高考物理一轮能力提升 19-1氢原子光谱 氢原子的能级结构和公式考点+重点+方法
高中物理氢原子光谱知识点

高中物理氢原子光谱知识点一、氢原子光谱的发现历程。
1. 巴尔末公式。
- 1885年,巴尔末发现氢原子光谱在可见光区的四条谱线的波长可以用一个简单的公式表示。
巴尔末公式为(1)/(λ)=R((1)/(2^2) - (1)/(n^2)),其中λ是谱线的波长,R称为里德伯常量,R = 1.097×10^7m^-1,n = 3,4,5,·s。
- 巴尔末公式的意义在于它反映了氢原子光谱的规律性,表明氢原子光谱的波长不是连续的,而是分立的,这是量子化思想的体现。
2. 里德伯公式。
- 里德伯将巴尔末公式推广到更一般的形式(1)/(λ)=R((1)/(m^2)-(1)/(n^2)),其中m = 1,2,·s,n=m + 1,m + 2,·s。
当m = 1时,对应赖曼系(紫外区);当m = 2时,就是巴尔末系(可见光区);当m = 3时,为帕邢系(红外区)等。
二、氢原子光谱的实验规律与玻尔理论的联系。
1. 玻尔理论对氢原子光谱的解释。
- 玻尔提出了三条假设:定态假设、跃迁假设和轨道量子化假设。
- 根据玻尔理论,氢原子中的电子在不同的定态轨道上运动,当电子从高能级E_n向低能级E_m跃迁时,会发射出频率为ν的光子,满足hν=E_n-E_m。
- 结合氢原子的能级公式E_n=-(13.6)/(n^2)eV(n = 1,2,3,·s),可以推出氢原子光谱的波长公式,从而很好地解释了氢原子光谱的实验规律。
例如,对于巴尔末系,当电子从n(n>2)能级跃迁到n = 2能级时,发射出的光子频率ν满足hν = E_n-E_2,进而可以得到波长与n的关系,与巴尔末公式一致。
2. 氢原子光谱的不连续性与能级量子化。
- 氢原子光谱是分立的线状光谱,这一现象表明氢原子的能量是量子化的。
在经典理论中,电子绕核做圆周运动,由于辐射能量会逐渐靠近原子核,最终坠毁在原子核上,且辐射的能量是连续的,这与实验观察到的氢原子光谱不相符。
高考物理一轮复习人教版原子结构氢原子光谱优质课件

【Hale Waihona Puke 析】由放出的三种不同能量的光子的能量可知,跃迁
发生前这些原子分布在两个激发态,其中最高能级(n=3)的能量 值是-13.6 eV+12.09 eV=-1.51 eV.
m.
②氢原子能级公式 1 En= n2 E1(n=1,2,3,…),其中E1为氢原子基态的能量值, 其数值为E1= -13.6eV .
③原子的最低能量状态为 基态 ,对应电子在离核最近的轨道 上运动;较高的能量状态称为 激发态 ,对应电子在离核较远的轨 道上运动.氢原子的能级图如图所示.
三、原子的跃迁与电离 原子跃迁时,不管是吸收还是辐射光子,光子的能量都必须 等于这两个能级的能量差.若想把处于某一定态上的原子的电子 电离出去,就需要给原子一定的能量,如基态原子电离(即上升到 n=∞),其电离能为13.6 eV,只要能量等于或大于13.6 eV的光子 都能使基态氢原子电离,只不过入射光子的能量越大,原子电离 后产生的自由电子具有的动能越大.
③跃迁假设:原子从一个能量状态向另一个能量状态跃迁时 要 辐射或吸收 一定频率的光子,光子的能量等于两个能级的能 量差,即hν=Em-En(m>n).
(2)氢原子的能级和轨道半径 ①氢原子轨道半径公式 rn =
n2 r1(n=1,2,3,…),其中r1为基态半径,也称为玻尔半
-10
径,其数值为r1= 0.53×10
选修3-5 第三章 原子结构
原子核
说考纲—分析考情知考向
考纲要求 1.氢原子光谱(Ⅰ) 2.氢原子的能级结构、能级公式(Ⅰ) 3.原子核的组成、放射性、原子核的衰 变、半衰期(Ⅰ) 4.放射性同位素(Ⅰ) 5.核力、核反应方程(Ⅰ) 6.结合能、质量亏损(Ⅰ) 7.裂变反应和聚变反应、裂变反应堆(Ⅰ) 8.射线的危害和防护(Ⅰ) 命题规律 (1)氢原子光谱、能级 的考查; (2)放射性元素的衰 变、核反应的考查; (3)质能方程、核反应 方程的计算; (4)与动量守恒定律相 结合的计算 复习策略 体会微观领域的 研究方法,从实 际出发,经分析 总结、提出假 设、建立模型, 在经过实验验 证,发现新的问 题,从而对假设 进行修正
氢原子的能级结构与光谱线的解析

氢原子的能级结构与光谱线的解析氢原子是最简单的原子之一,由一个质子和一个电子组成。
它的能级结构和光谱线的解析对于理解原子结构和光谱学有着重要的意义。
本文将探讨氢原子的能级结构以及与之相关的光谱线的解析。
一、氢原子的能级结构氢原子的能级结构是由其电子的能量水平所决定的。
根据量子力学理论,氢原子的电子存在于不同的能级上,每个能级都对应着不同的能量。
这些能级按照能量的高低被编号为1, 2, 3...,其中1级能级具有最低的能量,被称为基态。
氢原子的能级结构可以通过求解薛定谔方程来获得。
薛定谔方程描述了系统的波函数和能量。
通过求解薛定谔方程,可以得到氢原子的波函数和能量本征值,即能级。
氢原子的能级结构可以用能级图表示。
能级图通常以基态能级为起点,向上依次排列其他能级。
不同能级之间的跃迁会伴随着能量的吸收或释放,产生光谱线。
二、光谱线的解析光谱线是指物质在吸收或发射光时产生的特定波长的光线。
氢原子的光谱线是由电子在不同能级之间跃迁所产生的。
氢原子的光谱线可以分为吸收光谱和发射光谱。
当氢原子吸收能量时,电子从低能级跃迁到高能级,产生吸收光谱。
吸收光谱是连续的,呈现出一条宽带。
当电子从高能级跃迁回低能级时,会发射出光子,产生发射光谱。
发射光谱是分立的,呈现出一系列锐利的谱线。
氢原子的光谱线可以用波长或频率来描述。
根据氢原子的能级结构,可以计算出各个能级之间的跃迁所对应的光谱线的波长或频率。
这些光谱线的波长或频率可以通过实验进行观测,从而验证理论计算的结果。
光谱线的解析对于研究物质的组成和性质具有重要意义。
通过分析光谱线的特征,可以确定物质的化学成分和结构。
光谱学在天文学、化学、物理学等领域都有广泛的应用。
三、氢原子的光谱线系列氢原子的光谱线系列是指在氢原子的能级结构中,特定能级之间跃迁所产生的光谱线的集合。
氢原子的光谱线系列主要包括巴尔末系列、帕舍尼系列、布拉开特系列等。
巴尔末系列是指电子从高能级跃迁到第二能级(巴尔末系列基态)所产生的光谱线。
高考物理氢原子光谱知识点总结

2019 年高考物理氢原子光谱知识点总结1、发射光谱:物质发光直接产生的光谱从实质察看到的物质发光的发射光谱可分为连续谱和线状谱。
(1)连续谱:连续散布着的包括着从红光到紫光的各样色光的光谱。
产生:是由火热的固体、液体、高压气体发光而产生的。
(2)线状谱:只含有一些不连续的亮线的光谱,线状谱中的亮线叫谱线。
产生:由稀疏气体或金属蒸气(即处于游离态下的原子 )发光而产生的,察看稀疏气体放电用光谱管,察看金属蒸气发光可把含有该金属原子的物质放到煤气灯上焚烧,即可使它们汽化后发光。
2、汲取光谱:高温物体发出的白光经过物质后,某些波长的光波被物质汲取后产生的光谱。
产生:由火热物体 (或高压气体 )发出的白光经过温度较低的气体后产生。
比如:让弧光灯发出的白光经过低温的钠气,能够看到钠的汲取光谱。
若将某种元素的汲取光谱和线状谱比较能够发现:各样原子汲取光谱的暗线和线状谱和亮线相对应,即表示某种原子发出的光和汲取的光的频次是特定的,故汲取光谱和线状谱中的暗线比线状谱中的亮线要少一些。
3、光谱剖析各样元素的原子都有自己的特点谱线,假如在某种物质的线状谱或汲取谱中出现了若干种元素的特点谱线,表示该物质中含有这类元素的第1页/共2页成分,这类对物质进行化学构成的剖析和鉴其他方法称为光谱剖析。
其长处:敏捷、快捷、检查的最低量是10-10 克。
4、光谱剖析的应用(1)光谱剖析在科学技术中有着宽泛的应用,比如,在检测半导体材料硅和锗是否是达到高纯度要求时,就要用到光谱剖析。
(2)历史上,光谱剖析还帮助人们发现了很多新元素,比如,铷和铯就是人们经过剖析光谱中的特点谱线而发现的。
(3)利用光谱剖析能够研究天体的物质成分,19 世纪初在研究太阳光谱时,人们发现它的连续光谱中有很多暗线,经过认真剖析这些暗线,并把它们跟各样原子的特点谱线比较,人们知道了太阳大气层中含有氢、氦、氮、碳、氧、铁、镁、硅、钙、钠等几十种元素。
(4)光谱剖析还可以判定食品的好坏。
2024年高考物理氢原子光谱知识点总结

2024年高考物理氢原子光谱知识点总结2024年高考物理考试的物理氢原子光谱知识点总结如下:1. 氢原子光谱的基本特点:氢原子光谱是由氢原子的电子在不同能级之间跃迁所产生的。
它具有明亮的谱线和离散的能级结构。
2. 氢原子的能级结构:氢原子的能级由一系列具有不同能量的能级组成,其中最低的能级为基态(n=1),其他能级称为激发态(n>1)。
每个能级都有特定的能量值和对应的主量子数n。
3. 氢原子光谱系列:氢原子光谱可分为巴尔末系列、帕维系列和布莱克曼系列。
巴尔末系列是电子从高能级(n>2)跃迁到第二能级(n=2)时产生的谱线,帕维系列是电子从n>3的能级跃迁到第三能级(n=3)时产生的谱线,布莱克曼系列是电子从n>4的能级跃迁到第四能级(n=4)时产生的谱线。
4. 氢原子的能级间距:氢原子的能级间距由公式∆E = -13.6eV/n^2计算,其中∆E为能级间距,n为主量子数。
不同的能级间距对应不同的能量和频率。
5. 能级跃迁和光谱线的产生:当氢原子的电子跃迁到较低能级时,从高能级到低能级的能量差将以光子的形式释放出来,产生光谱线。
光谱线的波长和频率与能级差有关,可由公式λ = c/f和E = hf 计算,其中λ为波长,c为光速,f为频率,E为能量,h为普朗克常数。
6. 波尔理论:根据波尔理论,氢原子电子的能量是量子化的,只能处于特定的能级,而不能连续地存在于任意能级。
波尔理论通过引入角动量量子化条件和能级跃迁的辐射条件,成功解释了氢原子光谱的特点。
7. 色散光谱的测量:色散光谱仪是测量光谱的常用仪器。
它利用透镜或棱镜对光进行分散,使不同波长的光线分离,从而观察到光谱线。
通常使用光栅或棱镜作为色散元件,将光线按波长进行分散。
总之,物理氢原子光谱是高考物理中的重要知识点,考生应熟练掌握氢原子能级结构、能级跃迁和光谱线的产生原理,以及氢原子光谱的测量方法和数学计算公式。
氢原子的能级结构与光谱

氢原子的能级结构与光谱氢原子是物理学和化学中研究最广泛的模型系统之一。
它的能级结构与光谱研究对于理解物质的性质和相互作用具有重要意义。
本文将探讨氢原子的能级结构、光谱以及相关的理论和实验研究。
一、氢原子的能级结构氢原子由一个质子和一个电子组成。
根据量子力学的原理,电子在原子中存在特定的能级。
氢原子的能级由电子的主量子数n来决定。
基态的主量子数为n=1,对应着最低的能级。
其他能级的主量子数依次增加,能级能量逐渐升高。
在氢原子中,能级的能量与主量子数的平方反比。
即E(n) ∝ 1/n^2。
这个规律被称为Bohr模型,它是根据量子力学的基本原理和计算出的结果。
Bohr模型为后来的量子力学理论奠定了基础。
除了主量子数,氢原子的能级结构还由其他量子数确定。
其中最重要的是角量子数l和磁量子数m。
角量子数决定了电子在原子内的角动量,而磁量子数描述了电子在磁场中的行为。
二、氢原子的光谱氢原子的能级结构决定了其特有的光谱。
光谱是物质吸收和发射光的分布。
氢原子的光谱可以分为吸收光谱和发射光谱。
吸收光谱发生在氢原子吸收能量时。
当光通过氢原子时,电子吸收光的能量,并跃迁到较高的能级。
由于氢原子的能级结构是离散的,所以吸收光谱呈现出一系列尖锐的黑线,这些黑线被称为吸收线。
吸收线的位置和强度与氢原子的能级结构有直接的关系。
发射光谱发生在氢原子释放能量时。
当电子从较高能级跃迁到较低能级时,会释放出光能。
由于能级结构的离散性,氢原子的发射光谱也呈现出一个线状的光谱,这些线被称为发射线。
发射线的位置和强度与能级结构的差异有关。
氢原子的吸收和发射光谱不仅在可见光范围内有明显的特征,还延伸到紫外线和红外线等更宽的波长范围。
通过精确测量这些光谱线的位置和强度,科学家能够推断出氢原子的能级结构,并与理论预测进行对比。
三、理论与实验研究研究氢原子的能级结构和光谱从20世纪初开始,至今仍在进行中。
早期的研究主要基于Bohr模型,但随着量子力学的发展,更精确的计算方法被提出。
高三物理氢原子的光谱与能级结构

n 2, 3,4,
n 4,5,6,
帕邢线系
布喇开系
普丰特线系
1 1 R 2 2 4 n 1 1 1 R 2 2 5 n 1
n 5,6,7,
n 6,7, 8,
二、玻尔理论对氢原光光谱的解释
13.6 En eV 2 n
第4节 氢原子的光谱与能级结构
一、光谱
复色光经过色散系统(如棱镜、光栅)分光后,被色散 开的单色光按波长(或频率)大小而依次排列的图案
观察光谱实验
1. 实 验
玻璃管充进氢气
连续光谱经过氢气的光谱
2. 氢原子的光谱图
(紫绿色) Hδ 410.1nm
Hγ
(青色)
Hβ
(蓝绿色)
Hα
(红色)
434.0nm
N > 6 的符合巴耳末公式的光谱线(大部分在紫外区)
巴尔末系
人们把一系列符合巴耳末公式的光谱线统称为巴耳末系
适用区域: 可见光区、紫外线区
氢原子光谱的其他线系
紫 外 线 区 红 外 区 还 有 三 个 线 系 赖曼线系
1 1 R 2 2 1 n 1
1 1 R 2 2 3 n 1
486.1nm
652.2nm λ/nm
特点 1.几种特定频率的光 2.光谱是分立的亮线
原子光谱
每一种光谱-------印记
每一种原子都有自己特定的原子光谱,不同原子,其原子 光谱均不同
巴尔末的研究氢原子光谱
(可见光区)
(里德伯常数:R=1.09677581×107m-1)
E1 R hc
巴尔末公式
E1 1 1 ( 2 2) hc n 2
n=6 n=5 n=4 n=3 n=2 Hα Hβ Hγ Hδ E4= -0.85ev E3= -1.51ev
高考物理一轮复习文档:第十三章第1讲 原子结构 氢原子光谱讲义解析含答案

第1讲原子结构氢原子光谱板块一主干梳理·夯实基础【知识点1】氢原子光谱Ⅰ1.原子的核式结构(1)电子的发现:英国物理学家J.J.汤姆孙发现了电子。
(2)α粒子散射实验:1909~1911年,英国物理学家卢瑟福和他的助手进行了用α粒子轰击金箔的实验,实验发现绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但有少数α粒子发生了大角度偏转,偏转的角度甚至大于90°,也就是说它们几乎被“撞”了回来。
(3)原子的核式结构模型:在原子中心有一个很小的核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。
2.光谱(1)光谱用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。
(2)光谱分类有些光谱是一条条的亮线,这样的光谱叫做线状谱。
有的光谱是连在一起的光带,这样的光谱叫做连续谱。
(3)氢原子光谱的实验规律巴耳末线系是氢原子光谱在可见光区的谱线,其波长公式1λ=R⎝⎛⎭⎪⎫122-1n2,(n=3,4,5,…),R是里德伯常量,R=1.10×107 m-1,n为量子数。
【知识点2】氢原子的能级结构、能级公式Ⅰ1.玻尔理论(1)定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。
(2)跃迁:原子从一种定态跃迁到另一种定态时,它辐射或吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即hν=E m-E n。
(h是普朗克常量,h=6.63×10-34J·s)(3)轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。
原子的定态是不连续的,因此电子的可能轨道也是不连续的。
2.基态和激发态原子能量最低的状态叫基态,其他能量较高的状态叫激发态。
3.氢原子的能级图板块二考点细研·悟法培优考点1氢原子能级图及原子跃迁[深化理解]1.能级图中相关量意义的说明氢原子的能级图如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十九章原子结构和原子核
本章概览
1.本章内容可分为两部分,即原子结构和原子核。
重点内容是:氢原子的能级结构和公式;原子核的衰变和半衰期;核反应方程的书写;结合能和质量亏损。
从考试大纲可以看到全部是I级要求。
2.高考对本专题考查特点是命题热点分散,偏重于知识的了解和记忆,多以每部分内容单独命题,多为定性分析,“考课本”,“不回避陈题”是本专题考查的最大特点,题型多以选择题形式出现,几乎在每年高考中占一个小题。
3.本单元内容与现代科技相联系的题目较多,复习时应引起高度重视。
第一课时氢原子光谱
氢原子的能级结构和公式
【教学要求】
1.了解人们对原子结构的认识过程
2.掌握α粒子散射实验和原子核式结构的
3.理解玻尔模型的三条假设
【知识再现】
一、人们认识原子结构的思维线索
气体放电的研究→阴极射线→发现电子(1897 年,汤姆生)→汤姆生的“枣糕模型”
−−−−→−粒子散射实验α卢瑟福的核式结构模型−−−−→−氢光谱的研究玻尔模型(轨道量子化模型)。
二、卢瑟福的核式结构模型
1.α粒子散射实验
做法:用质量是电子7300倍的a 粒子轰击薄金箔。
结果:绝大多数 ,少数 ,极少数 ,有的甚至 。
2.原子的核式结构
在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间里绕着核旋转.原子核所带的正电荷数等于核外的电子数,所以整个原子是中性的。
3.实验数据估算:原子核大小的数量级为10-15-10-14m ,原子大小的数量级为10-10 m
三、玻尔的原子理论——三条假设
1.“定态假设”:原子只能处于一系列不连续的能量状态中,在这些状态中,电子虽做变速运动,但并不向外辐射电磁波,这样的相对稳定的状态称为定态。
2.“跃迁假设”:电子绕核转动处于定态时不辐射电磁波,但电子在两个不同定态间发生跃迁时,却要辐射(吸收)电磁波(光子),其频率由两个定态的能量差值决定hv=E 2-E 1。
3.“轨道量子化假设”:由于能量状态的不连续,因此电子绕核转动的轨道半径也不能任意取值,必须满足)3,2,1(2 ==n nh mvr π
四、氢原子能级及氢光谱
1.氢原子能级:原子各个定态对应的能量是不连续的,这些能量值叫做能级。
2.氢原子的能级图
3.氢光谱
在氢光谱中,n=2,3,4,5,……向n=1跃迁发光形成赖曼线系;
n=3,4,5,6向n=2跃迁发光形成巴耳末线系;
n=4,5,6,7……向n=3跃迁发光形成帕邢线系;
n=5,6,7,8……向n=4跃迁发光形成布喇开线系,
其中只有巴耳末线系的前4条谱线落在可见光区域内。
考点剖析
卢瑟福由α粒子散射实验提出:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。
我们把这样的原子模型称为“核式结构模型”。
【应用
1】英国物理学家卢瑟福用α粒子轰击金箔,发现了α粒子的散射现象。
下图中,o 表示金原子核的位置,则能正确表示该实验中经过金原子核附近的α粒子的运动轨迹的图是( )
根据库仑定律知:离核越近的粒子受到的库仑斥力越大,运动轨迹弯曲越厉害。
又正对原子核粒子将被弹回。
故正确答案选BD 。
1.能级公式:氢原子存在一个能量最低也是最稳定的状态,称为基态,其能量用E 1表示;
其余定态称为激发态,能量用E n 表示,由玻尔理论可推出氢原子能级公式E n =E 1/n 2即(n=1、
2、……)式中n 称为能量量子数。
E 1=-l3.6 eV 。
2 .半径公式r n =n 2r 1式中r 1,为基态半径,又称为玻尔半径,r 1= O.53×10-10m
【应用2】(07海南卷)氢原子第n 能级的能量为E n =E 1/n 2,其中E 1是基态能量,而n=1、2、…。
若一氢原子发射能量为1163E -的光子后处于比基态能量高出14
3E -的激发态,则氢原子发射光子前后分别处于第几能级?
设氢原子发射光子前后分别处于第l 与第m 能级,则依题意有
1212116
3E m E l E -=- ① 11214
3E E m E -=- ② 由②式解得:m=2 ③
由①③式得:l=4 ④
氢原子发射光子前后分别处于第4与第2能级。
1、原子定态能量E n 是指核外电子动能及电子与核之间的静电势能之和;
2、
E n
是负值,这里是取电子自由态作为能量零点。
当原子从低能级向高能级跃迁时,要吸收一定能量的光子,当一个光子的能量满足h γ=E 末-E 初时,才能被某一个原子吸收,使原子从低能级E 初
向高能级E 末跃迁,而当光子能量h γ大于或小于E 末-E 初
时都不能被原子吸收。
当原子从高能级向低能级跃迁时,以光子的形式向外辐射能量,所辐射的光子能量恰等于发生跃迁时的两能级间的能量差.当光子能量大于或等于l3.6 eV 时,也可以被氢原子吸收,使氢原子电离;当氢原子吸收的光子能量大于13.6 eV 重点突破
方法探究
时,氢原子电离后,电子具有一定的初动能。
【例1】(2007年高考理综Ⅰ卷)用大量具有一定能量的电子轰击大量处
于基态的氢原子,观测到了一定数目的光谱线。
调高电子的能量再此进行观测,发现光谱线的数目比原来增加了5条。
用△n表示两次观测中最高激发态的量子数n之差,E表示调高后电子的能量。
根据氢原子的能级图可以判断,△n和E的可能值为()
A.△n=1,13.22eV<E<13.32eV
B.△n=2,13.22eV<E<13.32eV
C.△n=1,12.75eV<E<13.06eV
D.△n=2,12.75eV<E<13.06eV
原子的跃迁公式只适用于光子和原子作用而使原子在各定态之间跃迁的情况。
实物粒子与原子相互作用而使原子激发时,粒子的能量不受上述条件的限制。
本题由于是电子轰击, 存在两种可能:
第一种n=2到n=4,所以电子的能量必须满足13.6-0.85<E<13.6-0.54,故D选项正确;第二种可能是n=5到n=6,电子能量必须满足13.6-0.38<E<13.6-0.28,故A选项正确。
所以答案应选AD。
原子跃迁时需注意的几个问题:(1)一群原子和一个原子:一群氢原子处于量子数为n的激发态时,可能辐射出的光谱线条数为N= C n2=n(n-1)/2;一个氢原子处于量子数为n的激发态上时,最多可辐射出n-1条光谱线。
(2)光子激发和实物粒子激发:若是在光子的作用下引起原子的跃迁,则要求光子的能量必须等于原子的某两个能级差;若是在实物粒子的碰撞下引起原子的跃迁,则要求实物粒子的能量必须大于或等于原子的某两个能级差。
(3)直接跃迁和间接跃迁:原子从一种能量状态跃迁到另一种能量状态,有时可能是直接跃迁,有时是间接跃迁。
两种情况下辐射(或吸收)光子的可能性及频率可能不同。
(4)跃迁和电离。
处于激发态的原子,如果在入射光子的作用下,可以引起其从高能态向低能态跃迁,同时在两个能态之间的能量差以辐射光子的形式发射出去,这种辐射叫做受激辐射。
原子发生受激辐射时,发出的光子的频率、发射方向等都跟入射光子完全一样,这样使光得到加强,这就是激光产生的机理。
那么,发生受激辐射时,产生激光的原子的总能量E n、电子的电势能E p、电子动能E k的变化关系是( D )
A.E n减小、E p增大、E k增大
B.E n增大、E p减小、E k减小
C.E n减小、E p增大、E k减小
D.E n减小、E p减小、E k增大
由玻尔理论可知,氢原子辐射光子后,应从离核较远的轨道跃迁到离核较近的轨道,在此跃迁过程中,电场力对电子做了正功,因而电势能应减小。
另由经典电磁理论知,电子
1mv2=ke2/2r。
绕核做匀速圆周运动的向心力即为氢核对电子的库仑力:ke2/r2=mv2/r,所以Ek=
2
可见,电子运动半径越小,其动能越大.再结合能量转化和守恒定律,氢原子放出光子,辐射出一定的能量,所以原子的总能量减小。
综上讨论,可知该题只有答案D正确。
故选D。
1.根据α粒子散射实验,卢瑟福提出了原子的核式结构模型.图中虚线表示原子核所形成的电场的等势线,实线表示一个α粒子的运动轨迹.在α粒子从a 运动到b 、再运动到c 的过程中,下列说法中正确的是()
A .动能先增大,后减小
B .电势能先减小,后增大
C .电场力先做负功,后做正功,总功等于零
D .加速度先变小,后变大
2.(2007年全国卷Ⅱ)氢原子在某三个相邻能级间跃迁时,可发出三种不同波长的辐射光。
已知其中的两个波长分别为λ1和λ2,且λ1>λ2,则另一个波长可能是( )
A .λ1+λ2
B .λ1-λ2
C .2121λλλλ+
D .2
121λλλλ-
3.(07广东卷)如图所示为氢原子的四个能级,其中E 1为基态,若氢原子A 处于激发态E 2,氢原子B 处于激发态E 3,则下列说法正确的是( )
A .原子A 可能辐射出3种频率的光子
B .原子B 可能辐射出3种频率的光子
C .原子A 能够吸收原子B 发出的光子并跃迁道能级E 4
D .原子B 能够吸收原子A 发出的光子并跃迁道能级
E 4
答案:1、C ;2、CD ;3、B 。
成功体验。