=”或“<”)(1);(2)(2)-; (3(4; (5) (6).【难度】★★【答案】(1)<; (2)>; (3)< ; (4)< ; (5)> ; (6)<.【解析】(1)(212=<(218= ; (2)()224-=>2-=(3)625=<627=; (44=;(5)(220=>(218=; (6) 3.1415π≈< 3.1622≈.【总结】考查实数的比较大小,注意平方法是最常用的方法,一些常用的近似数要熟记.【例5】 比较大小:(1)2;(2(取倒法).【难度】★★【答案】(1)< ; (2)<.【解析】(1)∵(224610+=++=+211=+∴2<+(;(2=> =, ∴<. 【总结】考查利用平方法比较实数的大小.【例6】 下列说法正确的是() A .若a b =,则1122a b = B .若22a b >,则a b >C .若2a =,则a b =D 15b =,则a b =【难度】★★【答案】D【解析】A 、a 、b 可能一个为正一个位负,错;B 、错;C 、a 可能是负数,错;D 、正确. 【总结】考查实数的相关概念及运算,注意从多个角度去分析.【例7】 如果4a =,2b =,且0ab <,则a b +=________. 【难度】★★【答案】0.【解析】∵2b =,∴b =4,又∵ab <0,∴a =-4,∴0a b +=. 【总结】考查实数的基本运算,注意判定a 、b 的符号.【例8】 化简:(1)如果在数轴上表示,a b 两个实数的点的位置如图所示,化简:a b a b -++(2)如图,实数a 在数轴上所对应的点是P ,化简代数式12a a +++. 【难度】★★【答案】(1)2a -; (2)1.【解析】(1)由图易知00a b a b <>>,且, ∴a b a b -++=2b a a b a ---=-; (2)由图易知21a -<<-,∴原式12121a a a a +++=--++=.【总结】本题主要考查含绝对值的代数式的化简,注意判定绝对值里的数的正负.【例9】 计算:(1)31627--;(2)31148-+. 【难度】★★【答案】(1)7; (2)0.【解析】(1)原式=4(3)7--=; (2)原式=11022-+=.【总结】考查实数的基本运算,注意符号的变化. 【例10】 计算:(1)()()5353-+;(2)()253-;(3)16666⎛⎫-+ ⎪⎝⎭;(4)()331651254⨯-⨯.【难度】★★a b0 -2 P -1 0 1【答案】(1)4-; (2)14-; (37; (4)40.【解析】(1)原式=2234-=-; (2)原式=5914+-=-(3)原式617-=; (4)原式=5840-⨯=. 【总结】考查实数的基本运算,能简便运算时要简便运算.【例11】 计算:(1)⎛- ⎝;(2)37;(3 (42【难度】★★【答案】(1)(2); (3) (4).【解析】(1)原式=1533⎛=-+ ⎝(2)原式=()4278⨯--⨯--(3)原式==;(4)原式11--- 【总结】考查实数的基本运算,注意公式及法则的准确运用.【例12】 设5的小数部分为a ,5b ,求5ab b +的值. 【难度】★★【答案】2.【解析】∵23<<, ∴758<, 253<<,∴57+,52,∴572a =+=,523b ==-∴)((52537615ab b +=+=-+-2=.【总结】本题综合性较强,主要考查了求一个无理数的整数部分和分数部分,要注意对方法的归纳总结.【例13】 5x y -=,则1yx -=_________.【难度】★★.【解析】由二次根式的定义得:20202x x x -≥-≥∴=,,,3y =-,∴1113322yx ---===【总结】本题主要考查平方根性质的运用及实数的基本运算.【例14】 310=110-=,且2a x x b=,求x 的值.【难度】★★★【答案】10.【解析】由题意,得:631010a b -==,,又∵2a x x b=, ∴3310x ab ==,∴x =10.【总结】本题主要考查开方与乘方的综合运用,注意两者的区别.【例15】 化简下列各式:(123a +;(2)1-(其中12x <<);(3)23x x -+-.【难度】★★★【答案】(1)23a +; (2)2x -; (3)见解析.【解析】(1)原式=2233a a =+;(2)原式=1122x x x --=-=-; (3)当3x ≥时,原式2325x x x =-+-=-; 当2<x <3时,原式231x x =--+=; 当x 2≤时,原式2352x x x =--+=-.【总结】考查实数的基本计算及含绝对值的化简,注意要分类讨论.【例16】 0=,求7()20x y +-的立方根.【难度】★★★【答案】5-.【解析】由题意,知:22025050y x x x -=-=->,,,∴510x y =-=-,. ∴7()207(510)20125x y +-=⨯---=-, ∴7()20x y +-的立方根是5-. 【总结】考查非负数的和为零的基本模型以及求实数的立方根的运算.【例17】 =________;=________.【难度】★★★【答案】(1)1; (21.【解析】(11=;(2)原式1.【总结】考查复合二次根式的化简,综合性较强,注意方法的总结,教师讲解时选择性讲解.【例18】 已知:15a a -+=,求(1)22a a -+;(2)1122a a-+;(3)1122a a --.【难度】★★★【答案】(1)23; (2)7; (3)3± 【解析】(1)()22211225223a a a a aa ---+=+-=-=;(2)∵2111222527a a a a --⎛⎫+=++=+= ⎪⎝⎭,且11220a a -+>, ∴11227a a -+=;(3)∵221111112222224743a a a a a a ---⎛⎫⎛⎫-=+-=-= ⎪ ⎪⎝⎭⎝⎭,∴11223a a --=±.【总结】考查完全平方公式在实数运算中的运用,注意对符号的判定.【例19】 已知2201720172017a a a a -+-=-,求的值。
人教版初中数学实数全集汇编及解析

人教版初中数学实数全集汇编及解析一、选择题1.王老师在讲“实数”时画了一个图(如图),即“以数轴的单位长度的线段为边作一个正方形,然后以表示-1的点为圆心,正方形的对角线长为半径画弧交数轴于点A ”.则数轴上点A 所表示的数是( )A 2-1B 2+1C 2D 2【答案】A【解析】【分析】先根据勾股定理求出正方形的对角线长,再根据两点间的距离公式为:两点间的距离=较大的数-较小的数,便可求出-1和A 之间的距离,进而可求出点A 表示的数.【详解】 22112+=-1和A 2.∴点A 2.故选A .【点睛】本题考查的是勾股定理及两点间的距离公式,本题需注意:知道数轴上两点间的距离,求较小的数,就用较大的数减去两点间的距离.2.已知,x y 为实数且110x y +-=,则2012x y ⎛⎫ ⎪⎝⎭的值为( ) A .0B .1C .-1D .2012 【答案】B【解析】【分析】利用非负数的性质求出x 、y ,然后代入所求式子进行计算即可.【详解】由题意,得x+1=0,y-1=0,解得:x=-1,y=1, 所以2012x y ⎛⎫ ⎪⎝⎭=(-1)2012=1,故选B.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.3.在-2,4,2,3.14, 327-,5π,这6个数中,无理数共有( ) A .4个B .3个C .2个D .1个【答案】C 【解析】-2,42=, 3.14, 3273-=-是有理数; 2,5π是无理数; 故选C. 点睛:本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,①开方开不尽的数,如3 ,35 等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅ (0的个数一次多一个).4.在2,﹣1,0,5,这四个数中,最小的实数是( )A .2B .﹣1C .0D .5 【答案】B【解析】【分析】将四个数按照从小到大顺序排列,找出最小的实数即可.【详解】四个数大小关系为:1025-<<<,则最小的实数为1-,故选B .【点睛】此题考查了实数大小比较,将各数按照从小到大顺序排列是解本题的关键.5.-2的绝对值是( ) A .B .C .D .1 【答案】A【解析】【分析】根据差的绝对值是大数减小数,可得答案.【详解】-2的绝对值是2-. 故选A .【点睛】本题考查了实数的性质,差的绝对值是大数减小数.6.估计的值在()A.0到1之间B.1到2之间C.2到3之间D.3到4之间【答案】B【解析】【分析】利用“夹逼法”估算无理数的大小.【详解】=﹣2.因为9<11<16,所以3<<4.所以1<﹣2<2.所以估计的值在1到2之间.故选:B.【点睛】本题考查估算无理数的大小.估算无理数大小要用逼近法.7.51-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请51的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间【答案】B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴5,∴5,故选B.【点睛】5是解题关键.8.如图,数轴上的点可近似表示630)6÷()A.点A B.点B C.点C D.点D【答案】A【解析】【分析】先化简原式得45-,再对5进行估算,确定5在哪两个相邻的整数之间,继而确定45-在哪两个相邻的整数之间即可.【详解】原式=45-,由于25<<3,∴1<45-<2.故选:A.【点睛】本题考查实数与数轴、估算无理数的大小,解题的关键是掌握估算无理数大小的方法.9.下列说法正确的是()A.﹣81的平方根是±9 B.7的算术平方根是7C.127的立方根是±13D.(﹣1)2的立方根是﹣1【答案】B【解析】【分析】由平方根、算术平方根及立方根的定义依次判定各项即可解答.【详解】选项A,﹣81没有平方根,选项A错误;选项B,7的算术平方根是7B,选项正确;选项C,127的立方根是13,选项C错误;选项D,(﹣1)2的立方根是1,选项D错误.故选B.【点睛】本题考查了平方根、算术平方根及立方根的应用,熟知平方根、算术平方根及立方根的定义是解决问题的关键.10.若将三个数-3,7,11表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A.3B7C11D.无法确定【答案】B【解析】【分析】【详解】解:根据二次根式的估算可知-2<-3<-1,2<7<3,3<11<4,因此可知墨迹覆盖的是7.故选B.11.若a30=-3,则估计a的值所在的范围是()A.1<a<2 B.2<a<3 C.3<a<4 D.4<a<5【答案】B【解析】【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.【详解】∵25<30<36,∴5<30<6,∴5−3<30−3<6−3,即2<30−3<3,∴a的值所在的范围是2<a<3.故选:B.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D【答案】B【解析】【分析】≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.3 1.732【详解】≈-,3 1.732()---≈,1.7323 1.268()1.73220.268---≈,()1.73210.732---≈,因为0.268<0.732<1.268,所以3- 表示的点与点B 最接近,故选B.13.如图,已知x 2=3,那么在数轴上与实数x 对应的点可能是( )A .P 1B .P 4C .P 2或P 3D .P 1或P 4【答案】D【解析】试题解析:∵x 2=3,∴3根据实数在数轴上表示的方法可得对应的点为P 1或P 4.故选D .14.101的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间【答案】C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】∵310<<4,∴410<1<5.故选C .【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出310<<4是解题的关键,又利用了不等式的性质.15.已知:[]x 表示不超过x 的最大整数.例:[]3.93=,[]1.82-=-.记1()44k k f k +⎡⎤⎡⎤=-⎢⎥⎢⎥⎣⎦⎣⎦(k 是正整数).例:3133144()f ⎡⎤⎡⎤+=-=⎢⎥⎢⎥⎣⎦⎣⎦.则下列结论正确的个数是( )(1)()10f =;(2)()()4f k f k +=;(3)()()1f k f k +≥;(4)()0f k =或1.A .1个B .2个C .3个D .4个【答案】C【解析】【分析】根据题中所给的定义,依次作出判断即可.【详解】 解:111(1)00044f +⎡⎤⎡⎤=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,正确; 41411(4)11()444444k k k k k k f k f k +++++⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=-=+-+=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,正确; 当k=3时,414(31)11044f +⎡⎤⎡⎤+=-=-=⎢⎥⎢⎥⎣⎦⎣⎦,而(3)1f =,错误; 当k=3+4n (n 为自然数)时,f (k )=1,当k 为其它的正整数时,f (k )=0,正确; 正确的有3个,故选:C .【点睛】本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.16.下列说法中,正确的是( )A .-2是-4的平方根B .1的立方根是1和-1C .-2是(-2)2的算术平方根D .2是(-2)2的算术平方根【答案】D【解析】【分析】根据平方根、算术平方根、立方根的定义进行解答即可.【详解】A . -4没有平方根,故A 错误;B . 1的立方根是1,故B 错误;C . (-2)2的算术平方根是2,故C 错误;D . 2是(-2)2的算术平方根,故D 正确故选:D【点睛】本题主要考查的是算术平方根与平方根\立方根,掌握算术平方根与平方根\立方根的定义是解题的关键.17.已知下列结论:①在数轴上的点只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是() A.①②B.②③C.③④D.②③④【答案】B【解析】【分析】根据实数与数轴的关系,有理数是无限循环小数或有限小数,无理数是无限不循环小数,可得答案.【详解】解:①数轴上的点表示实数,故①错误;②任何一个无理数都能用数轴上的点表示,故②正确;③实数与数轴上的点一一对应,故③正确;④有理数有无限个,无理数有无限个,故④错误;故选:B.【点睛】本题考查了实数与数轴,实数与数轴上的点一一对应,掌握实数与数轴的关系是解题的关键.18.下列说法正确的是()A.无限小数都是无理数B.1125-没有立方根C.正数的两个平方根互为相反数D.(13)--没有平方根【答案】C【解析】【分析】根据无理数、立方根、平方根的定义解答即可.【详解】A、无限循环小数是有理数,故不符合题意;B、1125-有立方根是15-,故不符合题意;C、正数的两个平方根互为相反数,正确,故符合题意;D、﹣(﹣13)=13有平方根,故不符合题意,故选:C.【点睛】本题考查了无理数、立方根、平方根,掌握无理数、立方根、平方根的定义是解题的关键.19.14的算术平方根为( ) A .116 B .12± C .12-D .12 【答案】D【解析】【分析】根据算术平方根的定义求解即可.【详解】∵21()2=14, ∴14的算术平方根是12,故选:D .【点睛】本题考查了算术平方根的定义,熟记概念是解题的关键.20.如图,数轴上的点P 表示的数可能是( )A 5B .5C .-3.8D .10-【答案】B【解析】【分析】【详解】5 2.2≈,所以P 点表示的数是5-。
初一数学下册知识点《估算无理数的大小》150题和解析

初一数学下册知识点《估算无理数的大小》150题和解析初一数学下册知识点《估算无理数的大小》150题及解析副标题一、选择题(本大题共77小题,共231.0分)1.估计√7+1的值().A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间【答案】C【解析】【分析】此题主要考查了估算无理数大小,正确得出√7的取值范围是解题关键.直接利用已知无理数得出√7的取值范围,进而得出答案.【解答】解:∵2<√7<3,∴3<√7+1<4,∴√7+1在3和4之间.故选C.2.若√3<a<√10,则下列结论中正确的是()A. 1<a<3B. 1<a<4C. 2<a<3D. 2<a<4【答案】B【解析】【分析】首先估算√3和√10的大小,再做选择.本题主要考查了估算无理数的大小,首先估算√3和√10的大小是解答此题的关键.【解答】解:∵1<√3<2,3<√10<4,又∵√3<a<√10,∴1.732<a<3.162,各选项中,只有B,1<a<4符合题意;故选B.3.估计√19的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】C【解析】解:∵√16<√19<√25,∴√19的值在4和5之间.故选:C.直接利用二次根式的性质得出√19的取值范围.此题主要考查了估算无理数大小,正确把握最接近√19的有理数是解题关键.4.估计√10+1的值应在()A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间【答案】B【解析】【分析】此题主要考查了估算无理数的大小,正确得出√10的取值范围是解题关键.首先得出√10的取值范围,进而得出答案.【解答】解:∵3<√10<4,∴4<√10+1<5.故选B.5.估计√13+1的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】C【解析】【分析】本题考查了估算无理数的大小,能估算出√13的范围是解此题的关键.先估算出√13的范围,即可得出答案.【解答】解:∵3<√13<4,∴4<√13+1<5,即√13+1在4和5之间.故选C.6.估计√6+1的值在()A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间【答案】B【解析】解:∵2=√4<√6<√9=3,∴3<√6+1<4,故选:B.利用”夹逼法“得出√6的范围,继而也可得出√6+1的范围.此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握夹逼法的运用.7.估计5√6−√24的值应在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】C【解析】解:5√6−√24=5√6−2√6=3√6=√54,∵7<√54<8,∴5√6−√24的值应在7和8之间,故选:C.先合并后,再根据无理数的估计解答即可.本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.8.估计√38的值在()A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间【答案】C【解析】解:∵√36<√38<√49,∴6<√38<7,∴√38的值在整数6和7之间.故选:C.初一数学下册知识点《估算无理数的大小》150题和解析利用二次根式的性质,得出√36<√38<√49,进而得出答案.此题主要考查了估计无理数的大小,得出√36<√38<√49是解题关键.9.估计√10+1的值应在()A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间【答案】B【解析】解:∵3<√10<4,∴4<√10+1<5,故选:B.根据被开方数越大算术平方根越大,可得答案.本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<√10<4是解题关键,又利用了不等式的性质.10.已知整数m满足m<√38<m+1,则m的值为()A. 4B. 5C. 6D. 7【答案】C【解析】【分析】本题考查了无理数的大小问题,从√38的整数大小范围出发,然后确定m的大小.【解答】解:由题意∵√62<√38<√72∴当m=6时,则m+1=7适合.故选C.11.下列选项中的整数,与√17最接近的是()A. 3B. 4C. 5D. 6【答案】B【解析】解:∵16<17<20.25,∴4<√17<4.5,∴与√17最接近的是4.故选:B.依据被开方数越大对应的算术平方根越大进行解答即可.本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.12.估计√11的值在()A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间【答案】C【解析】解:∵9<11<16,∴√9<√11<√16,∴3<√11<4.故选:C.由于9<11<16,于是√9<√11<√16,从而有3<√11<4.本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.13.如图,表示√7的点在数轴上表示时,所在哪两个字母之间()A. C与DB. A与BC. A与CD. B与C【答案】A【解析】解:∵6.25<7<9,∴2.5<√7<3,则表示√7的点在数轴上表示时,所在C和D两个字母之间.故选:A.确定出7的范围,利用算术平方根求出√7的范围,即可得到结果.此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.14.面积为2的正方形的边长在()A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间【答案】B【解析】【分析】本题考查了算术平方根的定义和估算无理数的大小,运用“夹逼法”是解答此题的关键.面积为2的正方形边长是2的算术平方根,再利用夹逼法求得√2的取值范围即可.【解答】解:面积为2的正方形边长是√2,∵1<2<4,∴1<√2<2故选:B.15.若一正方形的面积为20平方公分,周长为x公分,则x的值介于下列哪两个整数之间?()A. 16,17B. 17,18C. 18,19D. 19,20【答案】B【解析】【分析】本题主要考查了无理数大小的估计.注意利用数的平方大小比较是解此题的方法.【解答】解:∵周长为x公分,∴边长为x公分,4)2=20,∴(x4∴x2=20,16∴x2=320,又∵172=289,182=324,∴172<320<182,即172<x2<182,又∵x为正整数,∴x介于17和18之间,故选B.初一数学下册知识点《估算无理数的大小》150题和解析16.与√37最接近的整数是()A. 5B. 6C. 7D. 8【答案】B【解析】解:∵36<37<49,∴√36<√37<√49,即6<√37<7,∵37与36最接近,∴与√37最接近的是6.故选:B.由题意可知36与37最接近,即√36与√37最接近,从而得出答案.此题主要考查了无理数的估算能力,关键是整数与√37最接近,所以√36=6最接近.17.下列无理数中,与4最接近的是()A. √11B. √13C. √17D. √19【答案】C【解析】解:∵√16=4,∴与4最接近的是:√17.故选:C.直接利用估算无理数的大小方法得出最接近4的无理数.此题主要考查了估算无理数的大小,正确得出接近4的无理数是解题关键.18.估计2+√7的值A. 在2和3之间B. 在3和4之间C. 在4和5之间D. 在5和6之间【答案】C【解析】解:∵2<√7<3,∴4<2+√7<5,∴2+√7的值在4和5之间,故选:C.直接得出2<√7<3,进而得出2+√7的取值范围.此题主要考查了估算无理数的大小,正确得出√7的范围是解题关键.19.估算√27−2的值()A. 在1到2之间B. 在2到3之间C. 在3到4之间D. 在4到5之间【答案】C【解析】解:∵5<√27<6,∴3<√27−2<4.故选:C.首先估计√27的整数部分,然后即可判断√27−2的近似值.本题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.20.判断2√11−1之值介于下列哪两个整数之间?()A. 3,4B. 4,5C. 5,6D. 6,7【答案】C【解析】解:∵2√11=√44,且√36<√44<√49,即6<2√11<7,∴5<2√11−1<6,故选:C.由√36<2√11<√49即6<2√11<7,由不等式性质可得2√11−1的范围可得答案.本题考查了估算无理数大小的知识,注意夹逼法的运用是解题关键.21.如图,已知数轴上的点A、B、C、D分别表示数−2、1、2、3,则表示数3−√5的点P应落在线段()A. AO上B. OB上C. BC上D. CD上【答案】B【解析】解:∵2<√5<3,∴0<3−√5<1,故表示数3−√5的点P应落在线段OB上.故选:B.根据估计无理数的方法得出0<3−√5<1,进而得出答案.此题主要考查了估算无理数的大小,得出√5的取值范围是解题关键.22.与无理数√31最接近的整数是()A. 4B. 5C. 6D. 7【答案】C【解析】解:∵√25<√31<√36,∴√31最接近的整数是√36,√36=6,故选:C.根据无理数的意义和二次根式的性质得出√25<√31<√36,即可求出答案.本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道√31在5和6之间,题目比较典型.23.若3+√5的小数部分为a,3−√5的小数部分为b,则a+b的值为()A. 0B. 1C. −1D. 2【答案】B【解析】【分析】本题考查了估算无理数的大小,解题的关键是用有理数逼近无理数,求无理数的近似值.运用有理数逼近无理数,求无理数的近似值求解.【解答】解:∵2<√5<3,∴5<3+√5<6,0<3−√5<1∴a=3+√5−5=√5−2.b=3−√5,∴a+b=√5−2+3−√5=1,故选B.24.估计√41−2的值()A. 在4和5之间B. 在3和4之间C. 在2和3之间D. 在1和2之间【答案】A【解析】【分析】本题考查了估算无理数的大小的应用,关键是确定√41的范围.求出√41的范围,都减去2即可得出答案.【解答】解:∵36<41<49,∴√36<√41<√49,初一数学下册知识点《估算无理数的大小》150题和解析∴6<√41<7,∴4<√41−2<5,故选A.25.实数√2的值在()A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间【答案】B【解析】解:∵1<√2<2,∴实数√2的值在:1和2之间.故选:B.直接利用估算无理数大小,正确得出√2接近的有理数,进而得出答案.此题主要考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.26.估算√19的值是在()A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间【答案】B【解析】【分析】本题主要考查了估计无理数大小的方法,找出最接近的有理数,再进行比较是解决问题的关键.找出比较接近√19的有理数,即√16与√25,从而确定它的取值范围.【解答】解:∵√16<√19<√25,∴4<√19<5.故选B.27.估计√40的值在()A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间【答案】C【解析】解:∵√36<√40<√49,即6<√40<7,故选:C.根据√40,可以估算出位于哪两个整数之间,从而可以解答本题.本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法.28.式子√13+1的整数部分是a,小数部分是b,则a−b的值是()A. √13−7B. 1−√13C. 5−√13D. 7−√13【答案】D【解析】【分析】此题考查无理数的估算和代数式的值,注意找出最接近的整数范围是解决本题的关键.因为3<√13<4,所以4<√13+1<5,由此求得整数部分与小数部分,代入a−b 即可即可得到结果.【解答】解:∵3<√13<4,∴4<√13+1<5,∴a=4,b=√13+1−4,∴a−b=4−(√13−3)=7−√13.故选D.29.一个正方形的面积是15,估计它的边长在()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间【答案】C【解析】解:∵一个正方形的面积是15,∴其边长=√15.∵9<15<16,∴3<√15<4.故选C.先求出正方形的边长,再估算出其大小即可.本题考查的是估算无理数的大小,熟知估算无理数大小要用逼近法是解答此题的关键.30.已知a是√17−3的整数部分,b是√17−3的小数部分,那么(−a)3+(b+4)2的平方根是()A. 4B. ±2C. ±8D. ±4【答案】D【解析】【分析】此题考查了估算无理数的大小,代数式的值,平方根,正确得出a,b的值是解题关键,根据4<√17<5,得到1<√17−3<2,求出a、b的值,再代入(−a)3+(b+4)2计算,根据平方根的定义求解,即可得到答案.【解答】解:∵4<√17<5,∴1<√17−3<2,∴a=1,b=√17−4,∴(−a)3+(b+4)2=(−1)3+(√17−4+4)2=−1+17=16,∴16的平方根是±4,故选D.31.估计√7+1的值在()A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间【答案】B【解析】【分析】本题考查了估算无理数的大小,能估算出√7的范围是解此题的关键.解答此题先求出√7的范围,然后再加1可得√7+1的范围.【解答】解:∵2<√7<3,∴3<√7+1<4,即√7+1在3和4之间,故选B.32.已知a是√17−3的整数部分,b是√17−3的小数部分,那么(−a)3+(b+4)2的平方根是()A. 4B. ±2C. ±8D. ±4【答案】D【解析】解:∵4<√17<5,∴1<√17−3<2,初一数学下册知识点《估算无理数的大小》150题和解析∴a=1,b=√17−4,∴(−a)3+(b+4)2=(−1)3+(√17−4+4)2=−1+17=16,∴16的平方根是±4.故选D.根据4<√17<5,利用不等式的性质可得1<√17−3<2,求出a、b的值,再代入(−a)3+(b+4)2计算,根据平方根的定义求解.此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键.33.√43在两个连续整数a和b之间,a<√43<b,那么a+b的值是()A. 11B. 13C. 14D. 15【答案】B【解析】解:∵6<√43<7,∴a=6,b=7,∴a+b=6+7=13.故选:B.首先用“夹逼法”确定a、b的值,进而可得a+b的值.此题主要考查了估算无理数的大小,关键是正确确定a、b的值.34.实数√28界于哪两个相邻的整数之间()A. 3和4B. 5和6C. 7和8D. 9和10【答案】B【解析】解:∵5<√28<6,∴√28在5和6之间.故选:B.先估算出√28的范围,即可得出答案.本题考查了估算无理数的大小,能估算出√28的范围是解此题的关键.35.实数√3的值在()A. 0与1之间B. 1与2之间C. 2与3之间D. 3与4之间【答案】B【解析】解:∵1<√3<√4,∴实数√3的值在1与2之间.故选:B.直接利用无理数最接近的有理数进而答案.此题主要考查了估算无理数大小,正确得出接近的有理数是解题关键.36.下列说法:①−1是1的平方根;②√10在两个连续整数a和b之间,那么a+b=7;③所有的有理数都可以用数轴上的点表示,反过来,数轴上的所有点都表示有理数;④无理数就是开放开不尽的数;正确的个数为()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】此题考查了估算无理数的大小、实数与数轴、实数,熟知有关定义和性质是本题的关键.根据估算无理数的大小、实数与数轴、无理数的定义和特点分别对每一项进行分析,即可得出答案.【解答】解:①−1是1的平方根是正确的;②√10在两个连续整数a和b之间,那么a+b=3+4=7是正确的;③所有的实数都可以用数轴上的点表示,反过来,数轴上的所有点都表示实数,题目中的说法是错误的;④无理数就是无限不循环的小数,题目中说法是错误的.故选B.37.估计√6+1的值在()A. 2 到3 之间B. 3 到4 之间C. 4 到5 之间D. 5 到6 之间【答案】B【解析】解:∵2<√6<3,∴3<√6+1<4,故选:B.首先确定√6在整数2和3之间,然后可得√6+1的值在3到4之间.此题主要考查了估算无理数,关键是掌握用有理数逼近无理数,求无理数的近似值.38.估计√16+√20的运算结果应在()A. 6与7之间B. 7与8之间C. 8与9之间D. 9与10之间【答案】C【解析】解:∵√16+√20=4+√20,而4<√20<5,∴原式运算的结果在8到9之间;故选C.首先计算出√16,再估算出√20即可得结果.本题考查了无理数的近似值问题,关键是利用“夹逼法”是估算的一般方法,也是常用方法.39.若a<1−√7<b,且a、b是两个连续整数,则a+b的值是()A. −1B. −2C. −3D. −4【答案】C【解析】解:∵2<√7<3,∴−2>−√7>−3,∴−1>1−√7>−2,∴a=−2,b=−1,∴a+b=−3,故选C.先求出√7的范围,再求出1−√7的范围,求出a、b的值,代入求出即可.本题考查了估算无理数的大小,能求出1−√7的范围是解此题的关键.40.设a=√13−1,a在两个相邻整数之间,则这两个整数是()A. 0和1B. 1和2C. 2和3D. 3和4【答案】C【解析】解:∵9<13<16,∴3<√13<4,即2<a=√13−1<3,则这两整数是2和3,故选C估算√13大小,即可得到结果.此题考查了估算无理数的大小,估算出√13大小是解本题的关键.41.估计√21的值()A. 1到2之间B. 2到3之间C. 3和4之间D. 4和5之间初一数学下册知识点《估算无理数的大小》150题和解析11 / 45第11页,共45页【答案】D【解析】解:∵√16<√21<√25, ∴4<√21<5,即√21在4到5之间, 故选:D .根据√16<√21<√25得出4<√21<5,即可得出答案.本题考查了估算无理数的大小的应用,关键是能求出√21的范围.42. 估计√76的值在哪两个整数之间( )A. 75和77B. 6和7C. 7和8D. 8和9【答案】D【解析】解:∵√64<√76<√81, ∴8<√76<9,∴√76在两个相邻整数8和9之间. 故选:D .先对√76进行估算,再确定√76是在哪两个相邻的整数之间.此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.43. 定义:对任意实数x ,[x]表示不超过x 的最大整数,如[3.14]=3,[1]=1,[−1.2}=−2.对数字65进行如下运算:①[√65]=8:②[√8]=2:③[√2]=1,这样对数字65运算3次后的值就为1,像这样对一个正整数总可以经过若干次运算后值为1,则数字255经过( )次运算后的结果为1. A. 3 B. 4 C. 5 D. 6 【答案】A【解析】解:255→第一次[√255]=15→第二次[√15]=3→第三次[√3]=1, 则数字255经过3次运算后的结果为1. 故选:A .根据[x]表示不超过x 的最大整数计算,可得答案.本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.44. 黄金分割数√5−12是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算√5−1的值( ) A. 在1.1和1.2之间 B. 在1.2和1.3之间 C. 在1.3和1.4之间 D. 在1.4和1.5之间【答案】B【解析】解:∵√5≈2.236, ∴√5−1≈1.236, 故选:B .根据√5≈2.236,可得答案.本题考查了估算无理数的大小,利用√5≈2.236是解题关键.45. 8的负的平方根介于( )A. −5与−4之间B. −4与−3之间C. −3与−2之间D. −2与−1之间【答案】C第12页,共45页【解析】解:∵4<8<9, ∴2<√8<3.∴−2>−√8>−3. 故选:C .先求得√8的范围,然后再求得−√8的范围即可.本题主要考查的是估算无理数的大小,利用夹逼法求得√8的大致范围是解题的关键.46. 通过估算,估计√193+1的值应在( )A. 2~3之间B. 3~4之间C. 4~5之间D. 5~6之间【答案】B【解析】解:∵8<19<27,∴√83<√193<√273,即2<√193<3,∴3<√193+1<4, 故选:B .根据8<19<27得出:2<√193<3,进而可得答案.本题考查了估算无理数的大小,利用了正数的被开方数越大立方根越大的关系.47. 估计√13的值在( )A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间【答案】C【解析】解:∵9<13<16, ∴3<√13<4,则√13的值在3和4之间, 故选:C .估算得出√13的范围即可.此题考查估算无理数的大小,熟练掌握算术平方根定义是解本题的关键.48. 如图,数轴上A ,B ,C ,D 四点中,与−√3对应的点距离最近的是( )A. 点AB. 点BC. 点CD. 点D【答案】B【解析】【分析】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键. 先估算出−√3的范围,结合数轴可得答案. 【解答】解:∵√1<√3<√4,即1<√3<2, ∴−2<−√3<−1,∴由数轴知,与−√3对应的点距离最近的是点B . 故选B .49. 下列各数中,介于正整数6和7之间的数是( )A. √41B. √52C. √26D. √383初一数学下册知识点《估算无理数的大小》150题和解析13 / 45第13页,共45页【答案】A【解析】解:∵36<41<49, ∴6<√41<7,故A 正确. ∵52>49,∴√52>7,故B 错误. ∵36>26,∴6>√26,故C 错误. ∵27<38<64,∴3<√383<4,故D 错误. 故选:A .依据被开方数越大对应的算术平方根(立方根)越大进行求解即可. 本题主要考查的是估算无理数的大小,夹逼法的应用是解题的关键.50. 若n −1<√45<n ,则整数n =( )A. 5B. 6C. 7D. 8【答案】C【解析】解:∵6<√45<7, ∴n =7, 故选:C .先估算出√45的范围,再得出选项即可.本题考查了估算无理数的大小,能估算出√45的范围是解此题的关键.51. 在数轴上有一块墨迹,被覆盖住的无理数可能是( )A. √17B. √11C. √5D. −√3【答案】B【解析】【分析】此题主要考查了估算无理数的大小,数轴的有关知识,应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解. 【解答】解:由图可知:被覆盖的数在3和4之间; ∴被墨迹覆盖的无理数有可能是√11. 故选B .52. 对于实数x ,我们规定[x]表示不大于x 的最大整数,如[4]=4,[√3]=1,[−2.5]=−3.现对82进行如下操作: 82→第1次[√82]=9→第2次[93]=3→第3次[√3]=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( )A. 1B. 2C. 3D. 4【答案】C【解析】解:121→第1次[12111]=11→第2次[√11]=3→第3次[√3]=1,∴对121只需进行3次操作后变为1,故选:C .[x]表示不大于x 的最大整数,依据题目中提供的操作进行计算即可.本题考查了估算无理数的大小,解决本题的关键是明确[x]表示不大于x的最大整数.53.估计√10的值在哪两个整数之间()A. 9和10B. 7和8C. 5和6D. 3和4【答案】D【解析】解:∵3<√10<4,∴√10在3和4之间.故选D.先估算出√10的范围,即可得出选项.本题考查了估算无理数的大小的应用,能估算出√10的范围是解此题的关键.54.与1+√5最接近的整数是()A. 1B. 2C. 3D. 4【答案】C【解析】解:∵2.22=4.84,2.32=5.29,∴2.22<5<2.32.∴2.2<√5<2.3.∴3.2<1+√5<3.3.∴与1+√5最接近的整数是3.故选:C.先依据被开方数越大对应的算术平方根也越大估算出√5的大小,然后即可做出判断.本题主要考查的是估算无理数的大小,利用夹逼法估算出√5的大小是解题的关键.55.在数轴上标注了四段范围,如图,表示√8的点落在()A. 段①B. 段②C. 段③D. 段④【答案】C【解析】【分析】根据数的平方,即可解答.本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.【解答】解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴2.8<√8<2.9,∴√8的点落在段③,故选:C.56.如图,数轴上点N表示的数可能是()A. √10B. √5C. √3D. √2【答案】A【解析】解:∵√10≈3.16,√5≈2.24,√3≈1.73,√2≈1.41,根据点N在数轴上的位置,知:3<N<4,∴四个选项中只有3<3.16<4,即3<√10<4.故选:A.第14页,共45页初一数学下册知识点《估算无理数的大小》150题和解析先对四个选项中的无理数进行估算,再根据N点的位置即可求解.本题考查了同学们估算无理数大小的能力,及能够根据点在数轴的位置确定数的大小.57.数轴上表示√21−1的点A的位置应该在()A. 2与3之间B. 3与4之间C. 4与5之间D. 7与8之间【答案】B【解析】【分析】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,难度一般.先估算无理数√21的大小,然后求解即可.【解答】解:∵4=√16<√21<5=√25,∴3<√21−1<4,故数轴上表示√21−1的点A的位置应在3与4之间.故选:B.58.估计√6的值在()A. 2到3之间B. 3到4之间C. 4到5之间D. 5到6之间【答案】A【解析】解:∵√4<√6<√9,∴2<√6<3,故选:A.根据估算无理数的大小,即可解答.本题考查了估算无理数的大小,解决本题的关键是估算无理数的大小.59.如图,已知数轴上的点A、B、C、D分别表示数−2、−1、1、2,则表示1−√7的点P应落在线段()A. AB上B. OB上C. OC上D. CD上【答案】A【解析】解:∵2<√7<3,∴−2<1−√7<−1,∴表示1−√7的点P应落在线段AB上.故选:A.直接根据题意得出−2<1−√7<−1进而得出答案.此题主要考查了估算无理数的大小,正确得出√7的取值范围是解题关键.60.a与b是两个连续整数,若a<√7<b,则a,b分别是()A. 6,8B. 3,2C. 2,3D. 3,4【答案】C【解析】解:∵4<7<9,∴2<√7<3,∵a<√7<b,且a与b是两个连续整数,∴a=2,b=3.故选C.根据4<7<9,结合a<√7<b,即可得出a、b的值.本题考查了估算无理数的大小,解题的关键是找出2<√7<3.15/ 45第15页,共45页61.估计√7+1的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间【答案】B【解析】解:∵2<√7<3,∴3<√7+1<4,故选:B.直接利用2<√7<3,进而得出答案.此题主要考查了估算无理数的大小,正确得出√7的取值范围是解题关键.62.若m<√14<n,且m、n为连续正整数,则n2−m2的值为()A. 5B. 7C. 9D. 11【答案】B【解析】解:∵m<√14<n,且m、n为连续正整数,∴m=3,n=4,则原式=7,故选:B.根据题意确定出m与n的值,代入原式计算即可求出值.此题考查了估算无理数的大小,设实数为a,a的整数部分A为不大于a的最大整数,小数部分B为实数a减去其整数部分,即B=a−A;理解概念是解题的关键.63.估计√30的值在两个整数()A. 3与4之间B. 5与6之间C. 6与7之间D. 3与10之间【答案】B【解析】解:∵√25<√30<√36,∴5<√30<6,∴√30的值在5与6之间.故选:B.直接利用估算无理数的方法得出接近无理数的整数进而得出答案.此题主要考查了估算无理数的大小,正确掌握无理数的估算方法是解题关键.64.3+√10的结果在下列哪两个整数之间().A. 6和7B. 5和6C. 4和5D. 3和4【答案】A【解析】解:∵3<√10<4,∴6<3+√10<7,故选:A.直接利用3<√10<4,进而得出答案.此题主要考查了估算无理数的大小,正确得出无理数接近的整数是解题关键.65.关于“√19”,下列说法不正确的是()A. 它是一个无理数B. 它可以用数轴上的一个点来表示C. 它可以表示面积为19的正方形的边长D. 若为整数),则n=5【答案】D第16页,共45页初一数学下册知识点《估算无理数的大小》150题和解析17 / 45第17页,共45页【解析】【分析】本题主要考查了无理数的定义、数轴的意义以及无理数的估算,无理数的估算关键是确定无理数的整数部分.“夹逼法”是估算的一般方法,也是常用方法. 分别根据无理数的定义、数轴的意义、正方形面积公式以及无理数的估算方法判断即可. 【解答】解:A .√19是一个无理数,说法正确,故选项A 不合题意;B .√19可以用数轴上的一个点来表示,说法正确,故选项B 不合题意;C .它可以表示面积为19的正方形的边长,说法正确,故选项C 不合题意;D .4<√19<5,n =4,故选项D 符合题意. 故选D .66. 如图,数轴上点P 表示的数可能是( ) A. √2 B. √3C. √5D. √73【答案】C【解析】解:从数轴可知:P 点表示数在2和3之间,A 、1<√2<2,故本选项不符合题意;B 、1<√3<2,故本选项不符合题意;C 、2<√3<3,故本选项符合题意;D 、1<√73<2,故本选项不符合题意; 故选C .从数轴可知P 点表示数在2和3之间,先估算出每个无理数的范围,即可得出答案. 本题考查了估算无理数的大小,能估算出每个无理数的范围是解此题的关键.67. 估计√5在( )A. 0~1之间B. 1~2之间C. 2~3之间D. 3~4之间【答案】C【解析】解:∵√4<√5<√9, 即:2<√5<3, ∴√5在2到3之间. 故选:C .根据二次根式的性质得出√4<√5<√9,即:2<√5<3,可得答案.本题考查了估算无理数的大小和二次根式的性质,解此题的关键是知道√5在√4和√9之间.68. 若√13的整数部分是a ,小数部分是b ,则式子3(a +b)−ab 的值是( )A. −9B. 9C. 19D. 3√13 【答案】B【解析】解:∵√9<√13<√16, ∴3<√13<4,∴a =3,b =√13−3,∴3(a +b)−ab =3×(3+√13−3)−3×(√13−3)=3√13−3√13+9=9. 故选:B .先进行估算√13的范围,确定a ,b 的值,再代入代数式即可解答. 本题考查了估算无理数的大小,解决本题的关键是估算√13的范围.69. 关于“√10”,下列说法不正确的是( )A. 它是数轴上唯一一个距离原点√10个单位长度的点表示的数B. 它是一个无理数C. 若a<√10<a+1,则整数a的值为3D. 它可以表示面积为10的正方形的边长【答案】A【解析】解:数轴上距离原点√10个单位长度的点表示的数是±√10,故A错误,符合题目要求√10它是一个无理数,故B正确,不符合题目要求∵9<10<16,∴3<√10<4,故整数a的值为3,故C正确,不故符合题目要求√10它可以表示面积为10的正方形的边长,故D正确,不符合题目要求.故选:A.依据绝对值的定义、无理数的概念,依据夹逼法估算无理数大小的方法、依据算术平方根的定义进行判断即可.本题主要考查的是估算无理数的大小,实数与数轴,熟练掌握相关知识是解题的关键.70.若a<√5<b,且a、b是两个连续整数,则a+b的值是()A. 2B. 3C. 4D. 5【答案】D【解析】解:∵4<5<9,∴2<√5<3,由a<√5<b,且a、b是两个连续的整数,得到a=2,b=3,则a+b=5,故选:D.由被开方数5的范围确定出√5的范围,进而求出a与b的值,代入原式计算即可得到结果.71.设面积为6的正方形的边长为a.下列关于a的四种说法:①a是有理数;②a是无理数;③a可以用数轴上的一个点来表示;④2<a<3.其中说法正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:∵面积为3的正方形的边长为a,∴a=√6,故①a是有理数,错误;②a是无理数,正确;③a可以用数轴上的一个点来表示,正确;④2<a<3,正确,则说法正确的是:②③④共3个.故选:C.直接利用得出正方形的边长,再利用实数的性质分析得出答案.此题主要考查了实数的性质以及无理数的估算,正确掌握实数有关性质是解题关键.72.有下列说法:①实数与数轴上的点一一对应;②2−√7的相反数是√7−2;③在1和3之间的无理数有且只有√2,√3,√5,√7这4个;④2+3x−4x2是三次三项式;第18页,共45页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学中比较无理数大小的方法
比较无理数大小的方法很多,在解题时,要根据所给无理数的特点,选择合适的比较方法。
下面举例说明。
一、直接法
直接利用数的大小来进行比较。
例1.3
3380,- 解:因为393=
>,所以33> 因为89<,所以83< 所以380->
二、隐含条件法
根据二次根式定义,挖掘隐含条件。
例2.a a --213 解:因为a -2成立
所以a -≥20,即a ≥2
所以11-≤-a 所以a a -≥-≤-20113, 所以a a ->-213
三、同次根式下比较被开方数法
例3.4554 解:因为4516580=⨯= 54254100=⨯= 所以80100<,即4554<
例4.3
23 解:因为3393266==
228366== 所以9866>,即323>
四、作差法
若a b ->0,则a b >
例5.36
62-- 解:因为(
)3662--- =--+=-3662
526 662525252<==... 所以5260-> 即3662->
-
五、作商法
a b >>00,,若a b
>1,则a b >。
例6.a a a a ++++1
223
解:因为a a a a ++÷++1223 =
++⨯++=++++<a a a a a a a a 123243441 所以
a a a a ++<++1223
六、找中间量法
要证a b >,可找中间量c ,转证a c c b >>,。
例7.103
102252253
++++ 解:因为10310211252253
++>>++, 所以
103102252253
++>++ 七、平方法
a b >>00,,若a b 22>,则a b >。
例8.511
610++ 解:因为()511525511162552+=++=+ ()610626010162602+=++=+ 所以511610+<+
八、倒数法 若()1100a b
a b >>>,,则a b <。
例9.32232-- 解:因为()()
1322322322322322-=+-+=+ ()()13232
323232-=+-+=+ 所以32232+>
+ 所以32232-<
-
九、有理化法
可分母有理化,也可分子有理化。
例10.1
65275
--
解:因为()()16565
656565-=+-+=+ ()
()()275275
757575-=+-+=+ 所以6575+<
+ 所以
165
275-<- 十、放缩法
欲证a b <,可转证a c b <<。
例11.()32352
- 解:因为()323323333323
3252-=+<+==< 所以()32352
-
<。