高三数学10月月考试题 文2

合集下载

黑龙江省哈尔滨市2024-2025学年高三10月月考试题 数学含答案

黑龙江省哈尔滨市2024-2025学年高三10月月考试题 数学含答案

哈2024—2025学年度上学期高三学年十月月考数学试卷(答案在最后)考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B.C. D.2.已知是关于的方程的一个根,则()A.20B.22C.30D.323.已知,,,则的最小值为()A.2B.C.D.44.数列中,若,,,则数列的前项和()A. B. C. D.5.在中,为中点,,,若,则()A. B. C. D.6.在三棱柱中,点在棱上,且,点为中点,点在棱上,若平面,则()A.2B.3C.4D.57.已知偶函数定义域为,且,当时,,则函数在区间上所有零点的和为()A. B. C. D.8.已知平面向量,,,满足,且,,则的最小值为()A. B.0 C.1 D.2二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于函数,下列说法正确的是()A.函数最大值为B.是函数图象的一个对称中心C.是函数图象的一个对称轴D.将函数的图象向右平移个单位,即可得到函数的图象10.在正方形中,,为中点,将沿直线翻折至位置,使得二面角为直二面角,若为线段的中点,则下列结论中正确的是()A.若点在线段上,则的最小值为B.三棱锥的体积为C.异面直线、所成的角为D.三棱锥外接球的表面积为11.已知函数,则下列结论中正确的是()A.函数有两个零点B.恒成立C.若方程有两个不等实根,则的范围是D.直线与函数图象有两个交点第II卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.等差数列中,是其前项和.若,,则______.13.在中,,的平分线与交于点,且,,则的面积为______.14.已知三棱锥中,平面,,,,,、分别为该三棱锥内切球和外接球上的动点,则线段的长度的最小值为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在三棱柱中,,,,,为中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.16.已知函数.(1)讨论函数的单调性;(2)设函数,若在恒成立,求实数的取值范围.17.已知在锐角中,,,分别为内角,,的对边,.(1)求;(2)若,为中点,,求;(3)若,求内切圆半径的取值范围.18.某汽车销售公司为了提升公司的业绩,将最近一段时间内每日的汽车销售情况进行了统计,如图所示.(1)求的值,并求该公司这段时间内每日汽车销售量的第60百分位数;(2)以频率估计概率,若在这段时间内随机选择4天,设每日汽车销售量在内的天数为,在恰有1天的汽车销售量不超过150辆的条件下,求的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:在三棱锥中,、均是边长为2的正三角形,,现从写有数字1~8的八个标签中随机选择两个分别贴在、两个顶点,记顶点、上的数字分别为和,若为侧棱上一个动点,满足,当“二面角大于”即为中奖,求中奖的概率.19.如图,在四棱锥中,底面为正方形,,是中点,平面,.(1)求四棱锥体积最大值;(2)设,为线段上的动点.①求平面与平面的夹角余弦值的取值范围;②四棱锥外接球记为球,当为线段中点时,求平面截球所得的截面面积.数学试卷考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B.C. D.【答案】B【解析】【分析】分别求出集合,,再根据交集的定义求.【详解】对集合:因为,所以,即;对集合:因为恒成立,所以.所以.故选:B2.已知是关于的方程的一个根,则()A.20B.22C.30D.32【答案】D【解析】【分析】根据虚根成对原理可知方程的另一个虚根为,再由韦达定理计算可得.【详解】因为是关于的方程的一个根,所以方程的另一个虚根为,所以,解得,所以.故选:D.3.已知,,,则的最小值为()A.2B.C.D.4【答案】D【解析】【分析】由已知可得,利用,结合基本不等式可求最小值.【详解】因为,所以,所以,所以,所以,当且仅当,即时等号成立,所以的最小值为.故选:D.4.数列中,若,,,则数列的前项和()A. B. C. D.【答案】C【解析】【分析】结合递推关系利用分组求和法求.【详解】因为,,所以,,,,,又,,,所以.故选:C.5.在中,为中点,,,若,则()A. B. C. D.【答案】C【解析】【分析】选择为平面向量的一组基底,表示出,再根据表示的唯一性,可求的值.【详解】选择为平面向量的一组基底.因为为中点,所以;又.由.故选:C6.在三棱柱中,点在棱上,且,点为中点,点在棱上,若平面,则()A.2B.3C.4D.5【答案】B【解析】【分析】根据已知条件及线面平行的判定定理,利用面面平行的判定定理和性质定理,结合平行四边形的性质即可得结论.【详解】依题意,作出图形如图所示设为的中点,因为为的中点,所以,又平面,平面,所以平面,连接,又因为平面,,平面,所以平面平面,又平面平面,平面,所以,又,所以四边形是平行四边形,所以,所以,又,所以,所以,所以.故选:B.7.已知偶函数定义域为,且,当时,,则函数在区间上所有零点的和为()A. B. C. D.【答案】A【解析】【分析】函数在区间上的零点的集合等于函数和函数在区间内的交点横坐标的集合,分析函数的图象特征,作出两函数的图象,观察图象可得结论.【详解】因为函数,的零点的集合与方程在区间上的解集相等,又方程可化为,所以函数,的零点的集合与函数和函数在区间内的交点横坐标的集合相等,因为函数为定义域为的偶函数,所以,函数的图象关于轴对称,因为,取可得,,所以函数为偶函数,所以函数的图象关于对称,又当时,,作出函数,的区间上的图象如下:观察图象可得函数,的图象在区间上有个交点,将这个交点的横坐标按从小到大依次记为,则,,,,所以函数在区间上所有零点的和为.故选:A.8.已知平面向量,,,满足,且,,则的最小值为()A. B.0 C.1 D.2【答案】B【解析】【分析】可设,,,由得到满足的关系,再求的最小值.【详解】可设,,,则.可设:,则.故选:B【点睛】方法点睛:由题意可知:,都是单位向量,且夹角确定,所以可先固定,,这样就只有发生变化,求最值就简单了一些.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于函数,下列说法正确的是()A.函数的最大值为B.是函数图象的一个对称中心C.是函数图象的一个对称轴D.将函数的图象向右平移个单位,即可得到函数的图象【答案】ACD【解析】【分析】先利用两角和与差的三角函数公式和二倍角公式,把函数化成的形式,再对函数的性质进行分析,判断各选项是否正确.【详解】因为.所以,故A正确;函数对称中心的纵坐标必为,故B错误;由,得函数的对称轴方程为:,.令,得是函数的一条对称轴.故C正确;将函数的图象向右平移个单位,得,即将函数的图象向右平移个单位,可得到函数的图象.故D正确.故选:ACD10.在正方形中,,为中点,将沿直线翻折至位置,使得二面角为直二面角,若为线段的中点,则下列结论中正确的是()A.若点在线段上,则的最小值为B.三棱锥的体积为C.异面直线、所成角为D.三棱锥外接球的表面积为【答案】AC【解析】【分析】对于A,的最小值为可判断A;对于B,过作于,求得,可求三棱锥的体积判断B;对于C;取的中点,则,取的中点,连接,求得,由余弦定理可求异面直线、所成的角判断C;对于D,取的中点,过点在平面内作的垂线交于,求得外接球的半径,进而可求表面积判断D.【详解】对于A,将沿直线翻折至,可得的最小值为,故A正确;对于B,过作于,因为二面角为直二面角,所以平面平面,又平面平面,所以平面,由题意可得,由勾股定理可得,由,即,解得,因为为线段的中点,所以到平面的距离为,又,所以,故B错误;对于C,取的中点,则,且,,所以,因为,所以是异面直线、所成的角,取的中点,连接,可得,所以,在中,可得,由余弦定理可得,所以,在中,由余弦定理可得,所以,所以异面直线、所成的角为,故C正确;对于D,取的中点,过点在平面内作的垂线交于,易得是的垂直平分线,所以是的外心,又平面平面,又平面平面,所以平面,又因为直角三角形的外心,所以是三棱锥的外球的球心,又,所以,所以三棱锥外接球的表面积为,故D错误.故选:AC.11.已知函数,则下列结论中正确的是()A.函数有两个零点B.恒成立C.若方程有两个不等实根,则的范围是D.直线与函数图象有两个交点【答案】BCD【解析】【分析】分和两种情况探讨的符号,判断A的真假;转化为研究函数的最小值问题,判断B的真假;把方程有两个不等实根,为有两个根的问题,构造函数,分析函数的图象和性质,可得的取值范围,判断C的真假;直线与函数图象有两个交点转化为有两解,分析函数的零点个数,可判断D的真假.【详解】对A:当时,;当时,;时,,所以函数只有1个零点.A错误;对B:欲证,须证在上恒成立.设,则,由;由.所以在上单调递减,在上单调递增.所以的最小值为,因为,所以.故B正确;对C:.设,则,.由;由.所以在上单调递增,在单调递减.所以的最大值为:,又当时,.如图所示:所以有两个解时,.故C正确;对D:问题转化为方程:有两解,即有两解.设,,所以.由;由.所以在上单调递增,在上单调递减.所以的最大值为.因为,,所以所以.且当且时,;时,.所以函数的图象如下:所以有两解成立,所以D 正确.故选:BCD【点睛】方法点睛:导数问题中,求参数的取值范围问题,通常有如下方法:(1)分离参数,转化为不含参数的函数的值域问题求解.(2)转化为含参数的函数的极值问题求解.第II 卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.等差数列中,是其前项和.若,,则______.【答案】【解析】【分析】设数列的公差为,将条件关系转化为的方程,解方程求,由此可求结论.【详解】设等差数列的公差为,因为,,所以,,所以,,所以,故答案为:.13.在中,,的平分线与交于点,且,,则的面积为______.【答案】【解析】【分析】根据三角形面积公式,余弦定理列方程求,再由三角形面积公式求结论.【详解】因为,为的平分线,所以,又,所以,由余弦定理可得,又,所以所以,所以的面积.故答案为:.14.已知三棱锥中,平面,,,,,、分别为该三棱锥的内切球和外接球上的动点,则线段的长度的最小值为______.【答案】【解析】【分析】根据已知可得的中点外接球的球心,求得外接球的半径与内切球的半径,进而求得两球心之间的距离,可求得线段的长度的最小值.【详解】因为平面,所以是直角三角形,所以,,在中,由余弦定理得,所以,所以,所以是直角三角形,所以,因为平面,平面,所以,又,平面,结合已知可得平面,所以是直角三角形,从而可得的中点外接球的球心,故外接球的半径为,设内切球的球心为,半径为,由,根据已知可得,所以,所以,解得,内切球在平面的投影为内切球的截面大圆,且此圆与的两边相切(记与的切点为),球心在平面的投影为在的角平分线上,所以,由上易知,所以,过作于,,从而,所以,所以两球心之间的距离,因为、分别为该三棱锥的内切球和外接球上的动点,所以线段的长度的最小值为.故答案为:.【点睛】关键点点睛:首先确定内外切球球心位置,进而求两球半径和球心距离,再利用空间想象判断两球心与位置关系求最小值.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在三棱柱中,,,,,为中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)由题意可得,利用勾股定理的逆定理可得,可证结论;(2)以为坐标原点,所在直线为,过作的平行线为轴建立如图所示的空间直角坐标系,利用向量法可求得直线与平面所成角的正弦值.【小问1详解】连接,因为,为中点,所以,因为,所以,所以,又,所以,所以,又,平面,所以平面;【小问2详解】以为坐标原点,所在直线为,过作平行线为轴建立如图所示的空间直角坐标系,因为,所以,则,则,设平面的一个法向量为,则,令,则,所以平面的一个法向量为,又,所以,设直线与平面所成的角为,则,所以直线与平面所成角的正弦值为.16.已知函数.(1)讨论函数的单调性;(2)设函数,若在恒成立,求实数的取值范围.【答案】(1)答案见解析(2)的取值范围为.【解析】【分析】(1)求函数的定义域及导函数,分别在,,,条件下研究导数的取值情况,判断函数的单调性;(2)由条件可得,设,利用导数求其最小值,由此可得结论.【小问1详解】函数的定义域为,导函数,当时,,函数在上单调递增,当且时,即时,,函数在上单调递增,当时,,当且仅当时,函数在上单调递增,当时,方程有两个不等实数根,设其根为,,则,,由,知,,,所以当时,,函数在上单调递增,当时,,函数在上单调递减,当时,,函数在上单调递增,所以当时,函数在上单调递增,当时,函数在上单调递增,函数在上单调递减,函数在上单调递增,【小问2详解】因为,,所以,不等式可化为,因为在恒成立,所以设,则,当时,,函数在上单调递增,当时,,函数在上单调递减,所以当时,函数取最小值,最小值为,故,所以的取值范围为.17.已知在锐角中,,,分别为内角,,的对边,.(1)求;(2)若,为中点,,求;(3)若,求内切圆半径的取值范围.【答案】(1)(2)(3)【解析】【分析】(1)利用正弦定理进行边化角,再结合三角形内角和定理及两角和与差的三角函数公式,可求,进而得到角.(2)利用向量表示,借助向量的数量积求边.(3)利用与正弦定理表示出,借助三角函数求的取值范围.【小问1详解】因为,根据正弦定理,得,所以,因为,所以,所以.【小问2详解】因为为中点,所以,所以,所以,解得或(舍去),故.【小问3详解】由正弦定理:,所以,,因为,所以,所以,,设内切圆半径为,则.因为为锐角三角形,所以,,所以,所以,即,即内切圆半径的取值范围是:.18.某汽车销售公司为了提升公司的业绩,将最近一段时间内每日的汽车销售情况进行了统计,如图所示.(1)求的值,并求该公司这段时间内每日汽车销售量的第60百分位数;(2)以频率估计概率,若在这段时间内随机选择4天,设每日汽车销售量在内的天数为,在恰有1天的汽车销售量不超过150辆的条件下,求的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:在三棱锥中,、均是边长为2的正三角形,,现从写有数字1~8的八个标签中随机选择两个分别贴在、两个顶点,记顶点、上的数字分别为和,若为侧棱上一个动点,满足,当“二面角大于”即为中奖,求中奖的概率.【答案】(1),175(2)分布列见解析,(3)【解析】【分析】(1)根据频率之和为1可求的值,再根据百分位数的概念求第60百分位数.(2)根据条件概率计算,求的分布列和期望.(3)根据二面角大于,求出可对应的情况,再求中奖的概率.【小问1详解】由.因为:,,所以每日汽车销售量的第60百分位数在,且为.【小问2详解】因为抽取的1天汽车销售量不超过150辆的概率为,抽取的1天汽车销售量在内的概率为.所以:在恰有1天的汽车销售量不超过150辆的条件下,抽取的1天汽车销售量在内的概率为.由题意,的值可以为:0,1,2,3.且,,,.所以的分布列为:0123所以.【小问3详解】如图:取中点,链接,,,,.因为,都是边长为2的等边三角形,所以,,,平面,所以平面.平面,所以.所以为二面角DE平面角.在中,,所以.若,在中,由正弦定理:.此时:,.所以,要想中奖,须有.由是从写有数字1~8的八个标签中随机选择的两个,所以基本事件有个,满足的基本事件有:,,,,,,,,共9个,所以中奖的概率为:.【点睛】关键点点睛:在第(2)问中,首先要根据条件概率的概念求出事件“在恰有1天的汽车销售量不超过150辆的条件下,抽取的1天汽车销售量在内的概率”.19.如图,在四棱锥中,底面为正方形,,是中点,平面,.(1)求四棱锥体积的最大值;(2)设,为线段上的动点.①求平面与平面的夹角余弦值的取值范围;②四棱锥的外接球记为球,当为线段中点时,求平面截球所得的截面面积.【答案】(1)(2)①;②【解析】【分析】(1)设,用表示四棱锥体积,分析函数的单调性,可求四棱锥体积的最大值.(2)①建立空间直角坐标系,设点坐标,用空间向量求二面角的余弦,结合二次函数的值域,可得二面角余弦的取值范围.②先确定球心,求出球心到截面的距离,利用勾股定理可求截面圆的半径,进而得截面圆的面积.【小问1详解】设则,所以四棱锥体积,.所以:.由;由.所以在上单调递增,在上单调递减.所以四棱锥体积的最大值为.【小问2详解】①以为原点,建立如图空间直角坐标系.则,,,所以,,.设平面的法向量为,则.令,则.取平面的法向量.因为平面与平面所成的二面角为锐角,设为.所以.因为,,所以.②易得,则,此时平面的法向量,所以点到平面的距离为:,设四棱锥的外接球半径为,则,所以平面截球所得的截面圆半径.所以平面截球所得的截面面积为:.【点睛】关键点点睛:平面截球的截面面积问题,要搞清球心的位置,球的半径,球心到截面的距离,再利用勾股定理,求出截面圆的半径.。

四川省南充市南充高级中学2024-2025学年高三上学期10月检测数学试题(含答案)

四川省南充市南充高级中学2024-2025学年高三上学期10月检测数学试题(含答案)

南充高中高2023级上期第一次月考数学试卷考试时间:120分钟 满分:150分注意事项:1.答题前,务必将自己的姓名、班级、考号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,将答案书写在答题卡相应位置上,写在本试卷上无效.4.考试结束后将答题卡交回.一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的4个选项中,只有一项是符合题目要求的)1.“”是“”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件2.设l ,m 是两条不同的直线,,,是三个不同的平面,下列说法正确的是( )A .若,,则B .若,,则C .若,,则D .若,,则3.若,则( )ABC .D .4.如图,在正方体中,M ,N 分别为DB,的中点,则直线和BN 夹角的余弦值为( )ABC .D .sin θ=π4θ=αβγl α∥m α∥l m ∥l α∥l β∥αβ∥l α⊥m α⊥l m∥αγ⊥βγ⊥αβ∥sin 2αα-+=()tan πα-=1111ABCD A B C D -11AC 1A M 23135.在三棱锥中,,则是( )A .等边三角形B .直角三角形C .等腰直角三角形D .等腰三角形6.杭州亚运会的三个吉祥物分别取名“琮琮”“宸宸”“莲莲”,如图,现将三张分别印有“琮踪”“宸宸”“莲莲”图案的卡片(卡片的形状、大小和质地完全相同)放入盒子中.若从盒子中依次有放回地取出两张卡片,则一张为“琮琮”,一张为“宸宸”的概率是( )A.B .C .D .7.已知函数,若正实数a ,b 满足,则的最小值为( )A .1B .3C .6D .98.已知正三棱锥的六条棱长均为6,S 是及其内部的点构成的集合.设集合,则集合T 所表示的曲线长度为( )A .B .CD .二、多选题(本题共3小题,每小题6分,共18分.在每小题给出的4个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部份分分,有选错的得0分.)9.函数的部分图象如图所示,则( )A .B .C .的图象关于点对称D .在区间上单调递增10.对于随机事件A 和事件B ,,,则下列说法正确的是( )A .若A 与B 互斥,则B .若A 与B 互斥,则C .若A 与B 相互独立,则D .若A 与B 相互独立,则11.如图,边长为1的正方形ABCD 所在平面与正方形ABEF 在平面互相垂直,动点M ,N 分别在正方形对S ABC -()()20SC SA BS SC SA ++-=ABC △38295934()3f x x =()()490f a f b +-=11a b+P ABC -ABC △{}5T Q S PQ =∈=5π2ππ()()πsin 0,2f x x ωϕωϕ⎛⎫=+><⎪⎝⎭2ω=π6ϕ=()f x π,012⎛⎫⎪⎝⎭()f x 5ππ,4⎛⎫⎪⎝⎭()0.3P A =()0.4P B =()0.3P AB =()0.7P A B = ()0.12P AB =()0.7P A B =角线AC 和BF 上移动,且,则下列结论中正确的有( )A .,使B .线段MN存在最小值,最小值为C .直线MN 与平面ABEF 所成的角恒为45°D .,都存在过MN 且与平面BEC 平行的平面三、填空题(本题共3小题,每小题5分,共15分.)12.复数的共轭复数______.13.已知向量,,,当时,向量在向量上的投影向量为______.(用坐标表示)14.已知在中,满足,点M 为线段AB 上的一个动点,若的最小值为-3,则BC 边的中线长为______.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)如图,四边形ABCD 为矩形,且,,平面ABCD ,,E 为BC 的中点.(1)求证:;(2)求四棱锥的外接球体积.16.(15分)的内角A ,B ,C 的对边分别为a ,b ,c ,已知.(1)求角A 的值;(2)若,,求b ,c .17.(15分)全国执业医师证考试分实践技能考试与医学综合笔试两部分,每部分考试成绩只记“合格”与(0CM BN a a ==<<(a ∃∈12MN CE=23(a ∀∈2i12iz +=-z =()2,1,1a =- ()1,,1b x = ()1,2,1c =-- a b ⊥b c ABC △34AB ACAB AC +=MA MC ⋅ 2AD =1AB =PA ⊥1PA =PE DE ⊥P ABCD -ABC △cos cos a B b A b c -=+a =ABC △“不合格”,两部分考试都“合格”者,则执业医师考试“合格”,并颁发执业医师证书.甲、乙、丙三人在医学综合笔试中“合格”的概率依次为,,,在实践技能考试中“合格”的概率依次为,,,所有考试是否合格互不影响.(1)求甲没有获得执业医师证书的概率;(2)这三人进行实践技能考试与医学综合理论考试两项考试后,求恰有两人获得执业医师证书的概率.18.(17分)为深入学习贯彻习近平总书记关于禁毒工作重要指示精神,切实落实国家禁毒委员会《关于加强新时代全民禁毒宣传教育工作的指导意见》,巩固青少年毒品预防教育成果,大力推进防范青少年滥用涉麻精药品等成瘾性物质宣传教育活动,进一步增强青少年学生识毒防毒拒毒意识和能力,某市每年定期组织同学们进行禁毒知识竞赛活动,为了解同学们对禁毒知识的掌握情况,现从所有答卷中随机抽取100份作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,…,得到如图所示的频率分布直方图.(1)求频率分布直方图中a 的值;(2)求样本成绩的第75百分位数;(3)已知落在的平均成绩是56,方差是7,落在的平均成绩为65,方差是4,求两组成绩的总平均数和总方差.19.(17分)如图,三棱柱中,,且与均为等腰直角三角形,.(1)若为等边三角形,证明:平面平面ABC ;(2)若二面角的平面角为,求以下各值:①求点到平面的距离;②求平面与平面所成角的余弦值.453423122323[)40,50[)50,60[]90,100[)50,60[)60,70z 2s 111ABC A B C -2AB =ABC △1ABA △1π2ACB AA B ∠=∠=1A BC △1AAB ⊥1A AB C --π31B 1ACB 11B AC 1ACB南充高中高2023级上期第一次月考数学试卷参考答案题号1234567891011选项BCACDBABACDBCAD12.-i 13. 1415.【详解】(1)连结AE ,∵E 为BC 的中点,,∴为等腰直角三角形,则,同理可得,∴,∴,又平面ABCD ,且平面ABCD ,∴,又∵,∴平面PAE ,又平面PAE ,∴.(2)∵平面ABCD ,且四边形ABCD 为矩形∴的外接球直径∴,故:∴四棱锥.16.【答案】(1)(2)2,2【分析】(1)∵,由正弦定理可得:,∵,∴,即,∵,∴,∵,∴.(2)由题意,,所以,由,得,所以,解得:.17.【详解】(1)记甲,乙,丙三人在医学综合笔试中合格依次为事件,,,在实践考试中合格依次为,,,设甲没有获得执业医师证书的概率为P.()1,2,1-1EC CD ==DCE △45DEC ∠=︒45AEB ∠=︒90AED ∠=︒DE AE ⊥PA ⊥DE ⊂PA DE ⊥AE PA A = DE ⊥PE ⊂DE PE ⊥PA ⊥P ABCD -2R R =3344ππ33V R ===P ABCD -2π3cos cos a B b A b c -=+sin cos sin cos sin sin A B B A B C -=()sin sin sin cos cos sin C A B A B A B =+=+sin cos sin cos sin sin cos cos sin A B B A B A B A B -=++2sin cos sin B A B -=sin 0B ≠1cos 2A =-()0,πA ∈2π3A =1sin 2ABC S bc A ===△4bc =222222cos a b c bc A b c bc =+-=++()2216b c a bc +=+=4b c +=2b c ==1A 1B 1C 2A 2B 2C ()1241311525P P A A =-=-⨯=(2)甲、乙、丙获得执业医师证书依次为,,,并且与,与,与相互独立,则,,由于事件,,彼此相互独立,“恰有两人获得执业医师证书”即为事件:,概率为18.【答案】(1)0.030 (2)84 (3)平均数为62;方差为23【详解】(1)由每组小矩形的面积之和为1得,,解得.(2)成绩落在内的频率为,落在内的频率为,显然第75百分位数,由,解得,所以第75百分位数为84;(3)由频率分布直方图知,成绩在的市民人数为,成绩在的市民人数为,所以;由样本方差计算总体方差公式,得总方差为19.【答案】(1)见解析【分析】(1)设AB 的中点为E ,连接CE ,,如图所示,因为与均为等腰直角三角形,,故,且,,因为为等边三角形,故,12A A 12B B 12C C 1A 2A 1B 2B 1C 2C ()12412525P A A =⨯=()12321432P B B =⨯=()12224339P C C =⨯=12A A 12B B 12C C ()()()()()()()()()121212121212121212A A B B C C A A B B C C A A B B C C ++21421421411115295295293P ⎛⎫⎛⎫⎛⎫=⨯⨯-+⨯-⨯+-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0.050.10.2100.250.11a +++++=0.030a =[)40,800.050.10.20.30.65+++=[)40,900.050.10.20.30.250.9++++=()80,90m ∈()0.65800.0250.75m +-⨯=84m =[)50,601000.110⨯=[)60,701000.220⨯=10562065621020z ⨯+⨯==+()(){}222110756622046562231020s ⎡⎤⎡⎤=+-++-=⎣⎦⎣⎦+1A E ABC △1ABA △1π2ACB A AB ∠=∠=cos 45BC AB ==︒=CE AB ⊥112CE AB ==1112A E AB ==1A BC △1AC BC ==故,即,且AB ,平面,,故平面,且平面ABC ,故平面平面ABC .(2)①由(1)知,,,且平面平面,故即二面角的平面角,即,故为等边三角形,则,因为,,,且CE ,平面,所以平面设线段中点为F ,则,,而AB ,平面∴平面,又在三角形中易知:∴又在三角形中,由,,又由知:∴求点到平面.②由①知,平面,而,故平面,且平面,故,则,设和的中点分别为M ,N ,连接MN ,BN ,BM ,则,,故,又因为故,且平面,平面,22211AC CE A E =+1CE A E ⊥1A E ⊂1AA B 1A E AB E = CE ⊥1AA B CE ⊂1AA B ⊥CE AB ⊥1A E AB ⊥1AA B ABC AB =1CEA ∠1A AB C --1π3CEA ∠=1CEA △11CA CE ==CE AB ⊥1A E AB ⊥1A E CE E = 1A E ⊂1CA E AB ⊥1CA E 1A E 1CF A E ⊥AB CF ⊥1A E ⊂11ABB A CF ⊥11ABB A 1CEA △CF =1111111332A BB VC A BB CF S -=⋅==△1A BC 11AC =1BC A B ==1A BC S =△1111113C A BB B A BC A BC V V S d --==⋅⋅△d =1B 1ACB AB ⊥1CA E 1AB A B ∥11A B ⊥1CA E 1AC 1CA E 111A B AC ⊥1B C ==1AC 1B C 11MN A B ∥11112MN A B ==1MN AC ⊥1BC A B ==1BM AC ⊥MN ⊂11A B C BM ⊂1A BC故∠BMN 即二面角-的平面角,且因为,故,则所以.故平面与平面.11B AC B --MN ===11BB AA BC ===1BN B C ⊥BN ===222cos 2BM MN BN BMN BM MN +-∠===⋅11B AC 1ACB。

四川省成都市2024-2025学年高三上学期10月月考数学试题含答案

四川省成都市2024-2025学年高三上学期10月月考数学试题含答案

2024-2025学年度高三上期数学10月阶段性测试(答案在最后)(考试时间:120分钟;满分150分)第Ⅰ卷(选择题,共58分)一、单项选择题:本题共8小题,每小题5分,共40分.1.已知集合{{},21x A x y B y y ====+,则A B = ()A .(]0,1B .(]1,2C .[]1,2D .[]0,22.已知复数z 满足23i z z +=+,则3iz+=()A .12i+B .12i-C .2i+D .2i-3.已知向量,a b 满足222a b a b -=-= ,且1b = ,则a b ⋅=()A .14B .14-C .12D .12-4.如图为函数()y f x =在[]6,6-上的图象,则()f x 的解析式只可能是()A .())lncos f x x x =+B .())lnsin f x x x =+C .())ln cos f x x x =-D .())ln sin f x x x=-5.已知()()cos f x x a x =+为奇函数,则曲线()y f x =在点()()π,πf 处的切线方程为()A .ππ0x y +-=B .ππ0x y -+=C .π0x y -+=D .0x y +=6.在体积为12的三棱锥A BCD -中,,AC AD BC BD ⊥⊥,平面ACD ⊥平面ππ,,34BCD ACD BCD ∠=∠=,若点,,,A B C D 都在球O 的表面上,则球O 的表面积为()A .12πB .16πC .32πD .48π7.若()()sin cos2sin αβααβ+=-,则()tan αβ+的最大值为()A .62B .64C .22D .248.设202420230.2024log 2023,log 2022,log 0.2023a b c ===,则()A .c a b<<B .b c a<<C .b a c<<D .a b c<<二、多项选择题:本题共3小题,每小题6分,共18分.9.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件:2024120242025202511,1,01a a a a a ->><-,下列结论正确的是()A .20242025S S <B .202420261a a <C .2024T 是数列{}n T 中的最大值D .数列{}n T 无最大值10.透明的盒子中装有大小和质地都相同的编号分别为1,2,3,4的4个小球,从中任意摸出两个球.设事件1A =“摸出的两个球的编号之和小于5”,事件2A =“摸出的两个球的编号都大于2”,事件3A =“摸出的两个球中有编号为3的球”,则()A .事件1A 与事件2A 是互斥事件B .事件1A 与事件3A 是对立事件C .事件1A 与事件3A 是相互独立事件D .事件23A A 与事件13A A 是互斥事件11.已知6ln ,6e n m m a n a =+=+,其中e nm ≠,则e nm +的取值可以是()A .eB .2eC .23eD .24e第Ⅱ卷(非选择题,共92分)三、填空题:本题共3小题,每小题5分,共15分,第14题第一个空3分,第二个空2分.12.若1sin 3α=-,则()cos π2α-=______.13.设n S 是数列{}n a 的前n 项和,点()()*,n n a n ∈N在直线2y x =上,则数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为______.14.已知点()()2,0,1,4,A B M N 、是y 轴上的动点,且满足4,MN AMN =△的外心P 在y 轴上的射影为Q ,则点P 的轨迹方程为______,PQ PB +的最小值为______.四、解答题:本题共5小题,共77分.15.(13分)设ABC△的内角,,A B C的对边分别为,,a b c,且()()()sin sin sin sin b a ABC BAC c ABC C +∠-∠=∠-,,BC AC 边上的两条中线,AD BE 相交于点P.(1)求BAC ∠;(2)若2,cos 14AD BE DPE ==∠=,求ABC △的面积.16.(15分)如图,在三棱锥D ABC -中,ABC △是以AB 为斜边的等腰直角三角形,ABD △是边长为2的正三角形,E 为AD 的中点,F 为DC 上一点,且平面BEF ⊥平面ABD .(1)求证:AD ⊥平面BEF ;(2)若平面ABC ⊥平面ABD ,求平面BEF 与平面BCD 夹角的余弦值.17.(15分)为研究“眼睛近视是否与长时间看电子产品有关”的问题,对某班同学的近视情况和看电子产品的时间进行了统计,得到如下的列联表:近视情况每天看电子产品的时间合计超过一小时一小时内近视10人5人15人不近视10人25人35人合计20人30人50人附表:α0.10.050.010.0050.001x α2.7063.8416.6357.87910.828()()()()22()n ad bc a b c d a c b d χ-=++++.(1)根据小概率值0.05α=的2χ独立性检验,判断眼睛近视是否与长时间看电子产品有关;(2)在该班近视的同学中随机抽取3人,则至少有两人每天看电子产品超过一小时的概率是多少?(3)以频率估计概率,在该班所在学校随机抽取2人,记其中近视的人数为X ,每天看电子产品超过一小时的人数为Y ,求()P X Y =的值.18.(17分)已知函数()()ln 1f x x =+.(1)求曲线()y f x =在3x =处的切线方程;(2)讨论函数()()()F x ax f x a =-∈R 的单调性;(3)设函数()()1111g x x f f x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭.证明:存在实数m ,使得曲线()y g x =关于直线x m =对称.19.(17分)已知椭圆C 的对称中心在坐标原点,以坐标轴为对称轴,且经过点)和2,3⎛- ⎝⎭.(1)求椭圆C 的标准方程;(2)过点()2,0M 作不与坐标轴平行的直线l 交曲线C 于,A B 两点,过点,A B 分别向x 轴作垂线,垂足分别为点D ,E ,直线AE 与直线BD 相交于P 点.①求证:点P 在定直线上;②求PAB △面积的最大值.2024-2025学年度高三上期数学10月阶段性测试(参考答案)一、单项选择题:BAACDDDC8.【解】由对数函数的性质知0.20240.2024log 0.2023log 0.20241c =>=,2024202420242023202320230log 1log 2023log 20241,0log 1log 2022log 20231=<<==<<=,所以1,01,01c a b ><<<<;当2n >时,()()ln 1ln ln 10n n n +>>->,所以()()()()222ln 1ln 1ln 1ln 1(ln )(ln )2n n n n n n ++-⎡⎤+⋅--<-⎢⎥⎣⎦()()()2222222222ln 1ln 11ln (ln )(ln )(ln )(ln )(ln )0222n n n n n n n n n ⎡⎤-+-⎡⎤⎛⎫=-=-<-=-=⎢⎥ ⎪⎢⎢⎥⎝⎭⎣⎦⎣⎦,取2023n =,则2lg2022lg2024(lg2023)0⋅-<,所以220232024lg2022lg2023lg2022lg2024(lg2023)log 2022log 20230lg2023lg2024lg2023lg2024b a ⋅--=-=-=<⋅,即b a <,综上,b a c <<.二、多项选择题:ABC ACD CD .11.【解】令()6ln f x x x =-,则()661xf x x x-=-=',故当()0,6x ∈时,()()0,f x f x '>单调递增,当()6,x ∈+∞时,()()0,f x f x '<单调递减,()()6ln ,66lne e ,e n n n m m a n a f m f =+==+∴= ,又e n m ≠,不妨设06e n m <<<,解法一:记12,e nx m x ==,设()()()()12,0,6g x f x f x x =--∈,则()()()()2662(6)1201212x x x g x f x f x x x x x ---=---=-=<--'''在()0,6上恒成立,所以()g x 在()0,6上单调递减,所以()()()()()1260,0,6g x f x f x g x =-->=∈,则()()()11212f x f x f x ->=,又因为()1212,6,x x -∈+∞,且()f x 在()6,+∞上单调递减,所以1212x x -<,则1212x x +>,所以e 12n m +>.解法二:由6ln ,66lne e nnm m a n a =+==+,两式相减,可得e 6ln e n nm m =-,令e (1)n t t m=>,则()()61ln 6ln 6ln 6ln 1,,e ,e 111n n t t t t tt m t m mt m t t t +=-===∴+=---;令()()()1ln 21,1g t t t t t =+-->,则()11ln 2ln 1t g t t t t t+=+-=+-',令1ln 1(1)y t t t =+->,则221110t y t t t-=-=>'在()1,+∞上恒成立,所以()g t '在()1,+∞上单调递增,因为()()10g t g ''>=在()1,+∞上恒成立,所以()g t 在()1,+∞上单调递增,则()()10g t g >=,即()1ln 21t tt +>-,所以()61ln e 121n t tm t ++=>-.解法三:6ln ,66lne e nnm m a n a =+==+ ,两式相减得e 6lne ln n nmm-=-,212121ln ln 2x x x xx x -+<<-,可得e 12n m +>,三、填空题:79-1n n +24y x =;314.【解】设点()0,M t ,则()0,4)N t -根据点P 是AMN 的外心,(),2P x t -,而22||PM PA =,则2224(2)(2)x x t +=-+-,所以2(2),24t x y t -==-从而得到点P 的轨迹为24y x =,焦点为()1,0F 由抛物线的定义可知1PF PQ =+,因为4,14PF PB BF PF PB PQ PB +≥=+=++≥,即3PQ PB +≥,当点P 在线段BF 上时等号成立.四、解答题:15.【解】(1)因为()()()sin sin sin sin b a ABC BAC c ABC C +∠-∠=∠-,所以由正弦定理得222b c a bc +-=,由余弦定理得2221cos 22b c a BAC bc +-∠==,又0πBAC <∠<,所以π3BAC ∠=.(2)因为P 是,BC AC 边上的两条中线AD 与BE 的交点,所以点P 是ABC △的重心.又7,2,AD BE APB DPE ==∠=∠,所以在ABP △中,由余弦定理22222cos c AB PA PB PA PB APB==+-⋅∠2227474724333314⎛⎛⎫=+-⨯⨯⨯= ⎪⎝⎭⎝⎭,所以2c =,又π2,3BE BAC =∠=,所以2AE BE ==,所以24b AE ==,所以ABC △的面积为1π42sin 2323⨯⨯⨯=.16.【解】(1)ABD △是边长为2的正三角形,E 为AD 的中点,则BE AD ⊥.且平面BEF ⊥平面ABD ,平面BEF 平面,ABD BE AD =⊂平面ABD ,则AD ⊥平面BEF .(2)由于底面ABC △为等腰直角三角形,ABD △是边长为2正三角形,可取AB 中点O ,连接OD ,则,OD AB OC AB ⊥⊥.且平面ABC ⊥平面ABD ,且平面ABC 平面ABD AB =,则OD ⊥平面ABC .因此,,OC OA OD 两两垂直,可以建立空间直角坐标系O xyz -.ABD △是边长为2的正三角形,则可求得高3OD =.底面ABC △为等腰直角三角形,求得1OC OA OB ===.可以得到关键点的坐标()()()(0,1,0,0,1,0,1,0,0,0,0,3A B C D -由第(1)问知道平面BEF 的法向量可取(0,3AD =-.设平面BCD 的法向量为(),,m x y z =,且()(1,1,0,1,0,3BC CD ==- ,则m BC m CD ⎧⋅=⎪⎨⋅=⎪⎩,则030x y x z +=⎧⎪⎨-+=⎪⎩,解得()3,3,1m = .则2321cos ,727m AD m AD m AD⋅〈〉==⨯⋅ .则平面BEF 与平面BCD 夹角的余弦值为217.17.【解】(1)零假设0H 为:学生患近视与长时间使用电子产品无关.计算可得,220.0550(1025105)4006.349 3.8411535203063x χ⨯⨯-⨯==≈>=⨯⨯⨯,根据小概率值0.05α=的2χ独立性检验,推断0H 不成立,即患近视与长时间使用电子产品的习惯有关.(2)每天看电子产品超过一小时的人数为ξ,则()()()21310510331515C C C 45512069223C C 45591P P P ξξξ⨯+≥==+==+==,所以在该班近视的同学中随机抽取3人,则至少有两人每天看电子产品超过一小时的概率是6991.(3)依题意,()()1111110,22245525P X Y P X Y ===⨯====⨯=,事件1X Y ==包含两种情况:①其中一人每天看电子产品超过一小时且近视,另一人既不近视,每天看电子产品也没超过一小时;②其中一人每天看电子产品超过一小时且不近视,另一人近视且每天看电子产品没超过一小时,于是()1122111161C C 2551025P X Y ===⨯⨯+⨯⨯=,所以()()()()1165301242525100P X Y P X Y P X Y P X Y ====+==+===++=.18.【解】(1)切点为()3,ln4.因为()11f x x '=+,所以切线的斜率为()134k f ='=,所以曲线()y f x =在3x =处的切线方程为()1ln434y x -=-,化简得48ln230x y -+-=;(2)由题意可知()()ln 1F x ax x =-+,则()F x 的定义域为()1,-+∞,()()11,1,,11ax a F x a x x x +-=-=∈-'+∞++当0a ≤时,()101F x a x '=-<+,则()F x 在()1,-+∞上单调递减;当0a >时,令()0F x '=,即10ax a +-=,解得11x a=-,若()11111,01a ax a x F x a a x '-+--<≤=-=≤+;若()111,01ax a x F x a x +--'>=>+,则()F x 在11,1a ⎛⎤-- ⎥⎝⎦上单调递减,在11,a ⎛⎫-+∞ ⎪⎝⎭上单调递增.综上所述,当0a ≤时,()F x 在()1,-+∞上单调递减;当0a >时,()F x 在11,1a ⎛⎤-- ⎥⎝⎦上单调递减,在11,a ⎛⎫-+∞ ⎪⎝⎭上单调递增;(3)证明:函数()()111ln 1ln 2g x x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭,函数()g x 的定义域为()(),10,-∞-+∞ .若存在m ,使得曲线()y g x =关于直线x m =对称,则()(),10,-∞-+∞ 关于直线x m =对称,所以12m =-由()()111ln 1ln 211g x x x x ⎛⎫⎛⎫--=-+-+ ⎪ ⎪----⎝⎭⎝⎭21121lnln ln ln 111x x x x x x x x x x +++=--=-+++()()()11211211ln ln ln 1ln ln 1x x x x x x x g x x x x x x+++++=+--=+-=+.可知曲线()y g x =关于直线12x =-对称.19.【解】(1)设椭圆C 的方程为221(0,0,)mx ny m n m n +=>>≠,代入已知点的坐标,得:312413m n m n +=⎧⎪⎨+=⎪⎩,解得1612m n ⎧=⎪⎪⎨⎪=⎪⎩,所以椭圆C 的标准方程为22162x y +=.(2)如图:①设直线l 的方程为()20x my m =+≠,并记点()()()112200,,,,,A x y B x y P x y,由222,162x my x y =+⎧⎪⎨+=⎪⎩消去x ,得()223420m y my ++-=,易知()()222Δ16832410m m m =++=+>,则12122242,33m y y y y m m --+==++.由条件,()()12,0,,0D x E x ,直线AE 的方程为()1212y y x x x x =--,直线BD 的方程为()2121y y x x x x =--,联立解得()()2112211212012121222223my y my y x y x y my y x y y y y y y ++++====++++,所以点P 在定直线3x =上.②0212121121111312222PAB S AD x x y x y my y my y =⋅-=⋅-=⋅-=-△,而121212my y y y =+,所以()121212my y y y =+,则1211211224PABy y S y y y +=-=-=△令t =,则1t >,所以21222224PAB t S t t t=⋅=⋅≤++△,当且仅当t =时,等号成立,所以PAB △面积的最大值为4.。

黑龙江省牡丹江市第一高级中学2024-2025学年高三上学期10月月考数学试题

黑龙江省牡丹江市第一高级中学2024-2025学年高三上学期10月月考数学试题

黑龙江省牡丹江市第一高级中学2024-2025学年高三上学期10月月考数学试题一、单选题1.已知集合{}2,3,5,7,8,9A =,{}31,B x x k k ==-∈Z ,则A B =I ( ) A .{}5,8B .{}7C .{}2,5,8D .{}3,5,7,92.等差数列{}()*n a n ∈N 中,274110,2a a a a =-=,则7a =( )A .40B .30C .20D .103.已知函数()e e 2x xa f x x -+=为偶函数,则a =( )A .2B .1C .0D .1-4.已知α是第二象限的角,(,8)P x 为其终边上的一点,且4sin 5α=,则x =( ) A .6-B .6±C .323±D .323-5.已知()311sin ,25tan tan αβαβ+=-+=,则sin sin αβ=( ) A .310-B .15C .15-D .3106.已知数列{}n a 的前n 项和为n S .若125n n a a n ++=+,11a =,则8S =( ) A .48B .50C .52D .547.正整数1,2,3,,n L 的倒数的和111123n++++L 已经被研究了几百年,但是迄今为止仍然没有得到它的求和公式,只是得到了它的近似公式,当n 很大时,1111ln 23n nγ++++≈+L .其中γ称为欧拉-马歇罗尼常数,0.577215664901γ≈L ,至今为止都不确定γ是有理数还是无理数.设[]x 表示不超过x 的最大整数,用上式计算1111232024⎡⎤++++⎢⎥⎣⎦L 的值为( ) (参考数据:ln 20.69≈,ln3 1.10≈,ln10 2.30≈) A .10B .9C .8D .78.数列 a n 的前n 项和为n S ,满足{}111,3,2n n n a a d a +-=∈=,则10S 可能的不同取值的个数为( ) A .45B .46C .90D .91二、多选题9.已知函数π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭,则下列结论成立的是( )A .()f x 的最小正周期为πB .曲线()y f x =关于直线π2x =对称C .点π,012⎛⎫- ⎪⎝⎭是曲线()y f x =的对称中心 D .()f x 在(0,π)上单调递增10.下列命题正确的( )A .ABC V 中, 角,,ABC 的对边分别为,,a b c ,若cos =c b A ,则ABC V 一定是直角三角形B .在ABC V 中, 角,,A B C 的对边分别为,,a b c ,4,30a c A ===︒时,有两解 C .命题“()00,x ∞∃∈+,00ln 1x x =-”的否定是“()0,,ln 1x x x ∞∀∉+=-”D .设函数()()()24f x x a x =--定义域为R ,若关于x 的不等式()0f x ≥的解集为{|4x x ≥或1}x =,则点()2,2-是曲线y =f x 的对称中心11.如图,某旅游部门计划在湖中心Q 处建一游览亭,打造一条三角形DEQ 游览路线.已知,AB BC 是湖岸上的两条甬路,120,0.3km,0.5km,60ABC BD BE DQE ∠=︒==∠=︒(观光亭Q 视为一点,游览路线、甬路的宽度忽略不计),则( )A .0.7km DE =B .当45DEQ ∠=︒时,DQ =C .DEQ V 2D .游览路线DQ QE +最长为1.4km三、填空题12.已知函数()ln f x x x =,角θ为函数()f x 在点(e,(e))f 处的切线的倾斜角,则sin 2cos sin cos θθθθ+=-.13.等差数列{}n a 的前n 项和记为n S ,已知14733a a a ++=,25827a a a ++=,若存在正数k ,使得对任意N*n ∈,都有n k S S ≤恒成立,则k 的值为. 14.设a b c ,,是正实数, 且abc a c b ++=,则222111111a b c -++++的最大值为.四、解答题15.在ABC V 中,内角,,A B C 所对的边分别为cos π,,,2sin cos 6A a b c C B ⎛⎫=- ⎪⎝⎭. (1)求B ;(2)若ABC VAC 边上的高为1,求ABC V 的周长.16.已知数列{}n a ,{}n b 中,14a =,12b =-,{}n a 是公差为1的等差数列,数列{}n n a b +是公比为2的等比数列. (1)求数列{}n b 的通项公式; (2)求数列{}n b 的前n 项和n T .17.已知函数()2cos 2cos 1f x x x x =-+. (1)若π2π,123x ⎡⎤∈-⎢⎥⎣⎦,求()f x 的值域;(2)若关于x 的方程()0f x a -=有三个连续的实数根1x ,2x ,3x ,且123x x x<<,31223x x x +=,求a 的值.18.已知函数()sin ln(1),R f x x x ax a =++-∈.(1)当0a =时, 求()f x 在区间()1,π-内极值点的个数; (2)若 ()0f x ≤恒成立,求a 的值; (3)求证:2*1121sin2ln ln 2,N 11ni n n n i n =+-<-∈--∑. 19.对于数列{}n a ,若存在常数T ,*00)(,N n T n ∈,使得对任意的正整数0n n ≥,恒有n T na a +=成立,则称数列{}n a 是从第0n 项起的周期为T 的周期数列.当01n =时,称数列{}n a 为纯周期数列;当02n ≥时,称数列{}n a 为混周期数列.记[]x 为不超过x 的最大整数,设各项均为正整数的数列{}n a 满足:[]21log ,212,2n nnn a n n a a a a a +⎧⎪⎪=⎨-⎪+⎪⎩为偶数为奇数. (1)若对任意正整数n 都有1n a ≠,请写出三个满足条件的1a 的值; (2)若数列{}n a 是常数列,请写出满足条件的1a 的表达式,并说明理由; (3)证明:不论1a 为何值,总存在*,N ∈m n 使得21m n a =-.。

安徽省合肥市一六八中学2024-2025学年高三上学期10月月考数学试题(含解析)

安徽省合肥市一六八中学2024-2025学年高三上学期10月月考数学试题(含解析)

合肥一六八中学2025届高三10月段考试卷数学考生注意:1.试卷分值:150分,考试时间:120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答案区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.3.所有答案均要答在答题卡上,否则无效.考试结束后只交答题卡.一、单选题(本大题共8小题,每小题5分,共40分)1.已知集合,,则( )A .B .C .D .2.设,均为单位向量,则“”是“”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.已知数列满足,若,则( )A .2B .-2C .-1D .4.已知实数a ,b ,c 满足,则下列不等式中成立的是( )A .B .C .D .5.已知,,则( )A.B .C .D .6.10名环卫工人在一段直线公路一侧植树,每人植一棵,相邻两棵树相距15米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从(1)到(10)依次编号,为使每名环卫工人从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳坑位的编号为( )A .(1)和(10)B .(4)和(5)C .(5)和(6)D .(4)和(6)7.设,,,则( )A .B .C .D .{A x x =<1ln 3B x x ⎧⎫=<⎨⎬⎩⎭A B = {x x <{x x <{0x x <<{0x x <<a b 55a b a b -=+a b ⊥ {}n a ()111n n a a +-=11a =-10a =120a b c <<<11a b b a+>+22a b aa b b+<+a b b c a c<--ac bc>a ∈R 2sin cos αα+=tan 2α=433443-34-0.1e1a =-111b =ln1.1c =b c a<<c b a<<a b c<<a c b<<8.定义在R 上的奇函数,且对任意实数x 都有,.若,则不等式的解集是( )A .B .C .D .二、多选题(本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对得部分分,有选错的得0分)9.已知O 为坐标原点,点,,,,则()A .B .C .D .10.三次函数叙述正确的是( )A .当时,函数无极值点B .函数的图象关于点中心对称C .过点的切线有两条D .当a <-3时,函数有3个零点11.已知,对任意的,都存在,使得成立,则下列选项中,可能的值是( )A .B .C .D .三、填空题(本大题共3小题,每小题5分,共15分)12.已知复数与3i 在复平面内用向量和表示(其中i 是虚数单位,O 为坐标原点),则与夹角为______.13.函数在上的最大值为4,则m 的取值范围是______.14.设a 、b 、,则______.四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.(13分)已知中,角A ,B ,C 的对边分别为a ,b ,c ,.(1)求角A ;(2)已知,从下列三个条件中选择一个作为已知,使得存在,并求出的面积.()f x ()302f x f x ⎛⎫--+=⎪⎝⎭()12024e f =()()0f x f x '+->()11ex f x +>()3,+∞(),3-∞()1,+∞(),1-∞()1cos1,sin1P ()2cos 2,sin 2P -()3cos3,sin 3P ()1,0Q 12OP OP = 12QP QP =312OQ OP OP OP ⋅=⋅ 123OQ OP OP OP ⋅=⋅ ()32f x x ax =++1a =()f x ()f x ()0,2()0,2()f x ()2sin 2f x x =+π0,2x ⎡⎤∈⎢⎥⎣⎦2π0,2x ⎡⎤∈⎢⎥⎣⎦()()123f x f x α=+α3π44π76π78π71+OA OB OAOB2x y m m =-+(],2-∞[]0,1c ∈M ABC △cos sin 0a C C b c --=8b =ABC △ABC △条件①:;条件②:;条件③:AC.(注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.)16.(15分)某地区上年度天然气价格为2.8元/,年用气量为.本年度计划将天然气单价下调到2.55元/至2.75元/之间.经调查测算,用户期望天然气单价为2.4元/,下调单价后新增用气量和实际单价与用户的期望单价的差成反比(比例系数为k ).已知天然气的成本价为2.3元/.(1)写出本年度天然气价格下调后燃气公司的收益y (单位:元)关于实际单价x (单位:元/)的函数解析式;(收益=实际用气量×(实际单价-成本价))(2)设,当天然气单价最低定为多少时,仍可保证燃气公司的收益比上年度至少增加20%?17.(15分)已知函数(a 为常数,且,),且是奇函数.(1)求a 的值;(2)若,都有成立,求实数m 的取值范围.18.(17分)已知函数(1)讨论函数的单调性;(2)求函数在处切线方程;(3)若有两解,,且,求证:.19.(17分)(1)若干个正整数之和等于20,求这些正整数乘积的最大值.(2)①已知,都是正数,求证:;②若干个正实数之和等于20,求这些正实数乘积的最大值.2cos 3B =-7a =3m 3m a 3m 3m 3m 3m 3m 0.2k a =()824x x xa f x a +⋅=⋅0a ≠a ∈R ()f x []1,2x ∀∈()()20f x mf x -≥()()2ln f x x x =-()f x ()f x ()()22e ,ef ()f x m =1x 2x 12x x <2122e e x x <+<12,,,n a a a ⋅⋅⋅12n a a a n++⋅⋅⋅+≥合肥一六八中学2025届高三10月段考试卷·数学参考答案、提示及评分细则题号1234567891011答案DCCBBCACACABDAC一、单选题(本大题共8小题,每小题5分,共40分)1.【答案】D【解析】,∵,∴.故选D .2.【答案】C【解析】∵“”,∴平方得,即,则,即,反之也成立.故选C .3.【答案】C 【解析】因为,,所以,,,所以数列的周期为3,所以.故选C .4.【答案】B【解析】对于A ,因为,所以,所以,故A 错误;对于B ,因为,所以,故B 正确;对于C ,当,,时,,,,故C 错误;对于D ,因为,,所以,故D 错误.故选B .5.【答案】B【解析】,则,即,可得,解得或.那么.故选B .6.【答案】C【解析】设树苗可以放置的两个最佳坑位的编号为x ,则各位同学从各自树坑前来领取树苗所走的路程总和为:.131ln 0e 3x x <⇒<<23e 2<661132e 2⎛⎫⎛⎫<⇒< ⎪ ⎪⎝⎭⎝⎭55a b a b -=+ 222225102510a b a b a b a b +-⋅=++⋅200a b ⋅= 0a b ⋅= a b ⊥111n na a +=-11a =-212a =32a =41a =-{}n a 101a =-0a b <<11a b >11a b b a+<+0a b <<()()()()222220222a b b a a b a b a b a a b b a b b a b b+-++--==<+++2a =-1b =-1c =13b a c =-1a b c =-b aa cb c<--a b <0c >ac bc <2sin cos αα+=()252sin cos 2αα+=2254sin 4sin cos cos 2αααα++=224tan 4tan 15tan 12ααα++=+tan 3α=-1322tan 3tan 21tan 4ααα==-1152151015S x x x =-⨯+-⨯+⋅⋅⋅+-⨯若S 取最小值,则函数也取最小值,由二次函数的性质,可得函数的对称轴为,又∵x 为正整数,故或6.故选C 7.【答案】A【解析】构造函数,,则,,当时,,时,,单调递减;时,,单调递增.∴在处取最小值,∴,(且),∴,∴;构造函数,,,∵,,,∴,在上递增,∴,∴,即,∴.故选A .8.【答案】C【解析】因为是奇函数,所以是偶函数,因为,所以,令,,在R 上单调递增.又因为且是奇函数,所以的周期为3,,则,所以,则不等式,因为在R 上单调递增,所以,即.故选C .二、多选题(本大题共3小题,每小题6分,共18分)9.【答案】AC()()()()22222221210101101210y x x x x x =-+-+⋅⋅⋅+-=-+++⋅⋅⋅+()2222101101210y x x =-+++⋅⋅⋅+ 5.5x =5x =()1ln f x x x =+0x >()211f x x x'=-0x >()0f x '=1x =01x <<()0f x '<()f x 1x >()0f x '>()f x ()f x 1x =()11f =1ln 1x x>-0x >1x ≠101ln1.111111>-=c b >()1e 1ln x g x x -=--1x >()11ex g x x-'=-1x >1e1x ->11x<()0g x '>()g x ()1,+∞()()10g x g >= 1.11e 1ln1.1-->0.1e 1ln1.1->a c >()f x ()f x '()()0f x f x '+->()()0f x f x '+>()()e xg x f x =()()()e 0xg x f x f x ''=+>⎡⎤⎣⎦()g x ()302f x f x ⎛⎫--+=⎪⎝⎭()f x ()f x ()12024e f =()12ef =()212e e e g =⨯=()()()()111e 1e 12ex x f x f x g x g ++>⇒+>⇒+>()g x 12x +>1x >【解析】∵,,,,∴,,,,,,易知,故A 正确;∵,,∴,故B 错误;,,∴,故C 正确;,,故D 错误.故选AC .10.【答案】ABD【解析】对于A :,,,单调递增,无极值点,故A 正确;对于B :因为,所以函数的图象关于点中心对称,故B 正确;对于C :设切点,则切线方程为,因为过点,所以,,解得,即只有一个切点,即只有一条切线,故C 错误;对于D :,当时,,,当时,,单调递增,当时,,单调递减,当时,,单调递增,有极大值为,所以若函数有3个零点,有极小值为,得到,故D 正确.故选ABD .11.【答案】AC【解析】∵,∴,∴,∵对任意的,都存在,使得成立,()1cos1,sin1P ()2cos 2,sin 2P -()()()3cos 12,sin 12P ++()1,0Q ()1cos1,sin1OP = ()2cos 2,sin 2OP =- ()()()3cos 12,sin 12OP =++ ()1,0OQ = ()1cos11,sin1QP =- ()2cos 21,sin 2QP =-- 121OP OP ==1QP= 2QP = 12QP QP ≠ ()3cos 12cos1cos 2sin1sin 2OQ OP ⋅=+=- 12cos1cos 2sin1sin 2OP OP ⋅=- 312OQ OP OP OP ⋅=⋅1cos1OQ OP ⋅= 23cos 2cos3sin 2sin 3cos5cos1OP OP ⋅=-=≠1a =()32fx x x =++()2310f x x '=+>()f x ()()4f x f x +-=()f x()0,2()()1,x f x ()()()111y f x f x x x '-=-()0,2()()()112f x f x x '-=-331111223x ax x ax ---=--10x =()23f x x a '=+3a <-()0f x '=x =,x ⎛∈-∞ ⎝()0f x '>()f x x ⎛∈ ⎝()0f x '<()f x x ⎫∈+∞⎪⎪⎭()0f x '>()f x ()f x 20f ⎛=> ⎝()f x ()f x 20f =+<3a <-π0,2x ⎡⎤∈⎢⎥⎣⎦[]1sin 0,1x ∈()[]12,4f x ∈1π0,2x ⎡⎤∈⎢⎥⎣⎦2π0,2x ⎡⎤∈⎢⎥⎣⎦()()123f x f x a =+∴,,∴,∴,,在上单调递减.在上单调递增.当时,,,,故A 正确,当时,,,故B 错误,当时,,,,故C 正确,当时,,.故错误.故选AC .三、填空题(本大题共3小题,每小题5分,共15分)12.【答案】【解析】由题知,,.故本题答案为.13.【答案】【解析】当时,函数的图象是由向上平移个单位后,再向下平移个单位,函数图象还是的图象,满足题意,当时,函数图象是由向下平移m 个单位后,再把x 轴下方的图象对称到上方,再向上平移m 个单位,根据图象可知满足题意,时不合题意.()2min 23f x α+≤()2max 43f x α+≥()2sin 2f x x =+()2min 2sin 3x α+≤-()2max 1sin 3x α+≥-sin y x =π3π,22⎡⎤⎢⎥⎣⎦3π,2π2⎡⎤⎢⎥⎣⎦3π4α=23π5π,44x α⎡⎤+∈⎢⎥⎣⎦()2max 3π1sin sin 043x α+=>>-()2min5πsin sin 4x α+==23<-4π7α=24π15π,714x α⎡⎤+∈⎢⎥⎣⎦()2max 15π7π12sin sin sin 14623x α+=>=->-6π7α=26π19π,714x α⎡⎤+∈⎢⎥⎣⎦()2max 6π1sin sin 073x α+=>>-()2min 19πsin sin 14x α+=<4π2sin33=<-8π7α=28π23π,714x α⎡⎤+∈⎢⎥⎣⎦()2max 8π9π1sin sin sin 783x α+=<=<-π6(OA = ()0,3OB = cos ,OA OB OA OB OA OB⋅==⋅π6AOB ∠=π6(],2-∞0m ≤2x y m m =-+2xy =m m 2xy =02m <≤2x y m m =-+2xy =02m <≤2m >故本题答案为.14.【解析】不妨设,则,∴,当且仅当,,,即,,时,等号成立..四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.【解析】(1)因为,由正弦定理得.即:,,即,因为,所以,得;(2)选条件②:.在中,由余弦定理得:,即.整理得,解得或.当时,的面积为:,当c=5时,的面积为:,(],2-∞301a b c ≤≤≤≤M=≤=33M =+≤+≤b a c b -=-0a =1c =0a =12b =1c =3+cos sin 0a C C b c +--=sin cos sin sin sin 0A C A C B C +--=()sin cos sin sin sin 0A C A C A C C +-+-=()sin cos sin sin 0sin 0A C A C C C --=>cos 1A A -=π1sin 62A ⎛⎫-= ⎪⎝⎭0πA <<ππ66A -=π3A =7a =ABC △2222cos a b c bc A =+-222π7816cos3c c =+-⋅28150c c -+=3c =5c =3c =ABC △1sin 2ABC S bc A ==△ABC △1sin 2ABC S bc A ==△选条件③:AC,设AC 边中点为M ,连接BM ,则,,在中,由余弦定理得,即.整理得,解得或(舍).所以的面积为.16.【解析】(1),;(2)由题意可知要同时满足以下条件:,∴,即单价最低定为2.6元/.17.【解析】(1),因为是奇函数,所以,所以,所以,所以,;(2)因为,,所以,所以,,令,,,由于在单调递增,所以.18.【解析】(1)的定义域为,,当时,,当时,BM =4AM =ABM △2222cos BM AB AM AB AM A =+-⋅⋅2π21168cos3AB AB =+-⋅2450AB AB --=5AB =1AB =-ABC △1sin 2ABC S AB AC A =⋅⋅=△()2.32.4k y a x x ⎛⎫=+-⎪-⎝⎭[]2.55,2.75x ∈()()[]0.2 2.3 1.2 2.8 2.32.42.55,2.75a a x a x x ⎧⎛⎫+-≥-⎪⎪-⎝⎭⎨⎪∈⎩2.6 2.75x ≤≤3m ()1122x x f x a =⨯+()f x ()()f x f x -=-11112222x x x x a a⎛⎫⨯+=-⨯+ ⎪⎝⎭111202x xa ⎛⎫⎛⎫++=⎪⎪⎝⎭⎝⎭110a +=1a =-()122x x f x =-[]1,2x ∈22112222x x xx m ⎛⎫-≥- ⎪⎝⎭122x x m ≥+[]1,2x ∈2xt =[]1,2x ∈[]2,4t ∈1y t t=+[]2,4117444m ≥+=()f x ()0,+∞()1ln f x x '=-()0f x '=e x =()0,e x ∈,当时,,故在区间内为增函数,在区间为减函数;(2),,所以处切线方程为:,即;(3)先证,由(1)可知:,要证,也就是要证:,令,,则,所以在区间内单调递增,,即,再证,由(2)可知曲线在点处的切线方程为,令,,∴在处取得极大值为0,故当时,,,则,即,又,,∴.19.【解析】(1)将20分成正整数之和,即,假定乘积已经最大.若,则将与合并为一个数,其和不变,乘积由增加到,说明原来的p 不是最大,不满足假设,故,同理.将每个大于2的拆成2,之和,和不变,乘积.故所有的只能取2,3,4之一,而,所以将取2和3即可.如果2的个数≥3,将3个2换成两个3,这时和不变,乘积则由8变成9,故在p 中2的个数不超过2个.那只能是,最大乘积为;(2)①证明:先证:.令,则,,且,()0f x '>()e,x ∈+∞()0f x '<()f x ()0,e ()e,+∞()2e 0f =()22e 1ln e 1f '=-=-()()22e ,ef ()()201e y x -=--2e 0x y +-=122e x x +>2120e e x x <<<<12212e 2e x x x x +>⇔>-()()()()21112e 2ef x f x f x f x <-⇔<-()()()2eg x f x f x =--()0,e x ∈()()()2ln 2e 2ln e 2e e 0g x x x '=--≥--=()g x ()0,e ()()e 0g x g <=122e x x +>212e x x +<()f x ()2e ,0()2e x x ϕ=-()()()()()222ln e 3ln e m x f x x x x x x x x ϕ=-=---+=--()2ln m x x '=-()m x e x =()0,e x ∈()()f x x ϕ<()()12m f x f x ==()()2222e m f x x x ϕ=<=-22e m x +<10e x <<()()111111112ln 1ln m f x x x x x x x x ==-=+->2122e x x m x +<+<1,,n x x ⋅⋅⋅120n x x =+⋅⋅⋅+1n p x x =⋅⋅⋅11x =1x 2x 1221x x x +=+122x x x =21x +2i x ≥()21,2,,i x i n ≥=⋅⋅⋅22i i x x =+-2i x -()224i i i x x x -≤⇒≤i x 42222=⨯=+i x 202333333=++++++6321458⨯=1ex x -≥()1e x f x x -=-()1e 1x f x -'=-()10f '=()()10f x f ≥=,,,∴②让n 固定,设n 个正实数之和为20,,,要是最大,最大即可,令,其中,,∴时,单调递增,时,单调递减,而,所以这些正实数乘积的最大值为.1-≥1,2,,i n =⋅⋅⋅1111--≥=1n ≥0n ≥12n a a a n ++⋅⋅⋅+≥1,,n x x ⋅⋅⋅120n x x n n +⋅⋅⋅+≤=1220nn p x x x n ⎛⎫=⋅⋅⋅≤ ⎪⎝⎭20nn ⎛⎫ ⎪⎝⎭20ln nn ⎛⎫⎪⎝⎭()()20ln ln 20ln tg t t t t ⎛⎫==- ⎪⎝⎭*t ∈N ()20ln ln e g t t '=-7t ≤()g t 8t ≥()g t ()()()()87787ln 207ln 78ln 208ln 8ln 8ln 7200g g -=---=-⨯>7207⎛⎫⎪⎝⎭。

2025届无锡市一中高三数学上学期10月考试卷附答案解析

2025届无锡市一中高三数学上学期10月考试卷附答案解析

无锡市第一中学2024-2025学年度第一学期阶段性质量检测试卷高三数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若虚数z 使得2z z +是实数,则z 满足( )A. 实部是12- B. 实部是12C. 虚部是12-D. 虚部是12【答案】A 【解析】【分析】设i z a b =+(,R a b ∈且0b ≠),计算2z z +,由其为实数求得a 后可得.【详解】设i z a b =+(,R a b ∈且0b ≠),222222(i)(i)2i i (2)i z z a b a b a ab b a b a a b ab b +=+++=+-++=+-++,2z z +是实数,因此20ab b +=,0b =(舍去),或12a =-.故选:A .2. 已知集合{}20M x x a =-≤,{}2log 1N x x =≤.若M N ⋂≠∅,则实数a 的取值集合为( )A. (],0-∞ B. (]0,4 C. ()0,∞+ D. [)4,+∞【答案】C 【解析】【分析】解不等式可求得集合,M N ,由交集结果可构造不等式求得结果.【详解】由20x a -≤得:2a x ≤,则,2a M ⎛⎤=-∞ ⎥⎝⎦;由2log 1x ≤得:02x <≤,则(]0,2N =;M N ⋂≠∅ ,02a∴>,解得:0a >,即实数a 的取值集合为()0,∞+.故选:C.3. 已知0a >,0b >,则“1a b +≤”是+≤”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】根据充分条件和必要条件的定义,结合基本不等式进行判断即可.【详解】充分性:∵0a >,0b >,1a b +≤,212a b +≤≤,当且仅当12a b ==时,等号成立,∴211222a b =++≤+⨯=,当且仅当12a b ==时,等号成立,≤.必要性:当1a =,116b =≤成立,但1a b +≤不成立,即必要性不成立,所以“1a b +≤”是≤”的充分不必要条件.故选:A .4. 已知在△ABC 中,3AB =,4AC =,3BAC π∠=,2AD DB =,P 在CD 上,12AP AC AD λ=+ ,则AP BC ⋅的值为( )A. 116-B.72C. 4D. 6【答案】C 【解析】【分析】由,,D P C 三点共线求出λ,再由11,23BC AC AB AP AC AB =-=+ 得出AP BC ⋅的值.【详解】,,D P C 三点共线,111,22λλ∴+==,11,23BC AC AB AP AC AB =-=+ ,221118134263AP BC AC AB AC AB ∴⋅=-⋅-=--= 故选:C5. 设数列{}n a 的前n 项和为n S ,且{}11,n n a S na =+为常数列,则n a =( )A. 113n - B.2(1)n n + C.2(1)(2)++n n D.523n -【答案】B 【解析】【分析】由条件可得11(1)n n n n S na S n a +++=++,然后可得12n n a na n +=+,然后用累乘法求出答案即可.【详解】因为数列{}n n S na +是常数列,所以11(1)n n n n S na S n a +++=++,因为11n n n a S S ++=-,所以1(2)n n na n a +=+,即12n n a na n +=+,所以当2n ≥时1232112321n n n n n n n a a a a a a a a a a a a -----=⋅⋅⋅⋅⋅ 12321211143(1)n n n n n n n n ---=⋅⋅⋯⋅⨯⨯=+-+,1n =时也满足上式,所以2(1)n a n n =+.故选:B6. 已知x 、y 均为正实数,且111226x y +=++,则x y +的最小值为 ( )A. 24 B. 32C. 20D. 28【答案】C 【解析】【分析】转化()()112246()[(2)(2)]422x y x y x y x y +=+++-=++++-++,结合均值不等式,即可得解.【详解】,x y 均为正实数,且111226x y +=++,则116122x y ⎛⎫+= ⎪++⎝⎭(2)(2)4x y x y ∴+=+++-116(2)(2)]422x y x y =++++-++226(2)46(242022y x x y ++=++-≥+-=++ 当且仅当10x y ==时取等号.x y ∴+的最小值为20.故选:C.7. 已知函数()cos f x x =,函数()g x 的图象可以由函数()f x 的图象先向右平移6π个单位长度,再将所得函数图象保持纵坐标不变,横坐标变为原来的1(0)ωω>倍得到,若函数()g x 在3(,22ππ上没有零点,则ω的取值范围是( )A. 4(0,9B. 48[,]99C. 48(,]99D. 8(0,9【答案】A 【解析】【分析】由函数()cos f x x =,根据三角函数的图象变换得到()cos 6g x x πω⎛⎫=-⎪⎝⎭,令()cos 06g x x πω⎛⎫=-= ⎪⎝⎭,结合函数零点存在的条件建立不等式求解即可.【详解】函数()cos f x x =,向右平移6π个单位长度,得cos 6y x π⎛⎫=-⎪⎝⎭,再将所得函数图象保持纵坐标不变,横坐标变为原来的1(0)ωω>倍得到()cos 6g x x πω⎛⎫=- ⎪⎝⎭,令()cos 06g x x πω⎛⎫=-= ⎪⎝⎭,得62x k ππωπ-=+,所以123x k ππω⎛⎫=+ ⎪⎝⎭,若函数()g x 在3(,)22ππ上没有零点,则需3222T πππ>-=,所以22ππω>,所以01ω<<,若函数()g x 在3(,)22ππ上有零点,则123232k ππππω⎛⎫<+< ⎪⎝⎭,当k=0时,得123232ω<<,解得4493ω<<,当k=1时,得153232ω<<,解得101093ω<<,综上:函数()g x 在3(,22ππ上有零点时,4493ω<<或101093ω<<,所以函数()g x 在3(,22ππ上没有零点,409ω<≤.所以ω的取值范围是4(0,]9.故选:A【点睛】本题主要考查三角函数的图象变换及函数零点问题,还考查了转化求解问题的能力,属于难题.8. 已知函数3e ,0()3,0x x f x x x ⎧≤=⎨>⎩,()22g x x x =-+(其中e 是自然对数的底数),若关于x 的方程()(())F x g f x m =-恰有三个不同的零点123,,x x x ,且123x x x <<,则12333x x x -+的最大值为( )A. 31ln4+ B. 41ln3+ C. 3ln 3- D. 3ln 3+【答案】A 【解析】【分析】根据解析式研究()f x 、()g x 的函数性质,由()F x 零点个数知,曲线()g x 与直线y m =的交点横坐标一个在(0,1]上,另一个在(1,)+∞上,数形结合可得01m <<,12()()g t g t m ==且12012t t <<<<,122t t +=,进而可得112123ln ,,333t t tx x x ===代入目标式,再构造函数研究最值即可得解.【详解】由()f x 解析式,在(,0]-∞上()f x 单调递增且值域为(0,1],在(0,)+∞上()f x 单调递增且值域为(0,)+∞,函数()f x 图象如下:所以,()f x 的值域在(0,1]上任意函数值都有两个x 值与之对应,值域在(1,)+∞上任意函数值都有一个x 值与之对应,要使()(())F x g f x m =-恰有三个不同的零点123,,x x x ,则曲线()g x 与直线y m =的交点横坐标一个在(0,1]上,另一个在(1,)+∞上,由2()2g x x x =-+开口向下且对称轴为1x =,由上图知:01m <<,此时12()()g t g t m ==且12012t t <<<<,122t t +=,结合()f x 图象及123x x x <<有1321e 3xx t ==,323x t =,则112123ln ,,333t t tx x x ===,所以11123121433ln ln 233t tx x x t t t -+=-+=-+,且101t <<,令4()ln 23h x x x =-+且01x <<,则1434()33xh x x x -=='-,当3(0,)4x ∈时()0h x '>,()h x 递增;当3(,1)4x ∈时()0h x '<,()h x 递减;所以max 33()()ln 144h x h ==+,故12333x x x -+最大值为3ln 14+.故选:A【点睛】关键点点睛:根据已知函数的性质判断()g x 与y m =的交点横坐标12,t t 的范围,进而得到123,,x x x 与12,t t 的关系,代入目标式并构造函数研究最值.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 设{}n a 是公差为d 的等差数列,n S 是其前n 项的和,且10a <,20002022S S =,则( )A. 0d > B. 20110a = C. 40220S = D. 2011n S S ≥【答案】ACD 【解析】【分析】结合等差数列下标性质和单调性即可解答.【详解】∵20002022S S =,∴201120120a a +=,又∵10a <,则0d >,A 正确;∴201120120,0a a <>,B 错误;∵()()140224022201120124022201102a a S a a +==+=,C 正确;∵201120120,0a a <>,0d >则等差数列{}n a 前2011项均为负数,从2012项开始均为正数,∴2011n S S ≥,D 正确.故选:ACD.10. 若函数f (x )=A sin (ωx +φ),()0,0,0πA ωϕ>><<的部分图象如图中实线所示,记其与x 轴在原点右侧的第一个交点为C ,图中圆C 与()f x 的图象交于M ,N 两点,且M 在y 轴上,则下列说法正确的是( )A. 函数()f x 的最小正周期是πB. 函数()f x 在7ππ,123⎛⎫-- ⎪⎝⎭上单调递减C. 函数()f x 的图象向左平移π12个单位后关于π4x =对称D. 若圆C 的半径为5π12,则()π23f x x ⎛⎫=+ ⎪⎝⎭【答案】AD 【解析】【分析】A 选项,由图象得到π3C x =,进而得到()f x 的最小正周期;B 选项,求出2π2πω==,π3ϕ=,从而得到π5ππ2,363x ⎛⎫+∈-- ⎪⎝⎭,判断出函数不单调;C 选项,求出平移后的解析式,得到当π4x =时,0cosπ2y A ==,故不关于π4x =对称;D 选项,由圆的半径求出π0,4M ⎛⎫⎪⎝⎭,进而代入解析式,求出A ,得到答案.【详解】A 选项,由图象可知,,M N 关于点C 中心对称,故2π0π323C x +==,设()f x 的最小正周期为T ,则1πππ2362T ⎛⎫=--= ⎪⎝⎭,解得πT =,A 正确;B 选项,因为0ω>,所以2π2πω==,故()()sin 2f x A x ϕ=+,将π,03C ⎛⎫⎪⎝⎭代入解析式得,sin 02π3ϕ⎛⎫+= ⎪⎝⎭,因为0πϕ<<,所以2π2π5π333ϕ<+<,故2ππ3ϕ+=,解得π3ϕ=,故()πsin 23f x A x ⎛⎫=+⎪⎝⎭,当7ππ,123x ⎛⎫∈-- ⎪⎝⎭时,π5ππ2,363x ⎛⎫+∈-- ⎪⎝⎭,因为sin y z =在5ππ,36z ⎛⎫∈-- ⎪⎝⎭上不单调,故()πsin 23f x A x ⎛⎫=+⎪⎝⎭在7ππ,123x ⎛⎫∈-- ⎪⎝⎭上不单调,B 错误;C 选项,函数()πsin 23f x A x ⎛⎫=+⎪⎝⎭的图象向左平移π12个单位后,得到s πππ63sin 22in 2cos 2y A x A x A x ⎛⎫⎛⎫=++=+= ⎪ ⎪⎝⎭⎝⎭,当π4x =时,0cos π2y A ==,故不关于π4x =对称,C 错误;D 选项,圆C 的半径为5π12,由勾股定理得4πOM ==,故π0,4M ⎛⎫ ⎪⎝⎭,将其代入()πsin 23f x A x ⎛⎫=+ ⎪⎝⎭中,得4sin 0ππ3A ⎛⎫+= ⎪⎝⎭,解得A =,故()π23f x x ⎛⎫=+ ⎪⎝⎭,D 正确.故选:AD11. 已知函数()()ln ,e x xf xg x x x-==,若存在()120,,x x ∞∈+∈R ,使得()()12f x g x k ==成立,则( )A. 当0k >时,121x x +>B. 当0k >时,21e 2ex x +<C. 当0k <时,121x x +< D. 当0k <时,21e k x x ⋅的最小值为1e-【答案】ACD 【解析】【分析】求出()f x ¢,则可得f(x)在()0,e 上单调递增在()e,+∞上单调递减,则可画出f(x)的图像,利用同构可知()()12f x g x k ==等价于2211ln lne e x x x k x ==,结合图像则可判断AB 选项,当0k <时,则可得21e x x =,()10,1x ∈,构造函数即可判断CD 选项.【详解】()ln xf x x =,()ex x g x =,()21ln x f x x -∴=',∴当0e x <<时,()0f x ¢>,f(x)在()0,e 上单调递增,当e x >时,()0f x ¢<,f(x)在()e,+∞上单调递减,所以()ln xf x x=图像如图所示:又()()12f x g x k ==,即2211ln lne ex x x k x ==,∴当0k >时,要使12x x +越小,则取21e 1x x =→,故有121x x +>,故A 正确;又1x 与2e x 均可趋向于+∞,故B 错误;的当2210,0e <1,e x xk x <<=,且()112110,1,ln x x x x x ∈∴+=+,记l (n )h x x x =+,(0,1)x ∈,1()10h x x'=+>恒成立,即()h x 在(0,1)上单调递增,所以()(1)1h x h <=,即当()112110,1,ln 1x x x x x ∈+=<+成立,故C 正确;21e e kk x k x ⋅=,令()()()e ,0,1e k k g k k k g k k =+'=<,()g k ∴在(),1-∞-单调递减,在()1,0-单调递增,()()11eg k g ∴≥-=-,故D 正确,故选:ACD.点睛】关键点点睛:本题考查利用导数研究函数的单调性与交点,属于难题;画出f(x)的图像,利用同构可知()()12f x g x k ==等价于2211ln lne ex x x k x ==,则可求出判断出AB 选项,构造函数l (n )h x x x =+,(0,1)x ∈则可判断C 选项,构造函数()e ,0,k g k k k =<则可判断D 选项.三、填空题:本题共3小题,每小题5分,共15分.12. 已知平面向量(2,)a m = ,(2,1)b = ,且a b ⊥.则||a b += ____________.【答案】5【解析】【分析】根据a b ⊥得到220m ⨯+=,解得4m =-,然后利用坐标求模长即可.【详解】因为a b ⊥ ,所以220m ⨯+=,解得4m =-,所以()4,3a b +=- ,5a b +== .故答案为:5.13. 复平面上两个点1Z ,2Z 分别对应两个复数1z ,2z ,它们满足下列两个条件:①212i z z =⋅;②两点1Z ,2Z 连线的中点对应的复数为13i -+,若O 为坐标原点,则12Z OZ △的面积为______.【答案】8【解析】【分析】令()1,Z m n ,()2,Z a b ,且,,,R a b m n ∈,结合条件求参数,进而确定12,OZ OZ的位置关系及模【长,即可求12Z OZ △的面积.【详解】令()1,Z m n ,()2,Z a b ,且,,,R a b m n ∈,由212i z z =⋅,则i (i)2i a b m n +=+⋅,即i 22i a b n m +=-+,故22a nb m =-⎧⎨=⎩①,由两点1Z ,2Z 连线的中点对应的复数为13i -+,则1232a mb n +⎧=-⎪⎪⎨+⎪=⎪⎩,即26a m b n +=-⎧⎨+=⎩②,联立①②,可得44a b =-⎧⎨=⎩,且22m n =⎧⎨=⎩,即()12,2OZ = ,()24,4OZ =- ,由2142420OZ OZ ⋅=-⨯+⨯=,即12OZ OZ ⊥ ,故12Z OZ △为直角三角形,又1OZ =,2OZ = 12Z OZ △的面积为182⨯=.故答案为:814. 若函数()21ln 2f x x ax b x =-+存在极大值点0x ,且对于a 的任意可能取值,恒有极大值()00f x <,则b 的最大值为__________.【答案】3e 【解析】【分析】根据极值与导数()2(0)x ax bf x x x'-+=>的关系以及题意得20x ax b -+=有两个不相等的正根12,x x,故而利用辨别式和韦达定理求得a >(01x x =∈以及()f x在(上的单调性,又由()00f x '=得()20001ln 2f x x b b x =--+,从而将原命题转化为()21ln 02g x x b x b =-+-<在(上恒成立,接着研究()g x在(上的最值即可得解.【详解】由题意得()2(0)b x ax bf x x a x x x'-+=-+=>,因为()f x 存在极大值点0x ,所以20x ax b -+=有两个不相等的正根,则有21212=4000a b x x a x x b ⎧->⎪+=>⎨⎪=>⎩ ,由此可得a >120x x <=<=,所以()()()()()12120,,,0;,,0x x x f x x x x f x ''∈+∞>∈< ,所以()f x 在()10,x 上单调递增,在()12,x x 上单调递减,在()2,x +∞上单调递增,从而可得()f x 的极大值点为10x x =,因为1x==22a x=<=<<=,所以(0x ∈,且()f x 在()00,x 上单调增,在(0x 上单调减,当0x x =时()f x 取得极大值()0f x ,又由()00f x '=得2000x ax b -+=,所以()()2222000000000111ln ln ln 222f x x ax b x x x b b x x b b x =-+=-++=--+,令()(21ln ,2g x x b x b x =-+-∈,则原命题转化为()0g x <在(上恒成立,求导得()20b b x g x x x x-=-+=>',所以()y g x =在(上单调增,故()13ln 022g x gb b b <=-≤,即ln 3b ≤,从而得30e b <≤,所以b 最大值为3e .故答案为:3e .【点睛】关键点睛:解决本题关键点1在于抓住极值与导数()2(0)x ax bf x x x'-+=>的关系结合一元二的次函数的性质求得a >(01x x =∈以及()f x 在(上的单调性,关键点2是利用()00f x '=求得极大值()20001ln 2f x x b b x =--+,从而将原命题转化为()21ln 02g x x b x b =-+-<在(上恒成立,于是研究()g x 在(上的最值得解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知向量()cos ,sin m x x =-,()cos ,sin n x x x =- ,R x ∈.设()f x m n =⋅ .(1)求函数()f x 的最小正周期;(2)若()2413f x =,且ππ62x ≤≤,求sin 2x 的值.【答案】(1)π(2【解析】【分析】(1)利用向量的坐标运算求出()f x m n =⋅,然后利用三角公式整理为()sin y A ωx φ=+的形式,就可以求出周期了;(2)先通过πsin 26⎛⎫+ ⎪⎝⎭x 求出πcos 26x ⎛⎫+ ⎪⎝⎭,再通过ππsin 2sin 266x x ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦展开计算即可.【小问1详解】()()2cos sin sin f x x x x x=--22cos sin cos x x x x =-+2cos2x x =+2sin 26x π⎛⎫=+ ⎪⎝⎭,所以()f x 的最小正周期为π;【小问2详解】由(1)得π12sin 2613x ⎛⎫+= ⎪⎝⎭,由ππ62x ≤≤得ππ72π266x ≤+≤,所以π5cos 2613x ⎛⎫+==- ⎪⎝⎭,则ππππππsin 2sin 2sin 2cos cos 2sin 666666x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦125113132=⨯=.16. 已知数列{}n a 满足11a =,21a =,()123,n n n a a a n n *---=≥∈N ,nS表示数列{}n a 的前n 项和(1)求证:21n n a S -=+(2)求使得211100k k a S --≥成立的正整数()3,k k k *≥∈N 的最大值【答案】(1)证明见解析 (2)11【解析】分析】(1)根据累加法即可证明;(2)结合数列特点根据穷举法即可求解.【小问1详解】证明:由12n n n a a a ---=得12n n n a a a ---=123n n n a a a ----=234n n n a a a ----=321a a a -=累加得223412n n n n n a a a a a a S -----=+++⋅⋅⋅+=于是2221n n n a S a S --=+=+.【小问2详解】解:由121a a ==,21n n n a a a --=+,得:对任意n *∈N ,210n n n a a a --=+>,进而120n n n a a a ---=>,故数列{}n a 单调递增,由(1)可知21n n a S -=+,故2211101k k k k a S S a ---==>-,于是只需求使得111100k a >-最大的正整数k ,【从而只需求使得101k a <最大的正整数k ,由121a a ==,21n n n a a a --=+,列举得:11a =,21a =,32a =,43a =,55a =,68a =,713a =,821a =,934a =,1055a =,1189a =,12144a =结合数列{}n a 单调递增,于是使得101k a <最大的正整数k 为11.17. 已知函数()3231f x x x ax =+++,1x ,2x 分别是()f x 的极大值点和极小值点.(1)若0a =,()()13f x f x =,13x x ≠,求132x x +的值;(2)若()()125f x f x +≤,求a 的取值范围.【答案】(1)1323x x +=- (2)132a ≤<【解析】【分析】(1)对()f x 求导,求出1x 和2x ,利用()()135f x f x ==,求出3x ,从而求出答案;(2)对()f x 求导,根据1x ,2x 分别是()f x 的极大值点和极小值点,得到1x ,2x 是方程()0f x '=的两个不相等的实根,化简()()12f x f x +,最终求出答案.【小问1详解】当0a =时,()3231f x x x =++,所以()()23632f x x x x x '=+=+,令()0f x '=,得0x =或2x =-.列表如下:x(),2-∞-2-()2,0-0()0,∞+()f x '+-+()f x极大值极小值所以()f x 在2x =-处取极大值,即12x =-,且()15f x =.由()()135f x f x ==,所以3233315x x ++=,即3233340x x +-=,所以()()233120x x -+=.因为13x x ≠,所以31x =,所以1323x x +=-.【小问2详解】由()236f x x x a '=++,因为1x ,2x 分别是()f x 的极大值点和极小值点,所以1x ,2x 是方程()0f x '=的两个不相等的实根,且36120a ∆=->,即3a <,所以12122,.3x x ax x +=-⎧⎪⎨=⎪⎩因为()()()()3232121112223131f x f x x x ax x x ax +=+++++++()()()()221212121212123322x x x x x x x x x x a x x ⎡⎤⎡⎤=++-++-+++⎣⎦⎣⎦()()()()22223322226233a a a a ⎡⎤⎡⎤=---⨯+--⨯+⨯-+=-⎢⎥⎢⎥⎣⎦⎣⎦,因为()()125f x f x +≤,所以625a -≤,解得12a ≥.综上,132a ≤<.18. 如图,在ABC V 中,2π3BAC ∠=,点P 在边BC 上,且,2AP AB AP ⊥=.(1)若PC =,求PB ﹔(2)求ABC V 面积的最小值.【答案】(1(2【解析】【分析】(1)利用正弦定理与余弦定理求解即可;(2)设ABP θ∠=,则π3ACB θ∠=-,求出2sin BP θ=,1=πsin 3PC θ⎛⎫- ⎪⎝⎭,所以三角形ABC 面积的可表示为只含θ的函数,利用二次函数的性质可得最大值.【小问1详解】因为2πππ2,326AP PC CAP ==∠=-=,所以在ACP △中由余弦定理可得2222cos PC AP AC AP AC CAP =+-⋅∠,所以21344AC AC =+-,解得AC =,由正弦定理得sin sin PA PC C CAP =∠,即22in 1s C =sin C =,所以cos C ==,()sin sin sin cos cos sin B BAC C BAC C BAC C =∠+=∠+∠=在三角形ABC 中由正弦定理得:sin sin BC AC BAC B=∠=,解得BC =PB BC PC =-=【小问2详解】设ABP θ∠=,则π3ACB θ∠=-,由于2AP =,则2sin sin AP BP θθ==,在ACP △中由正弦定理得:°πsin 30sin 3AP PC θ=⎛⎫- ⎪⎝⎭,解得1=πsin 3PC θ⎛⎫- ⎪⎝⎭,过A 点做BC 的垂线,交BC 于M 点,设三角形的面积为S,则π2PAM BAM ABM BAM ∠+∠=∠+∠=,所以PAM ABM θ∠=∠=,所以cos 2cos AM AP θθ==,所以121cos cos π2sin sin 3S AM BC θθθθ⎛⎫ ⎪⎪=⨯⨯=+=⎛⎫ ⎪- ⎪⎪⎝⎭⎝⎭cos θ===≥ABC.19. 定义函数()()()23*1123nn n x x xf x x n n=-+-++-∈N .(1)求曲线()n y f x =在2x =-处的切线斜率;(2)若()22e xf x k -≥对任意x ∈R 恒成立,求k 取值范围;(3)讨论函数()n f x 的零点个数,并判断()n f x 是否有最小值.(注:e 2.71828= 是自然对数的底数)【答案】(1)12n - (2)(],1-∞- (3)答案见解析【解析】【分析】(1)根据导数的几何意义求解即可;(2)通过参变分离以及求解函数的最值得出结果;(3)分成n 为奇数,n 为偶数两种情况,并借助导数不等式分别讨论函数()n f x 的零点个数及最值.【小问1详解】由()()2111nn n f x x x x -'=-+-++- ,可得()2112212221212nn n n f --'-=-----=-=-- ,的所以曲线()n y f x =在2x =-处的切线斜率12n -.【小问2详解】若()22e xf x k -≥对任意x ∈R 恒成立,所以()22122e e x xx x f x k --+-≤=对任意x ∈R 恒成立,令212()e xx x g x --+=,则()4()2ex x x g x -'=,由()0g x '<解得0x <,或4x >;由()0g x '>解得04x <<,故在(),0-∞上单调递减,在()0,4上单调递增,在()4,+∞上单调递减,又(0)1g =-,且当4x >时,()0g x >,故()g x 的最小值为(0)1g =-,故1k ≤-,即k 的取值范围是(],1-∞-.【小问3详解】()()1111n f n '-=----=- ,当1x ≠-时,()()()()()21111111n nnn n x x f x x x x x x -----'=-+-++-=-=--+ ,因此当n 为奇数时,()2311231n nn x x x xf x x n n-=-+-++-- ,此时()1,1,1, 1.n n x x f x x n x ⎧--≠-⎪=-'+⎨⎪-=⎩则()0n f x '<,所以()n f x 单调递减,此时()010n f =>,()11f x x =-显然有唯一零点,无最小值,当2n ≥时,()2312222212231n nn f n n -=-+-++-- ()2123212220321n n n n -⎛⎫⎛⎫=-+-+⋅⋅⋅+-< ⎪ ⎪-⎝⎭⎝⎭,且当2x >时,()()2311231n n n x x x x f x x n n -⎛⎫⎛⎫=-+-++-⎪ ⎪-⎝⎭⎝⎭ ()21311321n x x n x x x x n n -⎛⎫⎛⎫=-+-++-<- ⎪⎪-⎝⎭⎝⎭ ,由此可知此时()n f x 不存在最小值,从而当n 为奇数时,()n f x 有唯一零点,无最小值,当2n k =()*k ∈N 时,即当n 为偶数时,()2311231n nn x x x xf x x n n-=-+-+-+- ,此时()1,1,1, 1.n n x x f x x n x ⎧-≠-⎪=-'+⎨⎪-=⎩,由()0n f x '>,解得1x >;由()0n f x '<,解得1x <,则()n f x 在(],1-∞上单调递减,在()1,+∞上单调递增,故()n f x 的最小值为()()1111111102321n f n n n⎛⎫⎛⎫=-+-++-+> ⎪ ⎪--⎝⎭⎝⎭ ,即()()10n n f x f ≥>,所以当n 为偶数时,()n f x 没有零点,即当n 为偶数时,()n f x 没有零点,存在最小值,综上所述,当n 为奇数时,()n f x 有唯一零点,无最小值;当n 为偶数时,()n f x 没有零点,存在最小值.【点睛】方法点睛:恒成立问题的等价转化法则:(1)()0f x >恒成立()min ()0,0f x f x ⇔><恒成立max ()0f x ⇔<;(2)()f x a >恒成立()min (),f x a f x a ⇔><恒成立max ()f x a ⇔<;(3)()()f x g x >恒成立()()min []0f x g x ⇔->,()()f x g x <恒成立()()max []0f x g x ⇔-<;(4)()()1212,,x M x N f x g x ∀∈∀∈>恒成立()()12min max f x g x ⇔>.。

山东省泰安第一中学2024-2025学年高三上学期10月月考数学试题

山东省泰安第一中学2024-2025学年高三上学期10月月考数学试题

山东省泰安第一中学2024-2025学年高三上学期10月月考数学试题一、单选题1.设集合{}{}21,3,2,1,M a N a =+=,若{}1,4M N =I ,则a =( ) A .2- B .0 C .2 D .2±2.已知复数z 满足23i z z +=+,则3i z +=( ) A .12i + B .12i - C .2i + D .2i -3.在平行四边形ABCD 中,AB a AD b ==u u u r r u u u r r ,,点E 为CD 中点,点F 满足2AF FB=u u u r u u u r ,则EF =u u u r ( )A .16a b -r rB .1233a b +r rC .1233a b --r rD .1233a b -+r r 4.已知0,0a b >>,则“2a b +>”是“222a b +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.在ABC V 中,内角,,A B C 的对边分别为,,a b c,已知a ()(()sin sin sin sin A B b c B C -=+,则ABC V 外接圆的半径为( ) A .1 BC .2 D6.某农业研究所对玉米幼穗的叶龄指数R 与可见叶片数x 进行分析研究,其关系可以用函数15e ax R =(a 为常数)表示.若玉米幼穗在伸长期可见叶片为7片,叶龄指数为30,则当玉米幼穗在四分体形成期叶龄指数为82.5时,可见叶片数约为( )(参考数据:ln20.7≈,ln5.5 1.7≈)A .15B .16C .17D .187.函数3214,0,()3cos ,0,x ax a x f x ax x x ⎧+-+>⎪=⎨⎪+≤⎩在R 上单调,则a 的取值范围是( )A .[1,3)B .(1,3]C .[]1,3D .(1,3)8.已知函数()()sin f x x ωθ=+π20,||ωθ⎛⎫< ⎪>⎝⎭,(0)f =,函数()f x 在区间2π,36π⎛⎫- ⎪⎝⎭上单调递增,在区间5π0,6⎛⎫ ⎪⎝⎭上恰有1个零点,则ω的取值范围是( ) A .4,25⎛⎤ ⎥⎝⎦B .45,54⎛⎤ ⎥⎝⎦C .4,15⎛⎤ ⎥⎝⎦D .5,24⎛⎤ ⎥⎝⎦二、多选题9.下列选项正确的是( )A .命题“0x ∃>,210x x ++≥”的否定是0x ∀≤,210x x ++<B .满足{}{}11,2,3M ⊆⊆的集合M 的个数为4C .已知lg3x =,lg5y =,则lg 452x y =+D .已知正方形OABC 的边长为1,则()()5OA OB CA CB +⋅+=u u u r u u u r u u u r u u u r 10.已知函数π()sin 33f x x ⎛⎫=+ ⎪⎝⎭,下列说法正确的是( ) A .()f x 的最小正周期为2π3B .点π,06⎛⎫ ⎪⎝⎭为()f x 图象的一个对称中心C .若()(R)f x a a =∈在ππ,189x ⎡⎤∈-⎢⎥⎣⎦1a ≤<D .若()f x 的导函数为()f x ',则函数()()y f x f x =+'11.已知函数()e ,R x f x ax x =+∈,则( )A .当0a >时,函数()f x 在R 上一定单调递增B .当3a =-时,函数()f x 有两个零点C .当0a <时,方程()1f x a=一定有解 D .当0a =时,()ln 2f x x ->在()0,∞+上恒成立三、填空题12.已知函数()()121x f x a a =-∈-R 为奇函数,则实数a 的值为. 13.已知π02βα<<<,()4cos 5αβ-=,1cos cos 2αβ=,则11tan tan αβ-=.14.已知函数()3,01,ln ,1,x x f x x x ≤≤⎧=⎨>⎩若存在实数12,x x 满足120x x ≤<,且()()12f x f x =,则216x x -的取值范围为.四、解答题15.如图,在四边形ABCD 中,2AB =,AC =AD =2π3CAD CBA ∠∠==.(1)求cos BCA ∠;(2)求BD .16.已知函数32()31f x x x ax =-+-.(1)若()f x 的图缘在点00(,())x f x 处的切线经过点(0,0),求0x ;(2)12,x x 为()f x 的极值点,若()()122f x f x +>-,求实数a 的取值范围.17.已知函数2()2sin cos f x x x x =+R x ∈,且将函数()f x 的图象向左平移π(0)2ϕϕ<<个单位长度得到函数()g x 的图象.(1)求()f x 的最小正周期和单调递增区间;(2)若函数()g x 是奇函数,求ϕ的值;(3)若1cos 3ϕ=,当x θ=时函数()g x 取得最大值,求π12f θ⎛⎫+ ⎪⎝⎭的值. 18.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,满足3cos 5c a B b =+. (1)求cos A 的值;(2)当BC 与BC 边上的中线长均为2时,求ABC V 的周长;(3)当ABC V 内切圆半径为1时,求ABC V 面积的最小值. 19.已知函数()e ,()ln (,)x f x a g x x b a b ==+∈R .(1)当1b =时,()()f x g x ≥恒成立,求实数a 的取值范围;(2)已知直线12l l 、是曲线()y g x =的两条切线,且直线12 l l 、的斜率之积为1.(i )记0x 为直线12 l l 、交点的横坐标,求证:01x <; (ii )若12 l l 、也与曲线()y f x =相切,求,a b 的关系式并求出b 的取值范围.。

陕西省西安2024-2025学年高三上学期10月月考数学试题含答案

陕西省西安2024-2025学年高三上学期10月月考数学试题含答案

陕西省西安高2025届高三第一次质量检测考试数学试题(答案在最后)(时间:120分钟满分:150分命题人:)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}(){}2210,log 1A x xB x x x =-≤≤=-≤,则A B = ()A.{}10x x -≤≤ B.{}10x x -<≤ C.{}10x x -≤< D.{}10x x -<<【答案】C 【解析】【分析】先根据对数函数的单调性解不等式化简集合B ,然后利用交集运算求解即可.【详解】因为()222log 1log 2x x -≤=,所以202x x <-≤,解得12x <≤或10x -≤<,故{10B x x =-≤<或}12x <≤,又{}10A x x =-≤≤,所以A B = {}10x x -≤<.故选:C2.“01a <<”是“函数()()log 2a f x a x =-在(),1-∞上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据对数函数和一次函数的单调性,再结合复合函数“同增异减”的判断法则求得对应的a 的取值范围即可得出结论.【详解】易知()()log 2a f x a x =-的定义域为(),2a -∞,且函数2y a x =-为单调递减函数;根据复合函数单调性可知若函数()()log 2a f x a x =-在(),1-∞上单调递增,可得0121a a <<⎧⎨≥⎩,解得112a ≤<;显然112a a ⎧⎫|≤<⎨⎬⎩⎭是{}|01a a <<的真子集,所以“01a <<”是“函数()()log 2a f x a x =-在(),1-∞上单调递增”的必要不充分条件.3.函数()()2e esin xxf x x x -=-+-在区间[ 2.8,2.8]-的图象大致为()A.B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x ---=-+--=-+-=,又函数定义域为[]2.8,2.8-,故该函数为偶函数,可排除A 、C ,又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=-+->-+-=-->-> ⎪ ⎪⎝⎭⎝⎭,故可排除D.故选:B.4.已知521log 2,log ,2ba b a c ⎛⎫=== ⎪⎝⎭,则()A.c b a >>B.c a b>> C.a b c>> D.b c a>>【答案】B 【解析】【分析】判断出01a <<,0b <,1c >,即可求解.【详解】555log 1log 2log ,0151a a <=<∴<=< 22log log 10b a =<= ,故0b <;1122bc ⎛⎫⎛⎫=> ⎪ ⎪⎝⎭⎝⎭,故1c >,故c a b >>.5.已知定义在R 上的函数()f x 满足()()32f x f x +=,且()21f =-,则()100f =()A.1-B.1C.3- D.3【答案】C 【解析】【分析】由条件推得函数的周期为4,结合函数的周期,即可求解.【详解】由()()32f x f x +=,可得()()()342f x f x f x +==+,所以()f x 的周期为4,则()()()3100032f f f ===-.故选:C.6.已知函数()e 1,0,2,0,x x f x x x⎧-≥⎪=⎨<⎪⎩()1g x kx =-,若关于x 的方程()()f x g x =有2个不相等的实数解,则实数k 的取值范围是()A.{}e B.[)e,+∞ C.{}1,0e 8⎛⎫- ⎪⎝⎭D.{}1,e 8⎛⎫-∞- ⎪⎝⎭【答案】C 【解析】【分析】根据题意,转化为()y f x =与1y kx =-的图象有2个交点,分0k =、0k <和0k >,三种情况讨论,结合导数的几何意义与函数的图象,即可求解.【详解】由题意,关于x 的方程()()f x g x =有2个不相等的实数解,即()y f x =与1y kx =-的图象有2个交点,如图所示,当0k =,直线1y =-与2y x=的图象交于点()2,1--,又当0x ≥时,e 10x -≥,故直线1y =-与e 1x y =-(0x ≥)的图象无公共点,故当0k =时,()y f x =与1y kx =-的图象只有一个交点,不合题意;当0k >,直线1y kx =-与曲线e 1x y =-(0x ≥)相切时,此时()y f x =与1y kx =-的图象有2个交点,设切点()00,e 1xP x -,则00e x x x k y =='=,又由1y kx =-过点()0,1-,所以()000e 11e 0x x x ---=-,解得01x =,所以e =k ;当0k <时,若21kx x=-,则220kx x --=,由180k ∆=+=,可得18k =-,所以当18k =-时,直线1y kx =-与2y x=的图象相切,由图得当108k -<<时,直线1y kx =-与()y f x =的图象有2个交点.综上所述,实数k 的取值范围是{}1,0e 8⎛⎫- ⎪⎝⎭.故选:C .7.已知函数3()1f x x x =-+,则()A.()f x 有三个极值点B.()f x 有三个零点C.点(0,1)是曲线()y f x =的对称中心D.直线2y x =是曲线()y f x =的切线【答案】C 【解析】【分析】求导后判断单调性,从而求得极值点即可判断A ;利用单调性结合零点存在性定理即可判断B ;令3()h x x x =-,得到()h x 是奇函数,(0,0)是()h x 的对称中心,再结合图象的平移规律即可判断C ;由导数的几何意义求得切线方程即可判断D.【详解】对于A ,由题,()231f x x '=-,令()0f x '>得3x >或3x <-,令()0f x '<得33x -<<,所以()f x在(,3-∞-,)3+∞上单调递增,(,)33-上单调递减,所以3x =±是极值点,故A 不正确;对应B ,因323()1039f -=+>,323()1039f =->,()250f -=-<,所以,函数()f x 在3,3⎛⎫-∞ ⎪ ⎪⎝⎭上有一个零点,当3x ≥时,()03f x f ⎛≥> ⎝⎭,即函数()f x在3⎛⎫∞ ⎪ ⎪⎝⎭上无零点,综上所述,函数()f x 有一个零点,故B 错误;对于C ,令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-,则()h x 是奇函数,(0,0)是()h x 的对称中心,将()h x 的图象向上移动一个单位得到()f x 的图象,所以点(0,1)是曲线()y f x =的对称中心,故C 正确;对于D ,令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+,故D 错误.故选:C8.已知函数24,0()log ,0x x f x x x x ⎧+>⎪=⎨⎪<⎩,2()g x x ax b =++,若方程()0g f x =⎡⎤⎣⎦有且仅有5个不相等的整数解,则其中最大整数解和最小整数解的和等于()A.28- B.28C.14- D.14【答案】A 【解析】【分析】利用换元法结合一元二次方程根的分布,数形结合计算即可.【详解】先作出()f x 的大致图象,如下令()f x t =,则()20g t t at b =++=,根据()f x 的图象可知:要满足题意必须()0g t =有两个不等根()1212,t t t t <,且()1f x t =有两个整数根,()2f x t =有三个整数根,结合对勾函数和对数函数的图象与性质知,两函数14,y t y x x==+相切时符合题意,因为4424x x x x+≥⋅=,当且仅当2x =时取得等号,又()()22log log 0y x x x ==-<,易知其定义域内单调递减,即()14f x t ==,此时有两个整数根2x =或16x =-,而要满足()2f x t =有三个整数根,结合()f x 图象知必有一根小于2,显然只有1x =符合题意,当1x =时有()15f =,则25t =,解方程45x x+=得25t =的另一个正根为4x =,又()2log 5x -=⇒32x =-,此时五个整数根依次是32,16,1,2,4x =--,显然最大的根和最小的根和为()43228+-=-.故选:A二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列导数运算正确的是()A.211()x x '=-B.(e )e x x--'= C.21(tan )cos x x'=D.1(ln )x x'=【答案】ACD 【解析】【分析】利用求导公式逐项判断即可.【详解】对于A ,211(x x '=-,故A 正确;对于B ,(e )e x x --'=-,故B 错误;对于C ,2222sin cos sin 1(tan )()=cos cos cos x x x x x x x +''==,故C 正确;对于D ,()(ln ),01(ln )ln ,0x x x x x x '>⎧⎪==⎨⎡⎤-<⎪⎣⎦⎩'',故D 正确.故选:ACD10.甲乙丙等5人的身高互不相同,站成一排进行列队训练,则()A.甲乙不相邻的不同排法有48种B.甲乙中间恰排一个人的不同排法有36种C.甲乙不排在两端的不同排法有36种D.甲乙丙三人从左到右由高到矮的不同排法有20种【答案】BCD 【解析】【分析】根据排列和组合的定义、结合捆绑法逐一判断即可.【详解】A :甲乙不相邻的不同排法有3234A A 72=种,所以本选项不正确;B :甲乙中间恰排一个人的不同排法有123323C A A 36=种,所以本选项正确;C :甲乙不排在两端的不同排法有2333A A 36=种,所以本选项正确;D :甲乙丙三人从左到右由高到矮的不同排法有5533A 20A =种,所以本选项正确.故选:BCD11.已知0c b a <<<,则()A.ac b bc a +<+B.333b c a +<C.a c ab c b +<+D.>【答案】ABD 【解析】【分析】选项ABD ,利用不等式的性质计算即可,选项C ,因为b c +可正可负,所以不容易化简解决,一般当乘或除以一个不知正负的数,基本上错误,我们只需要找反例即可.【详解】因为0c b a <<<,所以ac bc ac b bc a <⇒+<+,故A 正确;因为0c b a <<<,所以333333,0b a c b c a <<⇒+<,故B 正确;因为0c b a <<<,不妨令3,2,1a b c ===-,得32,2a c a b c b +==+,此时a c ab c b +>+,故C 错误;因为0c b a <<<0>>⇒<>,故D 正确.故选:ABD三、填空题:本题共3小题,每小题5分,共15分.12.某学校组织学生参加数学测试,成绩的频率分布直方图如下,数据的分组依次是[20,40),[40,60),[60,80),[80,100],则可估计这次数学测试成绩的第40百分位数是_________.【答案】65【解析】【分析】利用百分位数的定义求解.【详解】解:成绩在[20,60)的频率是()0.0050.01200.3+⨯=,成绩在[20,80)的频率为0.30.02200.7+⨯=,所以第40百分位数一定在[60,80)内,所以这次数学测试成绩的第40百分位数是0.40.36020650.4-+⨯=,故答案为:6513.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则a =__________.【答案】ln 2【解析】【分析】先求出曲线e x y x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214.51(2)y x y x ⎛⎫-+⎪⎝⎭的展开式中,23x y 的系数为__________.【答案】40【解析】【分析】根据二项式的通项公式进行求解即可.【详解】二项式5(2)x y +的通项公式为()515C 2rrr r T x y -+=⋅⋅,所以23x y 的系数为()233255C 21C 240⋅+-⋅⋅=,故答案为:40四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数3212()232a f x x x ax +=-+.(1)若1a =,求函数()f x 的极值;(2)讨论函数()f x 的单调性.【答案】(1)极小值为23,极大值为56(2)答案见解析【解析】【分析】(1)对()f x 求导,分析单调性,再根据极值定义即可求解;(2)()()(2)f x x a x =--',对a 分2a =,2a >和2a <讨论单调性即可.【小问1详解】3213()2,()(1)(2)32f x x x x f x x x =-+'=--.所以<1或>2时,'()0f x >,12x <<时,'()0f x <,则()f x 在(1,2)上递减,在(,1),(2,)-∞+∞递增,所以()f x 的极小值为2(2)3f =,极大值为5(1)6f =.【小问2详解】()()(2)f x x a x =--',当2a =时,'()0f x ≥,所以()f x 在(,)-∞+∞上递增,当2a >时,2x <或x a >时,'()0f x >;2x a <<时,'()0f x <,所以()f x 在(,2),(,)a -∞+∞上递增,在(2,)a 上递减,当2a <时,x a <或2x >时,'()0f x >;2a x <<时,'()0f x <,所以()f x 在(,),(2,)a -∞+∞上递增;在(,2)a 上递减.16.为践行“更快更高更强”的奥林匹克格言,落实全民健身国家战略.某校高三年级发起了“发扬奥林匹克精神,锻炼健康体魄”的年度主题活动,经过一段时间后,学生的身体素质明显提高.为了解活动效果,该年级对开展活动以来近6个月体重超重的人数进行了调查,调查结果统计如图,根据上面的散点图可以认为散点集中在曲线e bx a y +=的附近,请根据下表中的数据求出月份x123456体重超标人数y987754483227ln z y = 4.58 4.34 3.98 3.87 3.46 3.29(1)该年级体重超重人数y 与月份x 之间的经验回归方程(系数ˆ,a b的最终结果精确到0.01);(2)预测从开展活动以来第几个月份开始该年级体重超标的人数降至10人以下.附:经验回归方程:ˆˆˆy bx a =+中,1221ˆn i i i n i i x y nx yb x nx ==-⋅=-∑∑,ˆˆa y bx =-;参考数据:6123.52i i z ==∑,6177.72i i i x z ==∑,62191i i x ==∑,ln10 2.30.≈【答案】(1)0.26 4.83e x y -+=(2)从第十个月开始【解析】【分析】(1)由计算公式与参考数据,求出ˆ,a b 则可得回归方程;(2)根据经验回归方程建立不等式0.26 4.83e 10x -+<,解出不等式则可预测.【小问1详解】由e bx a y +=得ln z y bx a ==+,由题意得1(123456) 3.56x =+++++=,11123.52 3.9266n i i z z ===⨯=∑,所以6162221677.726 3.5 3.92ˆ0.26916 3.56i ii i i x z x zb x x ==-⋅-⨯⨯==≈--⨯-∑∑,ˆˆ 3.92(0.26) 3.5 4.83a z bx =-≈--⨯=,所以ˆˆln 0.26 4.83z y x ==-+,即y 关于x 的经验回归方程为0.26 4.83e x y -+=【小问2详解】令0.26 4.83ln10 2.3e 10e e x -+<=≈,所以0.26 4.83 2.3x -+<,又由于x ∈N ,所以解得10x ≥,且x *∈N ,所以从第十个月开始,该年级体重超标的人数降至10人以下.17.已知函数()log (1)a f x x =+,()()()2log 2a g x x t t =+∈R ,0a >,且 1.a ≠(1)当01a <<且1t =-时,求不等式()()f x g x ≤的解集;(2)若函数()2()21f x F x a tx t =+-+在区间(1,2]-上有零点,求t 的取值范围.【答案】(1)15|24x x ⎧⎫<≤⎨⎬⎩⎭(2)2t ≤-或224t +≥【解析】【分析】(1)当1t =-时,将不等式()()f x g x ≤转化为()()2log 1log 21a a x x +≤-,利用对数函数的单调性结合一元二次不等式求解即可;(2)解法一:分离参数,将原函数的零点问题转化为22(2x t x x +=-≠-且12)x -<≤有根,设2U x =+(14U <≤且2U ≠+,则124t U U=--+,利用对勾函数的单调性求解值域即可求解;解法二:先判断0t =时,不合题意,当0t ≠时,根据二次函数零点分布分类讨论,列不等式组求解即可.【小问1详解】当1t =-时,()()2log 1log 21a a x x +≤-,又0<<1,则+1≥(2−1)22−1>0,∴42−5≤0>12⇒12<≤54,∴不等式()()f x g x ≤的解集为15|24x x ⎧⎫<≤⎨⎬⎩⎭;【小问2详解】解法一:由题设()222F x tx x t =+-+,由()0F x =,得22(2x t x x +=-≠-且12)x -<≤,则()()222422x t x x +=-+-++,设2U x =+(14U <≤且2U ≠+,则212424U t U U U U=-=-+--,令2()U U Uϕ=+,当1U <<时,()U ϕ单调递减,当4U <<时,()U ϕ单调递增,且()()913,42ϕϕϕ===,故()92U ϕ≤≤且() 4.U ϕ≠12402U U ∴-≤--<或2044U U <--≤-t 的取值范围为:2t ≤-或2.4t ≥解法二:()222F x tx x t =+-+,若0t =,则()2F x x =+在(1,2]-上没有零点.下面就0t ≠时分三种情况讨论:①方程()0F x =在(1,2]-上有重根12x x =,则0∆=,解得24t ±=,又1212x x t ==-(]1,2∈-⇒224t +=;②在(1,2]-上只有一个零点,且不是方程的重根,则()()120F F -<,解得2t <-或1t >,经检验2t =-或1t =时,在(1,2]-上都有零点,则2t ≤-或 1.t ≥③方程()0F x =在(1,2]-上有两个相异实根,则有>0Δ>0−1<−12<2o −1)>0o2)>0或<0Δ>0−1<−12<2o −1)<0o2)<0,解得214t +<<,综上可知:t 的取值范围为2t ≤-或2.4t ≥18.某企业对某品牌芯片开发了一条生产线进行试产.其芯片质量按等级划分为五个层级,分别对应如下五组质量指标值:[45,55),[55,65),[65,75),[75,85),[85,95].根据长期检测结果,得到芯片的质量指标值X 服从正态分布()2,N μσ,并把质量指标值不小于80的产品称为A 等品,其它产品称为B 等品.现从该品牌芯片的生产线中随机抽取100件作为样本,统计得到如图所示的频率分布直方图.(1)根据长期检测结果,该芯片质量指标值的标准差s 的近似值为11,用样本平均数x 作为μ的近似值,用样本标准差s 作为σ的估计值.若从生产线中任取一件芯片,试估计该芯片为A 等品的概率(保留小数点后面两位有效数字);(①同一组中的数据用该组区间的中点值代表;②参考数据:若随机变量ξ服从正态分布()2,N μσ,则()0.6827,(22)0.9545P P μσξμσμσξμσ-<<+≈-<<+≈,(33)0.9973P μσξμσ-<<+≈.)(2)(i )从样本的质量指标值在[45,55)和[85,95]的芯片中随机抽取3件,记其中质量指标值在[85,95]的芯片件数为η,求η的分布列和数学期望;(ii )该企业为节省检测成本,采用随机混装的方式将所有的芯片按100件一箱包装.已知一件A 等品芯片的利润是(124)m m <<元,一件B 等品芯片的利润是ln(25)m -元,根据(1)的计算结果,试求m 的值,使得每箱产品的利润最大.【答案】(1)0.16(2)(i )分布列见解析,32;(ii )794m =【解析】【分析】(1)根据频率分布直方图求得样本平均数,然后利用正态分布的对称性求解概率.(2)(i )先求出η的取值,然后求出对应的概率,即可求出分布列,代入期望公式求解即可;(ii )先根据二项分布的期望求出()E Z 1684ln(25)m m =+-,然后构造函数()1684ln(25)(124)f x x x x =+-<<,利用导数求出最大值时的m 即可.【小问1详解】由题意,估计从该品牌芯片的生产线中随机抽取100件的平均数为:10(0.01500.025600.04700.015800.0190)69x =⨯⨯+⨯+⨯+⨯+⨯=.即69x μ≈=,11s σ≈≈,所以2(69,11)X N ~,因为质量指标值X 近似服从正态分布2)(69,11N ,所以1(69116911)(80)2P X P X --<<+≥=1()2P X μσμσ--<<+=10.68270.158650.162-≈=≈,所以从生产线中任取一件芯片,该芯片为A 等品的概率约为0.16.【小问2详解】(i )(0.010.01)1010020+⨯⨯=,所以所取样本的个数为20件,质量指标值在[]85,95的芯片件数为10件,故η可能取的值为0,1,2,3,相应的概率为:301010320C C 2(0)C 19η===P ,211010320C C 15(1)C 38η===P ,121010320C C 15(2)C 38η===P ,031010320C C 2(3)C 19η===P ,随机变量η的分布列为:η0123P 21915381538219所以η的数学期望2151523()0123193838192E η=⨯+⨯+⨯+⨯=.(ii )设每箱产品中A 等品有Y 件,则每箱产品中B 等品有(100)Y -件,设每箱产品的利润为Z 元,由题意知:(100)ln(25)(ln(25))100ln(25)Z mY Y m m m Y m =+--=--+-,由(1)知:每箱零件中A 等品的概率为0.16,所以~(100,0.16)Y B ,所以()1000.1616E Y =⨯=,所以()[(ln(25))100ln(25)]E Z E m m Y m =--+-(ln(25))100ln(25)m m EY m =--+-16(ln(25))100ln(25)m m m =--+-1684ln(25)m m =+-.令()1684ln(25)(124)f x x x x =+-<<,由84()16025f x x '=-=-得,794x =,又79(1,)4∈x ,()0f x '>,()f x 单调递增,79(,24)4∈x ,()0f x '<,()f x 单调递减,所以当79(1,24)4x =∈时,()f x 取得最大值.所以当794m =时,每箱产品利润最大.19.已知函数1()e ln (1).x f x a x a x -=+-+(1)当0a =时,求函数()f x 的单调区间;(2)当1a =时,证明:函数()f x 在(0,)+∞上单调递增;(3)若1x =是函数()f x 的极大值点,求实数a 的取值范围.【答案】(1)答案见解析(2)证明见解析(3)(,1).-∞【解析】【分析】(1)代入a 的值,求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)对函数()f x 二次求导,判断()f x 导函数的单调性,求出导函数的最小值,即可证明;(3)对()f x 求导得,11()e 1x f x a a x -'=+--,令11()e 1x h x a a x-=+--,再求导,分a 的不同取值讨论()h x 的性质,即可求出a 的取值范围.【小问1详解】当0a =时,()ln f x x x =-,且知11()1x f x x x-='-=,在(0,1)上,()0f x '>,()f x 在(0,1)上单调递增;在(1,)+∞上,()0f x '<,()f x 在(1,)+∞上单调递减;所以函数()f x 的单调增区间为(0,1),单调减区间为(1,)+∞【小问2详解】证明:因为1a =,所以1()e ln 2x f x x x -=+-,且知11()e 2x f x x-'=+-,要证函数()f x 单调递增,即证()0f x '≥在(0,)+∞上恒成立,设11()e 2x g x x-=+-,0x >,则121()e x g x x -'=-,注意1e x y -=,21y x =-在(0,)+∞上均为增函数,故()g x '在(0,)+∞上单调递增,且(1)0g '=,于是()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,()(1)0g x g ≥=,即()0f x '≥,因此函数()f x 在(0,)+∞上单调递增;【小问3详解】由11()e 1x f x a a x -'=+--,有(1)0f '=,令11()e 1x h x a a x -=+--,有121()e x h x a x -'=-,①当0a ≤时,11()e 0x xh x a x -'=-<在(0,)+∞上恒成立,因此()f x '在(0,)+∞上单调递减,注意到(1)0f '=,故函数()f x 的增区间为(0,1),减区间为(1,)+∞,此时1x =是函数()f x 的极大值点;②当0a >时,1e x y a -=与21y x=-在(0,)+∞上均为单调增函数,故()h x '在(0,)+∞上单调递增,注意到(1)1h a '=-,若(1)0h '<,即01a <<时,此时存在(1,)n ∈+∞,使()0h n '=,因此()f x '在(0,)n 上单调递减,在(,)n +∞上单调递增,又知(1)0f '=,则()f x 在(0,1)上单调递增,在(1,)n 上单调递减,此时1x =为函数()f x 的极大值点,若(1)0h '>,即1a >时,此时存在(0,1)m ∈,使()0h m '=,因此()f x '在(0,)m 上单调递减.在(,)m +∞上单调递增,又知(1)0f '=,则()f x 在(,1)m 上单调递减,在(1,)+∞上单调递增,此时1x =为函数()f x 的极小值点.当1a =时,由(1)可知()f x 单调递增,因此1x =非极大值点,综上所述,实数a 的取值范围为(,1).-∞【点睛】关键点点睛:已知函数的极大值点,求出函数的导数,根据导数的导数121()e x h x a x -'=-分类讨论,确定函数极值点是解题的关键,据此可得符合题意的参数取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海口一中2017届高三10月月考试卷(B 卷)数 学(文科)一、选择题(本大题共12小题,每小题5分,共60分,每小题四个选项中,只有一项符合题目要求) 1.已知集合{2,0,2,4}M =-,2{|9}N x x =<,则MN =( )A .{0,2}B .{2,0,2}-C .{0,2,4}D .{2,2}- 2. 已知复数i iz 2310-+=(其中i 为虚数单位),则|z | = ( ). A. 33 B. 23 C. 32D. 223.先后抛掷两颗质地均匀的骰子,则两次朝上的点数之积为奇数的概率为( ). A.121 B.61 C.41D.314.已知甲、乙两组数据如图茎叶图所示,若它们的中位数相同,平均数也相同,则图中的,m n 的比值mn=( ) A .38 B .13 C .29D .1 5.如图,在底面边长为1,高为2的正四棱柱1111ABCD A B C D -中,点P 是平面1111A B C D 内一点,则三棱锥P BCD -的正视图与侧视图的面积之和为( )A .2B .3C .4D .56.要得到函数sin 2y x =的图象,只需要将函数sin(2)6y x π=+的图象( )A .向左平移12π个单位B .向右平移12π个单位 C .向左平移6π个单位 D .向右平移6π个单位7.圆x 2+y 2-4x +4y +6=0截直线x -y -5=0所得弦长等于( )A . 6B .522 C .1 D .58.已知命题:p ,x R ∃∈使321x x >;命题:(0,),tan sin 2q x x x π∀∈>,则真命题的是 ( )A.()p q ⌝∧B.()()p q ⌝∨⌝C.()p q ∧⌝D.()p q ∨⌝ 9.某程序框图如图所示,若该程序运行后输出的值是2312,则( ) A .13a = B .12a = C .11a = D .10a =10. 设点P 是双曲线22221(0,0)x y a b a b-=>>上的一点,12,F F 分别为双曲线的左、右焦点,已知12PF PF ⊥,且12||2||PF PF =,则双曲线的离心率为( )A .2B .3C .2D .5 11.若1c >,01b a <<<,则( )A .cca b < B .ccba ab < C .log log b a a c b c < D .log log a b c c <12. 函数()321122132f x ax ax ax a =+-++的图象经过四个象限的一个充分必要条件是( ) A . 4133a -<<- B .112a -<<-C .20a -<<D .63516a -<<-二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.设向量(1,2)a x =-,(1,)b x =,且a b ⊥,则x = .14.已知实数,x y 满足11y xx y y ≤⎧⎪+≤⎨⎪≥-⎩,则目标函数2z x y =-的最大值为__________.15. 已知{}n a 为等差数列,n S 为其前n 项和,公差为d ,若201717100201717S S -=,则d 的值为 .16. 已知三棱柱111ABC A B C -的侧棱垂直于底面,所有棱长都相等,若该三棱柱的顶点都在球O 的表面上,且三棱柱的体积为94,则球O 的表面积为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17(本小题满分12分).已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图像如图所示.(Ⅰ)求函数()fx 的解析式,并写出()f x 的单调减区间; (Ⅱ)已知ABC ∆的内角分别是,,A B C ,A 为锐角,且14,cos sin 21225A f B C π⎛⎫-==⎪⎝⎭,求的值.18. (本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,60DAB ∠=,PD ⊥平面ABCD ,1PD AD ==,点,E F 分别为AB 和PD 的中点. (Ⅰ)求证:直线//AF 平面PEC ; (Ⅱ)求三棱锥P BEF -的体积. 19. (本小题满分12分)某商店计划每天购进某商品若干件,商店每销售一件该商品可获利润60元,若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利40元.(Ⅰ)若商品一天购进该商品10件,求当天的利润y (单位:元)关于当天需求量n (单位:件,n N ∈)的函数解析式;(Ⅱ)商店记录了50天该商品的日需求量n (单位:件,n N ∈),整理得下表:若商店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[500,650]内的概率.20.(本小题满分12分)x23π6π11-Oy已知椭圆)0(1:2222>>=+b a by a x C 上的点到两个焦点的距离之和为32,短轴长为21,直线l与椭圆C 交于M 、N 两点。

(Ⅰ)求椭圆C 的方程; (Ⅱ)若直线l 与圆251:22=+y x O 相切,证明:MON ∠为定值. 21.(本小题满分12分)已知函数()21ln 22f x ax x =--,R a ∈. (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若函数()f x 有两个零点,求实数a 的取值范围请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(本小题满分10分)如图, 过圆O 外—点P 作圆的切线PC ,切点为C ,割线PAB 、割线PEF 分别交圆O 于A 与B 、E 与F .已知PB 的垂直平分线DE 与圆O 相切. (1)求证:DE ∥BF ;(2)若23,1PC DE ==,求PB 的长.23.(本小题满分10分)已知圆C 的参数方程是3cos 1sin 2x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩(θ为参数),直线l 的参数方程是cos ,1sin .x t y t αα=⎧⎨=-+⎩(t 为参数). (Ⅰ)当4πα=时,求直线l 和圆C 的普通方程;(Ⅱ)若l 与圆C 相切,求tan α的值.24. (本小题满分10分)已知函数()32f x a x x =--+.(1)若2a =,解不等式()3f x ≤;(2)若存在实数a , 使得不等式()122f x a x ≥-++成立,求实数a 的取值范围.海口一中2017届高三10月月考试卷(B 卷)答案数 学(文科)一.BBCAA ,BADCD ,DD二.13:13 14:5 15:11016:7π 三.17. 解:(Ⅰ)由周期12πππ,2362T =-=得2ππ,T ω==所以.2=ω ………2分当π6x =时,1)(=x f ,可得πsin(2) 1.6ϕ⋅+=因为π,2ϕ<所以π.6ϕ=故π()sin(2).6f x x =+…………4分由图像可得)(x f 的单调递减区间为π2ππ,π,.63k k k ⎡⎤++∈⎢⎥⎦⎣Z ……………6分 (Ⅱ)由(Ⅰ)可知,ππsin(2())12126A -+=, 即1sin 2A =,又A 为锐角,∴π6A =.…8分0πB <<,53cos 1sin ,02=-=∴<<B B B π. ……………9分 )sin(sin B A C --=∴π)sin(B A += …………10分B A B A sin cos cos sin +=1033453235421+=⨯+⨯=. …………12分 18.解:(1)作//FM CD 交PC 于M ,连接ME .∵点F 为PD 的中点,∴1//2FM CD ,又1//2AE CD ,∴//AE FM ,∴四边形AEMF 为平行四边形,∴//AF EM ,∵AF ⊄平面PEC ,EM ⊂平面PEC ,∴直线//AF 平面PEC .………5分(2)连接ED ,在ADE ∆中,1AD =,12AE =,60DAE ∠=, ∴2222211132cos601()212224ED AD AE AD AE =+-⨯⨯=+-⨯⨯⨯=,∴3ED =,∴222AE ED AD +=,∴ED AB ⊥.………8分PD ⊥平面ABCD ,AB ⊂平面ABCD ,∴PD AB ⊥,PD ED D =,PD ⊂平面PEF ,ED ⊂平面PEF ,∴AB ⊥平面PEF .1113322228PEF S PF ED ∆=⨯⨯=⨯⨯=, ∴三棱锥P BEF -的体积P BEF B PEF V V --==13PEF S BE ∆=⨯⨯131382=⨯⨯348=. ………12分19.解:(1)当日需求量10n ≥时,利润为6010(10)4040200y n n =⨯+-⨯=+;……2分当日需求量10n <时,利润为60(10)1070100y n n n =⨯--⨯=-.……4分 所以利润y 关于需求量n 的函数解析式为40200(10,)70100(10,)n n n N y n n n N +≥∈⎧=⎨-<∈⎩.……6分 (2)50天内有4天获得的利润为390元,有8天获得的利润为460元,有10元获得的利润为530元,有14天获得的利润为600元,有9天获得的利润为640元,有5天获得的利润为680元. 若利润在区间[500,650]内,日需求量为9、10、11,……8分 其对应的频数分别为10、14、9. ……9分则利润在区间[500,650]内的概率为10149335050++=.……12分20.解:(Ⅰ)由题意得 41,31,212,322==∴==b a b a 116922=+∴y x …………4分(Ⅱ)当直线x l ⊥轴时,因为直线与圆相切,所以直线l 方程为51±=x 。

…………5分当51:=x l 时,得M 、N 两点坐标分别为⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛51,51,51,51,20π=∠∴=•∴MON ,………6分当51:-=x l 时,同理2π=∠MON ; …………7分 当l 与x 轴不垂直时,设()),(,,,:2211y x N y x M m kx y l +=,由5112=+=k m d ,22125k m +=∴, ……8分 联立⎩⎨⎧=++=116922y x m kx y 得()011632169222=-+++m kmx x k …………9分()22122216932,0)116)(169(432kkmx x m k km +-=+>-+-=∆,2221169116k m x x +-=, …………10分()2212122121)(1m x x km x x k y y x x ON OM ++++=+=•∴=0169125222=+--k k m 2π=∠∴MON ………… 11分综上,2π=∠MON (定值) ………… 12分21. 解:(Ⅰ)011)(2>-=-='x xax x ax x f , ……………1分 当)0()(,0)(0∞+<'≤,在时,x f x f a 上单调递减; ………………2分 当aax x f a =='>解得时,令,0)(0.………… 3分 0)()(0)()0(>'∞+∈<'∈x f aax x f a a x 时,,;当时,,当.…………4分内单调递增,内单调递减;在,在函数)()0()(∞+∴aaa a x f …………5分综上:当)()(∞+≤,在时,00x f a 上单调递减; 当a>0时,内单调递增,内单调递减;在,在函数)()0()(∞+∴aaa a x f …………6分(Ⅱ)当0时,a ≤由(Ⅰ)得()在(0,+)f x 上单调递减,函数)(x f 不可能有两个零点;………7分当a>0时,由(Ⅰ)得,()(0)()a af x +∞函数在,内单调递减,在,内单调递增,且当x 趋近于0和正无穷大时,)(x f 都趋近于正无穷大,………8分故若要使函数)(x f 有两个零点,则)(x f 的极小值()0af a<,………………10分 即11ln -2022a +<,解得30e a <<,综上所述,a 的取值范围)0(3e , …12分 22. 解:(1)证明: 连接,BE DE 圆O 相切,BED BFE ∴∠=∠, 又DE 为PB 的垂直平分线,,,BED PED PED BFE DE BF ∴∠=∠∴∠=∠∴. .......5分 (2)由(1)知DE ∥BF 且D 为PB 的中点,E ∴ 为PF 的中点, 且90,.FBP EDP BE PE EF PC ∠=∠=∴==为圆O 的切线,()22,232,6PC PE PF PE PE PE ∴=∴=∴=,222222225PB BD BE DE PE DE ∴==-=-=. .......10分23.解:(Ⅰ)直线l 和圆的普通方程分别为01=--y x 和2231()()122x y -+-=........4分 (Ⅱ)显然直线l 过点(0,1)-,依题意设直线l 的方程为1y kx =-,圆C 的圆心31()2到直线l 2311|2211k --=+ 解得3342k =-tan 3342α=-.....10分24. 解:(1)不等式()3f x ≤化为2323x x --+≤,则2,2323x x x ≤-⎧⎨-++≤⎩或2232323x x x ⎧-<≤⎪⎨⎪---≤⎩,或233223x x x ⎧>⎪⎨⎪---≤⎩,解得3742x -≤≤,所以不等式()3f x ≤的解集为37|42x x ⎧⎫-≤≤⎨⎬⎩⎭....5分 (2)不等式()122f x a x ≥-++等价于3321a x x a --+≥-,即3361x a x a --+≥-,由基本不等式知()()3363366x a x x a x a --+≤--+=+,若存在实数a ,使得不等式()122f x a x ≥-++成立, 则61a a +≥-, 解得52a ≥-,所以实数a 的取值范围是5,2⎡⎫-+∞⎪⎢⎣⎭........10分。

相关文档
最新文档