第一节-断裂力学理论基础(2)

合集下载

断裂理论基础

断裂理论基础
现在大家比较一致的认识是 ,现代断裂理论大约是在 1948 — 1957 年间形成 ,
· ii · 前 言
它是在当时生产实践问题的强烈推动下 ,在经典 Griffith 理论的基 础上发 展起 来 的 .上世纪 60 年代是其大发展时期 .从 1965 年下半年开始国内出现特殊的形势 , 上面提到的我国老一辈学者开创的断裂学科的较好势头也就丧失了 ,因而同国外 的差距进一步拉大 .在 20 世纪 70 年代初 ,受我国航空工业部门的委托 ,冶金部钢 铁研究总院物理研究室陈箎同志领导的小组从材料断裂韧性测试开始 ,在十分困 难的条件下 ,率先在我国开展了断裂力学的工作 .显然 ,我国断裂力学工作起步至 少比国外大约晚了 20 多年 .1972 年 ,在敬爱的周恩来总理关怀下 ,包括力学在内 的自然科学各基础学科举行了赶超世界先进水平的规划座谈会 .当时力学学科的 规划座谈会的预备会的纪要就引用了恩格斯的一句名言 :“一个民族要想站在世界 的高峰 ,就一刻也不能停止理论思维 。”同时指出断裂力学是一门新学科 ,在理论上 和实践上具有重要意义 ,建议尽快在我国开展该领域的工作 .在冶金部钢铁研究总 院物理研究室陈箎同志等工作和力学学科规划座谈会预备会纪要的激励下 ,尤其 是众多实际问题需要的推动下 ,我国一些单位和科技工作者逐步开展了断裂力学 的研究和应用工作 .著者当时是作为一名业余爱好者参加到这项工作中去的 .著者 在当学生时 ,受到董铁宝教授的指导 ,读过一点经典断裂理论的文献 ,当时也得到 王仁教授 、张兴钤教授和钱临照教授的指教 .在经过将近 10 年中断并重新回到教 学工作岗位时 ,获悉经典断裂理论已经发展成断裂力学这门新学科时 ,很振奋 ,但 深感已经落后得太远了 .枟断裂力学基础枠是著者学习断裂力学笔记整理出来的 .当 时著者对断裂力学的认识还很初步 .该书出版至今已经超过了 20 年 ,探索断裂现 象规律的工作已从力学扩充到更广泛和深入的领域 .考虑到这些情况的变化 ,需要 对该书加以改写 .

断裂力学导论讲诉课件

断裂力学导论讲诉课件
弹塑性材料的特性
弹塑性材料在受到外力作用时,会同 时发生弹性变形和塑性变形。在裂纹 尖端附近,由于应力集中,材料会发 生屈服并进入塑性区。
能量释放率
能量释放率是描述裂纹扩展所需最小 能量的物理量。在弹塑性断裂力学中 ,当能量释放率达到材料的临界值时 ,裂纹将发生失稳扩展。
断裂韧性测试方法
紧凑拉伸试样法
压力容器的断裂分析
压力容器的断裂分析
压力容器的断裂分析主要关注压力容器在各种工况下的强度和稳定性。由于压力容器内部储存着高压气体或液体,一旦发生 破裂,后果将非常严重。因此,对压力容器的断裂分析需要采用严格的测试和评估方法,以确保压力容器的安全性和可靠性 。
压力容器的断裂分析
压力容器的断裂分析
在压力容器的断裂分析中,需要考虑压力容器的结构形式、 材料特性以及各种工况下的应力分布。通过断裂力学的理论 和方法,可以评估压力容器的强度和稳定性,为压力容器的 设计、制造和使用提供重要的安全保障。
高层建筑抗震设计
利用断裂力学原理,可以评估高层建 筑在地震作用下的抗震性能,优化抗 震设计。
机械工程
转子动力学分析
在机械工程中,断裂力学可用于转子动 力学的分析,研究转子裂纹的形成和扩 展,提高旋转机械的稳定性和可靠性。
VS
焊接结构完整性评估
焊接是机械工程中常用的连接方式,断裂 力学可以用于焊接结构的完整性评估,确 保焊接结构的可靠性和安全性。
课程目标
掌握断裂力学的基本 原理和方法。
培养学生对断裂力学 研究的兴趣和独立思 考能力。
了解断裂力学在工程 实践中的应用和案例 分析。
02
断裂力学基础知识
断裂力学的定义
总结词
断裂力学是一门研究材料断裂行为的学科。

理论与应用断裂力学

理论与应用断裂力学

理论与应用断裂力学断裂力学是研究材料在外部载荷作用下发生裂纹和断裂的科学,它涉及材料的断裂行为、裂纹扩展规律、断裂韧性等内容,具有广泛的理论与应用价值。

断裂力学不仅是材料科学与工程的重要组成部分,还在实际工程中起着重要的作用。

在航空航天、汽车工业、建筑工程、能源领域等各个领域,断裂力学都被广泛应用,并为材料设计与结构可靠性提供了重要的理论指导。

一、断裂力学的基本原理1. 断裂力学的基本概念断裂力学是研究材料在外部载荷作用下发生裂纹和断裂的科学。

断裂是指材料在外部力作用下发生的破坏过程,其本质是裂纹的生成、扩展和相互作用。

断裂行为受到外部载荷、裂纹形态、材料性能等多种因素的影响。

2. 裂纹力学与断裂韧性裂纹力学是断裂力学的基础理论,它描述了裂纹在材料中的行为。

裂纹尖端附近的应力场具有奇异性,裂纹尖端处的应力集中导致材料发生拉伸和剪切破坏,从而导致裂纹的扩展。

断裂韧性是衡量材料抗裂纹扩展能力的参数,它描述了材料在裂纹扩展过程中所能吸收的能量大小。

3. 断裂力学的应用范围断裂力学不仅涉及金属材料、混凝土、陶瓷材料等传统材料,还包括了纳米材料、复合材料等新型材料。

它在制造领域、材料科学、产品设计等领域都有重要的应用价值。

二、断裂力学的研究方法1. 实验方法实验是研究断裂力学的重要手段。

通过拉伸试验、冲击试验、疲劳试验等实验方法,可以获得材料的断裂行为、裂纹扩展规律、断裂韧性等重要参数。

实验结果可以验证理论模型的准确性,为理论研究提供数据支持。

2. 数值模拟方法数值模拟是断裂力学研究的重要手段之一。

有限元分析、分子动力学模拟等数值方法可以模拟材料的断裂过程,揭示裂纹扩展的规律,预测材料的断裂行为。

数值模拟方法在工程设计和材料优化中具有重要的应用价值。

3. 理论分析方法理论分析是断裂力学研究的基础。

裂纹力学理论、断裂力学理论等提供了描述裂纹扩展规律、预测裂纹扩展速率、计算断裂韧性等重要方法。

理论分析方法为工程实践提供了重要的指导,为材料设计提供了理论基础。

断裂韧性基础

断裂韧性基础

第六章 断裂韧性基础第一节Griffith 断裂理论第二节裂纹扩展的能量判据能量释放率G 裂纹扩展单位面积时,系统所提供的弹性能量U A∂∂是裂纹扩展的动力,此力叫裂纹扩展力或称为裂纹扩展时的能量释放率。

以1G 表示(1表示Ⅰ型裂纹扩展)。

G 与外加应力,试样尺寸和裂纹有关,而裂纹扩展的阻力为2()s p γγ+,随1,a G σ↑→↑→增大到某一临界值时,1G 能克服裂纹失稳扩展阻力,则裂纹使失稳扩展而断裂,这个1G 的临界值它为1c G ,称为断裂韧性。

表示材料组织裂纹试稳扩展时单位面积所消耗的能量。

平面应力下: 2211,C cC a aG G E E σπσπ==平面应变下: 222211(1)(1),C c C a v v a G G E Eσπσπ--== G 的单位12MPa m -⋅。

第三节 裂纹顶端的应力场可看成线弹性体12005001000s s MPa MPa σσ⎧⎪=⎪⎨=-⎪⎪⎩玻璃,陶瓷高强钢的横截面中强钢低温下的中低强度钢6.3.1三种断裂类型⎧⎪⎨⎪⎩张开型断裂滑开型断裂撕开型断裂最危险Ⅰ型6.3.2Ⅰ型裂纹顶端的应力场无限大平板中心含有一个长为2a 的穿透裂纹,受力如图欧文(G 。

R 。

Irwin )等人对Ⅰ型裂纹尖端附近的应力应变进行了分析,提出应力应变场的数字解析式,由此引出了应变场强度因子1K的概念。

并建立了裂纹失稳扩展的K判据和断裂韧性1CK。

若用极坐标表达式表达,则有近似数字表达式:当裂尖某点不确定,即,rθ一定后,应力大小均由1K决定———盈利强度因子1K故1K大小反映了裂纹尖端应力场的强弱,取决于应力大小,裂纹尺寸。

6.3.3 应力场强度因子及判据将上面应力场方程写成:()ij ijfσθ=其中1K Y=Y:形状系数。

对无限大板Y=1。

1K:12MPa m-⋅111,,a KK aa Kσσσ⎧↑→↑⎪⇒⎨↑→↑⎪⎩不变是一个决定于和的复合物理量不变当此参量达到临界时,在裂纹尖端足够大的范围内,应力便会达到断裂强度,裂纹便沿着X轴失稳扩展,从而使材料断裂。

断裂力学精品文档

断裂力学精品文档
目录 第一章 绪论 第二章 线弹性断裂力学 第三章 弹塑性断裂力学 第四章 疲劳裂纹扩展 第五章 复合型裂纹的脆性断裂理论 附 录 弹性力学基础
一、引例
第一章 绪 论
s
s s [s ]
s
2a
2b
s
2a
s
s max
s
1
2
a b
Inglis(1913)
s
?
第一章 绪论
用分子论观点计算出绝大部分固体材 料的强度103MPa,而实际断裂强度 100MPa?
裂力学,断裂动力学和界面断裂力学。
五、断裂力学的任务
第一章 绪论
1.研究裂纹体的应力场、应变场与位移场,寻 找控制材料开裂的物理参量;
2.研究材料抵抗裂纹扩展的能力——韧性指标 的变化规律,确定其数值及测定方法;
3.建立裂纹扩展的临界条件——断裂准则;
4.含裂纹的各种几何构形在不同载荷作用下, 控制材料开裂物理参量的计算。
一、Griffith理论
3.Griffith理论
s
1) b厚度板开裂前后应变能增量
V
s 2 πa2b A2ab πs 2 A2
E
4Eb
A:裂纹单侧自由表面面积
2a
2)表面自由能
ES 4ab 2A
s
V ES πs 2 A 2
A A 2Eb
2.2 断裂力学的能量方法
一、Griffith理论
4.1954年1月10日英国大型喷气民航客机彗星号坠 落,同时期共三架坠落;
第一章 绪论
二、工程中的断裂事故
5.1958美国北极星号导弹固体燃料发动机壳体爆 炸;
6.1969年11月美国F3左翼脱落; 7.1972年我国歼5坠毁; 8.近年来桥梁、房屋、锅炉和压力容器、汽车等

材料力学断裂力学知识点总结

材料力学断裂力学知识点总结

材料力学断裂力学知识点总结材料力学是研究材料的力学性质和变形行为的学科,而断裂力学则是其中的重要分支。

断裂力学主要研究材料在外界作用下的破坏过程和断裂特性,对于了解材料的强度、可靠性和耐久性具有重要意义。

本文将对材料力学断裂力学的主要知识点进行总结。

1. 断裂力学基础概念1.1 断裂断裂是材料由于内外力作用下发生破裂的现象。

断裂过程包括初期损伤、裂纹扩展和断裂破坏三个阶段。

1.2 断裂韧性断裂韧性是材料在断裂过程中所吸收的能量的量度。

韧性高的材料能够在断裂前吸收大量能量,具有较好的抗断裂能力。

1.3 断裂强度断裂强度是材料在断裂破坏前所能承受的最大拉应力,是衡量材料抗断裂性能的重要指标。

2. 断裂模式2.1 纯拉伸断裂纯拉伸断裂是指材料在纯拉伸作用下破裂的模式。

在该模式下,裂纹往往呈现沿拉伸方向延伸的条状。

2.2 剪切断裂剪切断裂是指材料在剪切载荷作用下破裂的模式。

在该模式下,裂纹往往呈现锯齿状。

2.3 压缩断裂压缩断裂是指材料在压缩载荷作用下破裂的模式。

在该模式下,裂纹多呈现垂直于压缩方向的半环形状。

3. 断裂韧性的评价方法3.1 线性弹性断裂力学线性弹性断裂力学是最早用于断裂韧性评价的方法,其基本假设为材料在破裂前仍满足线性弹性行为。

3.2 弹塑性断裂力学弹塑性断裂力学是考虑了材料的塑性行为。

该方法应用广泛,能较好地描述材料的耐久性和断裂韧性。

3.3 细观断裂力学细观断裂力学是以材料微观层面的裂纹损伤为基础的断裂力学模型,通过对材料中裂纹数量和尺寸的分析,预测材料的断裂韧性。

4. 断裂的影响因素4.1 材料性质材料的力学性质直接影响了其断裂行为,例如强度、韧性、硬度等。

4.2 外界加载条件外界加载条件如载荷类型、载荷大小和加载速率等都会对材料的断裂行为产生重要影响。

4.3 温度和湿度温度和湿度的变化能够引起材料的热膨胀和水分吸附,进而影响材料的断裂性能。

5. 断裂力学应用5.1 材料设计通过对材料的断裂性能研究,可以为材料设计提供依据,提高材料在特定工况下的抗断裂能力。

《断裂力学绪论》PPT课件

《断裂力学绪论》PPT课件

从工程观点看,如何防止或减少断裂事故的 发生呢?首先提出以下5个问题
1.多小的裂纹或者缺陷是允许存在的,即此小裂纹 或者缺陷不会在预定的服役期间发展成断裂的大 裂纹?
2.多大的裂纹就可能发生断裂,即用什么判据来判 断断裂发生的时机?
3.从允许存在的小裂纹扩展到断裂时的大裂纹需要 多长时间,即机械结构的寿命如何估算?
亡最惨重的空难。
四十年代后期美国曾 建造大约2500艘“自由 号”万吨轮,在服役期间 有145艘断成两截,700 艘左右受到严重的损坏。
1949年,东俄亥俄煤气公司的 圆柱形液态天然气罐爆炸,使 周围街市变为废墟。
断裂破坏
美国航空公司一架波音737-800型 客机22日晚抵达牙买加首都金斯 敦诺曼曼利国际机场时冲出跑道, 致伤90多人 (2009-12-22)
断裂破坏
2011年2月13日,美国海军 “格拉维利”号驱逐舰(DDG 107)在佛罗里达南部海域航行 途中,桅杆上部发生断裂. 所幸 无人员伤亡
2009-11-08, 伊朗籍货轮在浙江舟山触 礁断裂
宜宾小南门桥(事故原因:吊杆断裂)
断裂力学的产生背景
传统的强度理论:
传统的强度设计是以材料力学为基础的。假设材料均质, 连续,各向同性,没有裂纹和缺陷,设计时只要满足传统 强度条件就安全。近些年,随着宇航和航空工业的飞速发 展,高强度合金使用量越来越大,而这些高强度合金制成 的机械机构比较脆,容易发生断裂;在腐蚀环境中,甚至 在在相对湿度较高的环境中,就有可能萌生出裂纹。这些 用传统的强度理论,例如屈服判据,是解释不了的。因此 需要寻求新的断裂判据。现代断裂力学就在这种背景下诞 生了。
1-2 脆性断裂和韧性断裂
韧度:是指材料在断裂前的弹塑性变形中吸收能量的能力

断裂力学第二讲断裂力学理论Fracture Mechanics

断裂力学第二讲断裂力学理论Fracture Mechanics
(1913), pp.219–230.
5
C. E. Inglis
Sir Charles Edward Inglis (31 July 1875-19 April 1952) was a British civil engineer. Inglis spent much of his life as a lecturer and academic at King's College Cambridge and made several important studies into the effects of vibration and defects on the strength of plate steel. Inglis served in the Royal Engineers during the First World War and invented a lightweight, reusable steel bridge - the precursor and inspiration for the Bailey bridge of the Second World War . His military service was rewarded with an appointment as an Officer of the Order of the British Empire
12
Griffith理论
一、动机 两个矛盾的事实
The stress needed to fracture bulk glass is around 100 MPa.
The theoretical stress needed for breaking atomic bonds is approximately 10,000 MPa
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 无限大板穿透裂纹体; (2) 材料被认为是理想弹塑性材料
(3) =s, ,不适用于整体屈服
(4) (σ/σs)≤0.86的小范围到大范围屈服
COD参量及其计算
• σ/σs →1 时,δ→∞,模型失效; • σ/σs ≤0.86 时,计算与实验相符; • σ/σs ≤0.5 时,有:
2a K 2 G J E s E s s s
•英国、日本焊接验收标准 •我国压力容器缺陷验收标准
y R
o
O
a 2 v
COD参量及其计算
COD的基本思想
把裂纹体受力后裂纹尖端的张开位移作为一个参量, 建立这个参量与外加应力(或应变e)和裂纹长度a的 关系,计算弹塑性加载时裂纹尖端的张开位移,然后 把材料起裂时的c值作为材料的弹塑性断裂韧性指标。 利用=c作为判据判断是够是否发生破坏。
线弹性断裂力学的局限性
弹塑性断裂力学的提出
对于塑性变形占很 大比重的弹塑性断 裂体的断裂问题
用小试样测试 KIC的问题
弹塑性断裂力学
COD方法
J积分方法
阻力曲线等方法
COD参量及其计算
COD的定义和基本思想 小范围屈服条件下的COD D-B带状屈服模型的COD 全屈服条件下的COD判据
IC的测试
O’
COD参量及其计算
D-B带状屈服模型的COD
Dugdale 于 1960 年 发 现 裂 尖
的塑性区具有扁平带状特征,
从而建立了D-B模型。假设裂 塑性区
纹尖端区域的塑性区沿呈尖
y
劈带状,理想弹塑性材料。
s
s
x
思 将塑性区看成等效裂 路纹
R 2a R 2c
这样裂纹长度可转化为 2a→2c,原裂纹尖端的 张开量就是COD
Burdekin公式
Φ
e es
2
Φ
e es
0.25
Φ 2esa
4 3
Φ e 0.25 Φ e es
es
2
1 宽板实验分散带
1.0 2.0 3.0 4.0 e/es
Φ-e/es关系曲线
e es
0.5
e es
0.5
COD参量及其计算
蔡琪筑(北京钢铁研究院)建立的公式
2es a
裂纹周围 被广大塑 性区包围
Φ 2es a
定义无量纲的应变值:
e es
Crack
塑性应变es=s/E
COD参量及其计算
含中心穿透裂纹的宽板拉 伸试验,得到无量纲的 COD( Φ)与e/es的关系曲线和 相关的经验公式:
Wells公式
过于保守
Φ
e es
2
Φ
e es
e es
1
e es
1
1
无限体中心裂纹
m( e es
0.25)
1.2-1.5 0.7-0.8
半无限体单边裂纹 表面裂纹
日本佐藤建立的公式
m e
es
1 低强度钢 2 高强度钢
COD法的评定程序
J积分原理及全塑性解
COD方法的局限性 J积分定义及特性 弹塑性条件下裂纹尖端的应力应变场 全塑性解及工程计算 基于J的失效评定图
J积分原理及全塑性解
COD方法的局限性
虽然COD是一种简单而有效的断裂判据,但有很大的缺陷 它不是一个直接的、严密的应力应变场参量。 COD判据不能用来预测起裂后亚临界扩展和最 后失稳扩展的规律性。
COD参量及其计算
D-B模型的简化
塑性区周围为弹性区,塑性区和弹性区的交界 面上,作用有垂直于裂纹面的均匀结合力σs
简化为求点A
y
的张开位移
s y s
x
R 2a R 2c
A
A
x
R
2a
R
2c
COD参量及其计算
利用叠加原理
s y s
A
A
x
R
2a R
2c
=1+2
1 y
A
A
x
R
2a R
2c
s 2 y s
y R
o
O
a 2 v
是裂纹开始扩展的判据,不是 裂纹失稳扩展的断裂判据
应力松弛引起的裂纹体刚度下降与裂纹 长度增加的效果是一样的
COD参量及其计算
小范围屈服条件下的COD
等效裂纹长度 a*=a+ry
2V
考虑塑性区影响,假想把 原来的裂纹尖端O移到点 O
O
a
ry
a*
原裂尖点处的张开位移就是COD(或)
线弹性断裂力学的局限性
材料的弹塑性问题
实际材料的应力应变关系-低碳钢


塑性 应变
载荷增大
线弹性断裂力学的局限性
线弹性的适用范围
线弹性力学是建立在小范围屈服的基础上的
当裂纹尖端的塑性区尺寸比裂
纹尺寸或其它特征几何尺寸小
的多的情况。
Crack
K主导区
s 1
塑性

线弹性断裂力学的局限性
对中低强度钢的中小型构件以及其他弹塑性材 料,塑性区尺寸较大,在裂纹尖端附近发生大 范围或全面屈服。
COD参量及其计算
COD的定义
COD— 裂 纹 尖 端 张 开 位 移 (Crack [tip] Opening
Displacement)。裂纹尖端区域发生屈服后,其范围内应力就
几乎不再增加了,所以用应变研究和判断裂纹扩展要比应力
更适用些。裂尖的张开位移(COD) 正是裂尖塑性应变的一种
极好的量度。
COD参量及其计算
全屈服条件下的COD判据
工程结构或压力容器中,一些管道或焊接部件常会发生短裂纹在全面
屈服下扩展而导致的破坏。全面屈服情况下,载荷的微小变化会引起应变
和COD的很大变化。需寻求裂纹尖端张开位移δ与应变e(教材中为ε)、
裂纹几何和材料性能的关系。
目前主要用大量的宽板结果导出经验公式 定义无量纲的裂纹尖端张开位移:
对高强度钢,由于裂纹尺寸很小,以致塑性 尺寸和裂纹尺寸达到相同的数量级,断裂在应 力接近或超过屈服应力的情况下发生。
线弹性断裂力学的局限性
测试工作的要求
在测试材料的KIC时,为保证平面应变和小范围 屈服,要求试样厚度
B ≥ 2.5 KI s 2
如:中等强度钢 要求B=99mm
试样太大,浪费材料
一般试验机很难做到
四、弹塑性断裂力学基本理论
当含裂纹的弹塑性体受到外载荷作用时,裂纹 尖端附近会出现“塑性区”,塑性区的大小与外 载,裂纹长短和材料屈服强度等都有关系。
弹塑性断裂力学的主要任务,就是在大范围 屈服的条件下,确定出能够定量描述裂纹尖端区 域弹塑性应力应变场强度的参量,进而建立出适 合于工程应用的断裂判据。目前应用最广的是J 积分理论和裂纹尖端张开位移(COD)理论。
A
A
x
R
2a R
2c
COD参量及其计算
利用弹性化理论分析方法证明:
原裂纹尖端的张开位移(Cห้องสมุดไป่ตู้D)
8a s ln sec( )
E
2 s
裂纹开始扩展的临界张开位移:
E E 平面应力
E
1
E
2
平面应变
c
8 sa E
ln
s
ec
2
c s
D-B模型塑性区宽度:
R a(sec 1) 2 s
适用情况:
相关文档
最新文档